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Abstract.  We report on a successfulpreliminary experiencein the de-
sign and implementation of a special-purpose Abstract Interpretation
basedstatic program analyzer for the veri cation of safety critical embed-
ded real-time software. The analyzer is both precise (zero false alarm in
the consideredexperiment) and e cien t (lessthan one minute of analysis
for 10,000lines of code). Even if it is basedon a simple interval analysis,
many features have been added to obtain the desired precision: expan-
sion of small arrays, widening with sewral thresholds, loop unrolling,
trace partitioning, relations between loop counters and other variables.
The e ciency of the tool mainly comesfrom a clever represertation of
abstract environments basedon balanced binary seard trees.

Dedicated to Neil Jones, for his 60" birthday.

1 Intro duction

1.1 General-Purp ose Static Program Analyzers

The objective of static program analysisis to automatically determine run-time
properties, statically, that is, at compile-time. This problem is in general un-
decidable, so static program analysis relies on approximations as formalized by
Abstract Interpretation [8,9]. For example, typable programs do not go wrong
but untypable programs do not all go wrong.

In many contexts, suc as program transformation, the uncertainty induced
by the approximation is acceptable.For example, interval analysis can be used
to eliminate uselessarray bound cheds at run-time [7]. The selectionrate (i.e.
the proportion of potential alarms that are de nitiv ely solved either positively
or negatively) is often between 80 and 95%, so the optimization is worthwhile.
Moreover, it is correct sincethe remaining 5 to 20% casesfor which tests cannot
be eliminated at compile-time will be cheded at run-time. Sometimes, static
program analysis can discover de nite errors at compile-time (e.g. uninitialized
variables), which is useful for debugging. The objectivesof such geneal-purpose
static program analyzers are:



1. to fully handle a generalpurposeprogramming language(such as Ada or C,
including the standard libraries);

2. to require no user-provided speci cation/annotation (except maybe light
onessud as, e.g., ranges of input variables or stubs for library functions
the sourceof which is not available);

3. to be preciseenoughto provide interesting information for most programs
(e.g. information pertinent to static program manipulation or debugging);

4. to be e cient enoughto handle very large programs (from a cost of a few
megalytes and minutes to gigabytes and hours when dealing with hundreds
of thousands of sourcecode lines).

Sud general-purpose static program analyzers are very di cult to design be-
causeof the complexity of modern programming languagesand systems.Some
are commercially available and have had successeé repairing failures or pre-
venting them in the early developmert of programs. Sincethe coverageis 100%,
the false alarms can be handled, e.g., by classicaltesting methods, thus reduc-
ing the need for actual test of absenceof run-time error by an economically
signi cant factor of 80 to 95%.

1.2 Program Verication

In the context of safety critical real-time software as found, e.g., in the trans-

portation industry, run-time cheding of errors may not be acceptableat all.

Hence,the debuggingcostis very high and signi cantly higher than the software
dewvelopmert cost itself. In this particular industrial context where correctness
is required by safety and criticalit y, rigorous formal methods should be directly

applicable and economically a ordable.

Deductiv e Metho ds. In practice, deductive methods (see,for example,[1,17])
are hard to apply when lacking a formal speci cation and when the program
sizeis very large. Indeed, the cost for developing the speci cation and the proof,
even with a proof assistart or a theorem prover, is in generalmuch higher than
the cost for developing and testing of the program itself ( gures of 600 person-
yearsfor 80; 000 lines of C code have beenreported). Only critical parts of the
software can be cheded formally and errors appear elsewhere(e.g. at interfaces).
Moreover, for embedded software with a lifetime of ten to twenty years, both
the program and its proof have to be maintained over that long period of time.

Software Mo del Checking. Software model cheding (see,for example,[12])
is also hard to apply when lacking a formal speci cation and when the program
sizeis very large. This is becausehe costof developing both the speci cation and
the model of the program can also be very large. Problems such asthe di cult y
to provide sensibletemporal speci cations or the state explosionare well-known.
On one hand, if the model is not proved correct, then the program correctness
ched is not rigorous and mostly amourts to debugging.On the other hand, the



model can be proved correct, either manually or using deductive methods, but
it is then logically equivalent to the correctnessproof of the original program
[6] and consequetly requiresan immensee ort. Moreover, the program model
and its correctnessproof have to be maintained with the program itself, which
may be a signi cant additional cost. Finally, abstraction is often required; in this
case,software model cheding essetially boils down to static program analysis.

Static Program Analysis. Static program analyzersprove program properties
by e ectiv ely computing an abstract semartics of programsexpressedn xp oint

or constraint form. The collectedabstract information canthen be usedasa basis
for program manipulation, cheding, or partial or total veri cation. Dependingon
the consideredclasseof programsand abstract properties, seeral typesof static

program analyzerscan be designed,all founded on the Abstract Interpretation

theory [5].

1.3 On the Use of General-Purp ose Static Program Analyzers

General-purpose static program analyzersrequire no human intervertion and,
hence,are very cheapto use,in particular during the initial testing phaseand,
later, during the program maintenanceand modi cation. However, even for sim-
ple speci cations, they are hardly useful for formal veri cation becauseof their
execution time (which is required to get precision but may prevent a routine
compiler-like utilization during the initial program developmert process)and the
residual falsealarms (excluding full veri cation). A selectionrate of 95% whic h
is very high when consideringa general-purposestatic program analyzer means
that a signi cant part of the code still needsto be inspected manually, which
remains a prohibitiv e cost or, if bypassed,is incompatible with sewere safety re-
quirements. Moreover, if the analysistime is of sewral hours, if not days, the
re nement of the analysis, e.g., by inserting correctnessassertions,is a very slow
processand will not, in general,eliminate all falsealarms becauseof the inherent
approximations wired in the analyzer.

1.4 Special-Purp ose Static Program Analyzers

Becauseof undecidability, automaticity, and e ciency requiremerts, the absence
of false alarm can only be achieved by restricting both the consideredclasses
of speci cations and programs. This leadsto the idea of special-purpose static
program analyzers Their objectivesare:

1. to handle a restricted family of programs (usually not using the full com-
plexity of modern programming languages);

2. to handle a restricted class of general-purpose speci cations (without user
intervertion except,maybe, light onessud as, e.g.,rangesof input or volatile
variables);



3. to be preciseenoughto eliminate all falsealarms (maybe through a redesign
or, better, a corveniert parameterization of the analyzer by a trained end-
user that does not needto be a static analysis or Abstract Interpretation
specialist);

4. to be e cien t enoughto handle very large programs (a cost of a few mega-
bytes and minutes for hundreds of thousands of sourcecode lines).

By handling a family of programs and not only a single program or model of
the program, we cope with the ewlution over years and the economic cost-
e ectiv enessproblems. By restricting the consideredclassof speci cations and,

more precisely consideringgeneral-purposerequiremerts (such asabsenceof run-

time error or unexpected interrupt), we avoid the costly developmert of specic

speci cations and can apply the analyzer on legacy software (e.g. decades-old
applications the initial speci cation of which, if any, has not been maintained

over time). Moreover, the trade-o between analysis precision and cost can be
carefully balancedby the choice of appropriate and reusableabstractions.

1.5 Report on aFirst Exp erience on the Design of a Special-Purp ose
Static Program Analyzer

In this paper, we report on a rst experienceon the designof a special-purpose
static program analyzer. The consideredclass of software is critical real-time
syndironous embeddedsoftware written in a subsetof C. The consideredclassof
speci cations is that of absenceof run-time error. This experiencereport explains
the crucial design decisionsand dead-endsthat lead from a too imprecise and
too slow initial implementation of a general-purposestatic program analyzer to
a completely rewritten, very fast, and extremely precise special-purpose static
program analyzer. By providing details on the designand implementation of this
static analyzeraswell ason its precision (absenceof falsealarm), executiontime,
and memory usage,we prove that the approad is technically and economically
viable.

2 The Special Purp ose of our Analyzer

Becauseof its critical aspect, the classof software analyzedin this rst experience
was developed through a rigorous process.In this process,the software is rst
described using sthemata. These schemata are automatically translated into a
C code using handwritten macros which compute basic functionalities. This C
code, organizedin many source les, is the input of the analyzer.

Becauseof the real-time aspect of the application, the global structure of the
software consistsin an initialization phasefollowed by a big global synchronized
loop. Becauseof this structure, nearly all variablesin the program depend on
ead other.

Becauseof the way the C code is generated, the program contains a lot
of global and static variables, roughly linear in the length of the code (about



1; 300 for 10,000 LOCs®). It follows that memory spacecannot be saved by a
preliminary analysis of the locality of the program data.

2.1 Restrictions to C Followed by the Software Class

Fortunately, the strong requiremerts enforced by the developmen of critical
software imply that somedicult aspects of the C language are not used in
this classof software. First, there are neither goto s nor recursive function calls.
The data structures are quite simple: the software doesnot manipulate recursive
data structures, and the only pointers are statically allocated arrays (no dynamic
memory allocation). There is no pointer arithmetic except the basic array op-
erations. Becausethe code doesnot contain strings either, alias information is
trivial.

2.2 Specication to be Veried
The analyzer hasto prove the following:

absenceof out-of-bound array indexes;
logical correctnessof integer and oating-p oint arithmetic operations (essen-
tially , absenceof over o w, of division by 0).

So, the analysis consistsin over-approximating the set of reachable states.

3 Program Concrete Semantics

The program concrete semartics is a mathematical formalization of the actual
execution of the program. A precisede nition is necessaryto de ne and prove
the soundnesof the veri er, cheder, or analyzer. For example,in static analysis,
the analyzer e ectiv ely computesan abstract semartics which is a safeapprox-
imation of this concrete semarics. So, the rigorous de nition of the program
concrete semartics is mandatory for all formal methods.

In practice, the concrete semariics is de ned by:

the ISO/IEC 9899standard for the C programming language[14] aswell as
the ANSI/IEEE 754 standard for oating-p oint arithmetic [2];

the compiler and machine implementation of these standards;

the end-userexpectations.

Each semariics is a re nement of the previous one where somenon-determinism
is resolved.

3 The number of lines of code (LOCs) is counted with the Unix™ command wc -|
after stripping commerts out and macro preprocessing. Then, the abstractions we
consider essetially consene all variables and LOCs, seeSec.8.



3.1 The C Standard Semantics

The C standard semartics is often nondeterministic in order to accourt for dif-
ferent implementations. Here are three examples:

unspeci e d behaviors are behaviors where the standard provides two or more
possibilities and imposesno further requiremert on which should be chosen.
An example of unspeci ed behavior is the order in which the argumerts to
a function are evaluated,

unde ned behaviors correspond to unportable or erroneousprogram constructs
on which no requiremert is imposed. An example of unde ned behavior is
the behavior on integer over ow;

implementation-de ned behaviors are unspeci ed behaviors where eac imple-
mentation documerts how the choice is made. An example of implemen-
tation-de ned behavior is the number of bits in an int or the propagation
of the high-order bit when a signedinteger is right-shifted.

A static analyzer basedon the standard C semartics would be sound/correct
for all possibleconformant compilers. The approach seemsunrealistic sincethe
worst-caseassumptionsto be made by the concrete semarics are not always
easyto imagine in caseno requiremert is imposedand will anyway lead to huge
lossesof precision, hence,to unacceptably many false alarms. For instance, the
C standard does not imposethe sizesand precisions of the various arithmetic

types,only someminimal sizes,thusthe analysiswould be very imprecisein case
of suspected over ows.

3.2 The Implemen tation Semantics

A correct compiler for a given machine will implement a re nement of the stan-
dard semartics by choosing among the allowed behaviors during the execution.
To achieve precision, the design of a static analyzer will have to take into ac-
count behaviors which are unspeci ed (or even unde ned) in the norm but are
perfectly predictable for a given compiler and a given machine (provided the
machine is predictable). For example:

unspeci e d behaviors: the argumerts to a function are evaluated left to right;

unde ned behaviors: integer over o w is impossiblebecauseof modulo arithmetic
(division and modulo by zero are the only possibleinteger run-time errors);

implementation-de ned behaviors: there are 32 bits in anint and the high-order
bit is copied when right-shifting a signedinteger.

3.3 The End-User Semantics

The end-usermay have in mind a semartics which is a re nement of the imple-
mentation semartics. Examples are:

initialization to zer which is to be performed by the system before launching
the program (whereasthe C standard requiresthis for static variables only);



volatile variables for using interface hardware can be assigneda range, so that
reads from thesevariables always return a value in the speci ed range;

integer arithmetic computations which are subject to over ow (sincethey repre-
sen integer bounded quantities for which modulo arithmetic is meaningless)
or not (such as shift operations to extract elds of words on interface hard-
ware for which over ow is meaningless).

For meaningful analysis results, one has to distinguish between caseswhere
the execution of the program proceedsor not after hitting unde ned or imple-
mentation-de ned behaviors. In the former case,we take into accourt the imple-
mentation-de ned execution; in the latter, we consider the trace to be inter-
rupted. Let us take two examples:

In a context where x 2 [0; maxint] is an unsignedinteger variable, the anal-
ysis of the assignmen y := 1=x will signal a logical error in casex = 0. In
the consideredimplementation, integer divisions by zero always generatea
system exception that aborts the normal execution of the program. Hence
we consider that the execution can only go on when there is no run-time
error with y 2 [1=maxint; 1]. In that case,the implementation and intended
concrete semartics do coincide;
In a context wherex 2 [0; maxint] is an integer variable, the analysis of the
assignmen y := x + 1 will signal a logical error in casex = maxint. Since
the implementation doesnot signal any error, the end-usercan considerthe
logical error as a simple warning and chooseto go on according to seweral
possibleconcrete semartics:
Implementation concrete semantics: from an implementation point of view,
the execution goes on in all casesx 2 [0;maxint], that is with y 2
f maxint 1g[ [1; maxint] (since with modulo arithmetic, the imple-
mentation doesnot signal the potential logical error).

This choicemay causethe later analysisto be polluted by the logically
infeasible cases(y = maxint 1 in our example). Such a behavior is
in fact intentional in certain parts of the program (such as to extract
elds of unsigned integersto selectvolatile quartities provided by the
hardware which is logically correct with wrapping);

Logical concrete semantics: from a purely logical point of view, the exe-
cution goes on with error-free casesx 2 [0;maxint 1], that is with
y 2 [1; maxint] (asif the implementation had signaledthe logical error).

One can think that this point of view would be implemerntation cor-
rect for error-free programs (assuming programs will not be run until
all logical warnings are shown to be impossible). This is not the caseif
the programmer makes some explicit use of the hardware characteris-
tics (such as modulo arithmetic). For example, the correctnessof some
program constructs (such as eld extraction) relies on the absenceof
over ow in modulo arithmetic and, so, ignoring this fact would lead to
the erroneousconclusion that the subsequeh program points are un-
reachable!



Becausesomeconstructs (such assignedinteger arithmetic) require to takea
logical concretesemartics and others (such as eld extraction from unsigned
integers)require to explicitly rely on the implementation concretesemarics,
the analyzerhasto be parameterizedsoasto leavethe nal choiceto the end-
user (who can indicate to the analyzer which semartics is intended through
a con guration le, for exampleon a per-type and per-operator basis).

4 Preliminary Manipulations of the Program

To reducethe later cost of the static analysis, we perform a few preliminary ma-
nipulations of the program. Sincethe program usesC macrosand the semarics
of macrosin C is not always clear, macros are expanded before the analysis,
sothe analyzed program is the pre-processedprogram. Then, all input les are
gathered into a single source le. Becausethe program is automatically gener-
ated, it has numeroussymbolic constarts, so, a classicalconstart propagation is
performed. Note that oating-p oint constarts must be evaluated with the same
rounding mode as at run-time, in generalto the nearest, whereasduring the
analysis, interval operations will always be over-approximated: we considerthe
worst-caseassumptionsfor the rounding mode, to make surethat the computed
interval is larger than the actual one. The constart propagation is extended to
the partial ewvaluation [13] of constart expressionsincluding, in particular, ac-
cessedo constart arrays with a constart index. This was particularly useful for
arrays cortaining indirections to hardware addressedor interfaces.

Other manipulations can be speci ed in a con guration le. We can specify
volatile variables. Volatile variables should in fact be mentioned as sud in the
source le; however, they are sometimesomitted from the source becausethe
compiler does not optimize memory accessesso volatile declarations have no
e ect on the compilation. We can also specify for volatile variables a range
that represerts, for instance, the value of sensors.The analyzer then makesthe
assumption that all accessedo these variables return a value in the indicated
range.The rst manipulation passinsertsthe rangeasa specialkind of initializer
for the consideredvariables. The resulting syntax is then an extension of the C
syntax that is taken asinput by the other phasesof the analyzer.

The user can also declare functions to be ignored. These functions are then
given an empty code. (If they were not already de ned, then they are de ned
with an empty code. If they were already de ned, then their code is removed.)
This declaration has two purposes.The rst oneis to give a code to built-in
system calls that do not in uence the rest of the behavior of the program. The
secondoneisto help nding the origin of errorsdetectedby the analyzer:ignoring
declarations can be usedto simplify the program, and seeif the analyzer still
nds the error in the simplied program. This usagewas not intended at the
beginning, but it proved useful in practice.



5 Structure of the Analyzer

To over-approximate the reachable states of a well-structured program, the an-
alyzer proceedsby induction on the program syntax. Sincethe number of global
variables is large (about 1;300 and 1; 800 after array expansion, see Sec. 6.3)
and the program is large (about 10;000 LOCs), an abstract environment can-
not be maintained at eac program point as usual in toy/p edagogicalanalyzers
[4]. Instead, the analysis proceedsby induction on the syntax with one current
abstract environment only. Loops are handled by local xp oint computations
with widenings and narrowings. During this iteration, an abstract environment
is maintained at the head of the loop only. So, the number of ervironments
which hasto be maintained is of the order of the level of nesting of loops. After
the xp oint is reached, an additional iteration is performed sothat all runtime
errors can be detected even if ervironments are not recorded at each program
point. Nevertheless, special precaution must be taken for implemerting these
ernvironments e cien tly, asdiscussedbelow in Sec.6.2. Moreover, there are only
few user-de ned proceduresand they are not recursive, so they can be handled
in a polyvariant way (equivalent to a call by copy).

6 Special-Purp ose Abstract Domains

6.1 lterativ e Construction of the Analyzer

We started with classicalanalyzes(e.g. interval analysisfor integerand oating-
point arithmetics, handling of arrays by abstraction into a single elemen, etc.),
which, as expected from a preliminary use of a commercial general-purposean-
alyzer by the end-user,lead to unacceptableanalysistimes and too many false
alarms.

The developmert of the analyzerthen followed cyclesof iterativ e re nements.
A version of the analyzer is run, outputting an abstract execution trace as well
asa list of the alarms. Each alarm (or, rather, group of related alarms) is then
manually inspectedwith the help of the abstract trace. The goalis to di eren tiate
betweenlegitimate alarms, coming for instance from insu cien t speci cation of
the inputs of the program, and falsealarms arising from lack of analysisprecision.
When alack of precisionis detected,its causeanust be probed. Oncethe causeof
the lossof precisionis understood, re nements for the analysismay be proposed.

Various re nements of the analyzer were related to memory and time e -
ciency which wereimproved either by redesignof data structures and algorithms
or by selectingcoarserabstract domains.

These re nements are reported below. Someare speci ¢ to the considered
classof programs, but others are of generalinterest to many analyzers suc h as
the useof functional maps as discussedin the following section Sec.6.2.



6.2 Ecien t Implemen tation of Abstract Environmen ts through
Maps

One of the simplest abstract domainsis the domain of intervals [7]: an abstract
ernvironment maps ead integer or real variable x 2 V to an interval X2 |. The
abstract semartics of arithmetic operations are then ordinary interval arith-
metic. The least upper bound and widening operations operate point-wise (i.e.
for eadh variable). More generally, we shall considerthe casewhere the abstract
ernvironment is a mapping from V to any abstract domain | .

A naive implementation of this abstract domain represers abstract environ-
merts as arrays of elemers of | . If destructive updates are allowed in abstract
transfer functions (i.e. the environment represeting the state beforethe opera-
tion can be discarded), the abstract functions corresponding to assignmetrs are
easyto implemen; if not, a new array hasto be allocated.

For all its simplicity, this approadc su ers from two drawbacks:

it requires many array allocations; this can strain the memory allocation
system, although most of the allocated data is short-lived;

more annoyingly, its complexity on the classof programs we are considering
is prohibitiv e: the cost of a least upper bound operation, which is performed
for eadh test construct in the program, is linear in the number of variables;
on the programs we consider, the number of static variablesis linear in the
length of the program, thus leading to a quadratic cost.

A closerlook at the program shaws that most least upper bound operations
are performed between very similar environments; that is, ervironments that
dier in a small number of variables, corresponding to the updates done in
the two branches of a test construct. This suggestsa system that somehav
represerts the similarities between environments and optimizes the least upper
bound operation betweensimilar environments.

We decided to implement the mappings from V to | as balanced binary
seard treesthat corntain, at ead node, the name of a variable and its abstract
value. This implementation is provided by the functional map module Map of
Objective Caml [15]. The accesgime to the environment for reading or updat-
ing an elemer is logarithmic with respect to the number of variables (whereas
arrays, for instance, would yield a constart time access).

A salient point is that all the operations are then performed fully function-
ally (no side e ect) with a large sharing betweenthe data structures describing
di erent related environments. The functional nature allows for straightforward
programming in the analyzer no needto keeptrack of data structures that may
or may not be overwritten and the sharing keepsthe memory usagelow.

Functional maps also provide a very e cien t computation of binary opera-
tions between similar ervironments, when the operationo:1 | ! | satises
8x 2 I; o(x;x) = x. This is true in particular for the least upper bound and
the widening. More precisely we added the function map2 de ned as follows:
if fpandfo, : V! | ando: | I ! | satises 8x 2 I; o(x;x) = X, then
mapAo;fq;f2) = x 7! o(f 1(X); f2(x)). This function is implemented by walking



recursively both treesrepreserning f, and f,; whenf, and f, sharea common
subtree, the result is the samesubtree, which can be returned immediately. The
function map2 has to traverseonly the nodesthat dier betweenf; and f,
which correspond to paths from the root to the modi ed variables. This strategy
leadsto atime complexity O(m logn) wherem the number of modi e d variables
betweenf; and f,, and n is the total number of variables in the ernvironment
(logn is the maximum length of a path from the root to a variable). When
only a few variables in the functional map have di erent values (for example,
when merging two ernvironments after the end of a test), a very large part of the
computation can be optimized away thanks to this technique.

In conclusion, functional maps implemented using balanced binary seard
trees decreaseremendously the practical complexity of the analyzer.

6.3 Expansion of Small Arra ys

When consideringan array variable, onecansimply expandit in the ervironment,
that is to say, consider one abstract elemen in | for ead index in the array.
One can also chooseto smashthe array elemerts into one abstract elemern that
represen all the possiblevaluesfor all indices.

When dealing with large arrays, smashingthem results in a smaller memory
consumption. Transfer functions on smashedarrays are also much more e -
cient. For example,the assignmen tab[i] := exp with i 2 [0;99]leadsto 100
abstract assignmetrts if tab is expanded,and only oneif tab is smashed.

Expanded arrays, however, are much more precisethan smashedones. Not
only they can represen heterogeneousarrays suc h as arrays of non-zero oat
elemerts followed by a zero elemeri that marks the end of the array but they
result in lessweak updates'. For example, if the two-elemerts array tab is initial-
ized to zero, and then assignedby tab[0] := 1; tab[l] := 1, smashingthe
array will result in weak updates that will concludethat tab[i] 2 [0;1]. The
precisiongain of expandedarrays is particularly interesting when combined with
sematrtics loop unrolling (seeSec.6.5).

To addressthe precision/cost trade-0 of smashedvs. expandedarrays, the
analyzer is parameterized so that the end-user can specify in a con guration
le which arrays should be expanded either by providing an array size bound
(arrays of size smaller than the bound are expanded) and/or by enumerating
them nominatively.

6.4 Staged Widenings with Thresholds

The analyzeris parameterizedby a con guration le allowing the userto specify
re nements of the abstract domainswhich are usedby the analyzer. An example
is the stagel wideningswith thresholds

4 A weak update denotes an assignemen where some variables may or may not be
updated, either becausethe assigned variable is not uniquely determined by the
analyzer, or becausethe assignedvariable is smashedwith some others.



The classicalwidening on intervalsis [a;b] 5 [c;d] = [(c< a? 1 :a);(d>
b2+ 1 : b)]° [8]. It is known since a long time that interval analysis with
this widening is lessprecisethan sign analysis since,e.g.,[2;+1 ] [1;+1 ] =
[1 ;+1 ]whereassignanalysiswould leadto [0;+1 ](or [1;+1 ] depending on
the chosenabstract domain [9]). So, most widenings on intervals use additional
thresholds,such as-1,0and +1. The analyzeris parameterizedby a con guration
le allowing the userto specify thresholds of his choice.

The thresholds can be chosen by understanding the origin of the loss of
precision. A classicalexampleis (n is a giveninteger constan):
int x;
X = 0;
while x <> ndo
X=X+ 1;
end while

(whereas writing x < n would allow the narrowing to capture the bound n
[7,8]). A more subtle exampleis:
volatile boolean b;
int x;
X = 0;
while true do
if bthen
X=X+ 1;
if x> n then
X = 0;
end if
end if
end while

In both casesa widening at the loop headwill extrapolate to +1 and the later
narrowing will not recover the constart n bound within the loop body. This was
surprising, sincethis workedwell for the following pieceof code:
int x;
X = 0;
while true do
X=X+ 1;
if x> n then
X = 0;
end if
end while

In the rst casehowever, the test:

if x> n then
X = 0;
end if

5 (true?a: b) = a whereas(false?a : b) = b.



may not be run at ead iteration sooncethe analyzer over-estimatesthe range
of x, it cannot regain precision even with this test. A solution would be to ask
for a userhint in the form of an assertionx n. An equivalent hinting strategy
is to add the constart n as a widening threshold. In both cases,the widening
will not lead to any loss of precision. Another threshold idea, depending on the
program, is to add arithmetic, geometric or exponertial progressionsknown to
appear in the courseof the program computations.

6.5 Semantic Loop Unrolling

Although the software we analyze always starts with some initialization code
beforethe main loop, there is still someinitialization which is performed during
the rst iteration of that main loop. The medanism used in the software is a
global boolean variable which is true when the code is in the rst iteration of
the main loop.

If wetry to compute an invariant at the head of the loop and the domain is
not relational, then this boolean can cortain both the valuestrue and false and
we cannot distinguish betweenthe rst iteration and the other ones.To solve
this problem, we applied semaric loop unrolling.

Semartic loop unrolling consists, given an unrolling factor n, in computing
the invariants o which is the set of possible values before the loop, then Iy,
1 k< n the setof possiblevaluesafter exactly k iterations, and nally J, the
set of possiblevaluesafter n or more iterations. Then, we mergelo;:::;ln 1;Jn
in order to get the invariant at the end of the loop. Another point of view is
to analyze the loop while B do C asif B then (C; if B then (... if B
then (C; (while B do C))...)). Such a technique is more precise than the
classical analysis of while loops when the abstract transfer functions are not
fully distributiv e or when we usewidenings.

In our case,the rst iteration of the main loop is an initialization phasethat
behavesvery di erently than subsequen iterations. Thus, by setting n = 1, the
invariant J, is computed taking into accourt initialized valuesonly sowe can
get a more preciseresult and even suppresssomefalse alarms.

6.6 Trace Partitioning

The reasonwhy semartic loop unrolling is more preciseis that, for eat loop
unrolling, a new set of valuesis approximated. So, instead of having one set of
values, we have a collection of sets of values which is more precisethan their
union becausewe cannot represen this union exactly in the abstract domain.
We could be even more preciseif we did not mergethe collection of setsof values
at the end of the loop but later.
Consider, for example, the following algorithm which computesa linear in-

terpolation:

t = {-10, -10, 0, 10, 10},

c = {0, 2,2, 0}



d = {-20, -20, 0, 20};

i =0

while i < 3and x tJ[i+1] do
=0+

end while

ro=x-tfi]) cli]+dil;

The resulting variable r rangesin [ 20;20], but if we perform a standard
interval analysisthe result will be[min( 20;2x  40); max(20; 2x* + 40)] (where
xisin [x ;x*]). This information is not preciseenoughbecausenterval analysis
is not distributiv e. It is the caseevenwith semartic loop unrolling becausewhen
we arrive at the statemert wherer is computed, all unrollings are mergedand
we have lost the relationship betweeni and x.

Trace partitioning consistsin delaying the usual mergingswhich might occur
in the transfer functions. Such mergingshappen at the end of the two branches
of an if, or at the end of a while loop when there is semartic loop unrolling.
Control-based trace partitioning was rst introducedby [11]. Trace partitioning
is more precisefor non-distributiv e abstract domains but can be very expensive
asit multiplies the number of ervironments by 2 for ead if that is partitioned
and by k for ead loop unrolled k times. And this is even worsein the caseof
trace partitioning inside a partitioned loop.

So, we improved [1]] techniquesto allow the partition to be temporary: the
merging is not delayed forever but up to a parameterizable point. It worked
well to merge partitions created inside a function just beforereturn points, and
partitions created inside a loop at the end of the loop. This notion of merging
allowed the use of trace partitioning ewven inside the non-unrolled part of loops.
In practice, this technique seemsto be a good alternativ e to the more complex
classicalreduced cardinal power of [9].

6.7 Relation between Variables and Loop Coun ters

As explained in the beginning of the section, non-relational domains, such as
the interval domain, can be e cien tly implemented. However, non-relational
invariants are sometimenot su cien t, even for the purposeof bounding variable
values. Consider the following loop:
volatile boolean b;
i =0
x:= 0
while i < 100do
X=X+ 1;
if bthen
X :=0;
end if
=0+ 1
end while



In order to discover that x < 100, one must be able to discover the invariant
relation x 1. Staged widenings are ine ectiv e here becausex is never com-
pared explicitly to 100. Switching to fully relational abstract domains (such as
polyhedra, or even linear equality) is clearly impossibledue to the tremendous
amount of global live variables in our application (in fact, even non-relational
domains would be too costly without the represenation technique of Sec.6.2).

Our solution is to consider only relations between a variable and a loop
counter  (either explicit in a for loop or implicit in a while loop). We denote
by the interval of the counter ( is either determined by the analysis or
speci ed by the end-userin the con guration le, e.g., becausethe application
is designedto run for a certain maximum amourt of time). Instead of mapping
ead variable x to an interval X, our enhancedinvariants map ead variable x to
three intervals: X, X" and X which are, respectively, the possiblevaluesfor x,
forx+ ,andfor x .Whentoo much information on the interval Xis lost (after
a widening, for example), X", X , and are usedto recover someinformation
using a so-called reduction operator (see Sec. 6.8 below), which replacesthe
interval X by the interval X\ (X )\ (X + ). This is a simple abstract way
of capturing the ewolution of the value of the variables over time (abstracted by
the loop counter).

From a practical point of view, this domain is implemented asa non-relational
domain using the data-structures of Sec.6.2. It greatly increasesthe precision
of the analysisfor a small speedand memory overheadfactor.

6.8 Reduction and its Interaction with Widening

In order to take into accourt the relations between program variables and the
loop counters, we use a reduction operator which is a consenative endomor-
phism (i.e. such that (d) ( (d))). The way this reduction is usedhasa great
impact, not only on accuracy but also on complexity: on the rst hand it is
crucial to make the reduction beforecomputing someabstract transfer functions
(testing a guard for instance) to gain someprecision; on the other hand, the cost
of the reduction must not exceedthe cost of the abstract transfer function itself.

Our choicewasto perform reductionsonthe y inside ead abstract primitiv e.
This allows us to focusthe reduction on the program variables which needto be
reduced. It is very simple for unary operators. As for the binary operators, we
detect which part of the result must be reduced thanks to the functional map
implementation, which leadsto a sub-linear implemertation of the reduction
which coincideswith the amortized cost of abstract transfer functions.

The main problem with this approacd is that the reduction may destroy the
extrapolation constructed by widening®. Usually, the reduction operator cannot
be applied directly to the results of a widening. Somesolutions already existed,
but they were not compatible with our requirement of having a sub-linear im-
plemertation of the reduction.

5 The reader may have a look at the Fig. 3 of [16] to have an illustration of this
problem in the context of a relational domain.



To solve this problem, we require non-standard conditions on the reduction:
we especially require that there are no cyclic propagation of information between
abstract variables. For instance, we prevent information propagation from the
intervals  of the loop counter and X of a program variable x to the intervals X"
and X corresponding to the sum and the di erence of x and . We only make
propagation from the intervals , X", and X to the interval X This allows
extrapolation to be rst performed on the intervals , X", and X . Once the
iterate of the intervals , X", and X have becomestable, the extrapolation of
the interval Xis not disturb ed anymore.

6.9 On the Analysis of Floating-P oint Arithmetic

A major dicult y of the analysis of oating-p oint arithmetic is the rounding
errors, both in the analyzed semartics and in the analyzer itself. One has to
considerthat:

transfer functions should model oating-p oint arithmetic, that is to say (ac-
cording to the IEEE standard [2]), in nite-precision real arithmetic followed
by a rounding phase;

abstract operators should be themselves implemented using oating-p oint
arithmetic (for e ciency , arbitrary precision oating-p oint, rational, and al-
gebraic arithmetics should be prohibited).

In particular, special care has to be taken since most classical mathematical
equalities (asscriativit y, distributivit y, etc.) no longer hold when the operations
are translated into oating-p oint; it is necessaryto know at every point if the
quantities dealt with are lower or upper bounds.

Interval arithmetic is relatively easy Operations on lower bounds have to
be rounded towards 1 , operations on upper bounds towards +1 . A compli-
cation is added by the use of float IEEE single precision v ariablesin the
analyzed programs: abstract operations on these should be rounded in IEEE
single precision arithmetic.

7 Dead-Ends

The analyzer went through three successie versionsbecauseof dead-endsand
to allow for experimentation on the adequate abstractions. In this section, we
discussa number of bad initial designdecisionswhich were correctedin the later
versions.

Syntax. An initial bad idea wasto usea program syntax tailored to the consid-
ered class of automatically generated programs. The idea was to syntactically
ched for potential errors, e.g., in macros. Besidesthe additional complexity, it
was impossible to test the analyzer with simple examples. Finally, expanding
the macrosand using a standard C grammar with semaric actionsto ched for
local restrictions turned out to be more productive.



Functional Array Representation of the Environment. The rst versionsof the
analyzer used Caml arrays to represen abstract ervironments. As discussedin
Sec.6.2, the idea that O(1) accesstime to abstract values of variables makes
non-relational analyzese cien t turned to be erroneous.

LivenessAnalysis. Becauseof the large number of global variables, livenessanal-
ysis was thought to be useful to eliminate uselessupdatesin abstract environ-
mernts represened as arrays. The gain wasin fact negligible. Similar ideasusing
classical data- o w analysis intermediate represenations suc as use-de nition
chains, single static assignmen, etc. would probably have also beenine ectiv e.
The key idea wasto usebalancedtrees as explainedin Sec.6.2.

Open Floating-Point Intervals. The rst version of the analyzer used closed
and open oating-p oint intervals. For soundness.the intervals had to be over-
estimated to take rounding errors into accourt, as explained in Sec.6.9, which
makesthe analysisvery complexwith no improvemert in precision, so, the idea
of using open intervals was abandoned.

Relational Floating-Point Domains. Most literature consideronly relational do-
mains over elds, suc asrationals or reals, and do not addressthe problem of
oating-p oint. With somecare, one could designa sound approximation of real
arithmetic using oating-p oint arithmetic: eadc computation is rounded suc
that the result is always enlarged, in order to presene soundness.Then, eath
abstract oating-p oint operator can be implemerted as an abstract operator
on reals, followed by an abstract rounding that simply adds to the result an
interval represerning the absolute error or, more precisely the ulp [10]. How-
ever, this crude approadc of rounding can causethe abstract elemert to drift
at ead iteration, which prevents its stabilization using widenings. No satisfying
solution has been found yet to addressthis problem, as well as the time and
memory complexity inherert to relational domains, so, they are not usedin our
prototype.

Case Analysis. Case analysis is a classical re nement in static analysis. For
example[9, Sec.10.2]illustrates the reducedcardinal power of abstract domains
by a caseanalysison a booleanvariable, the analysisbeing split on the true and
false cases.Implementations for seweral variables can be basedon BDDs. The
sameway abstract valuescan be split accordingto seweral concretevaluesof the
variables (such asintervals into sub-intervals). This turned out to be ine ectiv e
since the costs can explode exponertially as more splittings are intro duced to
gain in precision. So, caseanalysiswas ultimately replacedby trace partitioning,

asdiscussedin Sec.6.6.

On Prototyping. The rst versionsof the analyzer can be understood as initial

prototypesto help decideon the abstractionsto be used.The complete rewriting

of the successie versionsby di erent personsavoidedthe accumnulation of levels,
corrections, translations which over time can make large programs tangled and
ine cien t.
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Fig. 1. Memory usageas a function of the subject program size.

8 Performances

The whole problem of static analysisis to nd the right cost-performance bal-
ance. In program veri cation, the precisionis xed to zero (false-)alarm. When
the zero alarm precision problem is solved, it remains to estimate the perfor-
mance of the analysis. To estimate memory and timing performances,we made
various analysisexperiments with slicesof the program aswell asthe synchronous
product of the program seeral times with itself.

The memory usedto store an abstract environement grows linearly with the
number of variables, which is itself proportional, for the consideredapplications,
to the size of the program itself *. Due to nested loops, loop unrolling, and
trace partitioning, the analyzermay needto store seeral abstract environemernts
during the analysis. However, thanks to the useof functional maps, a huge part
of these ervironemen is shared, thus reducing the memory consumption. We
have found experimentally (Fig. 17) that the peak memory consumption of the
analyzerisindead O("). For our application, it is of the order of a few megabytes,
which is not a problem for modern computers.

" The best curve tting [3] with formula y = a+ bx and a tolerance of 10 ° yields
a = 0:623994and b = 0:00176291with assciation gauged by Chi-square: 6.82461,
Correlation coe cien t: 0.951324, Regression Mean Square (RMS) per cert error:
0.0721343and Theil Uncertainty (U) coe cien t: 0.0309627.



Thanks to the use of functional maps (Sec. 6.2), the amortized cost of the
elemenary abstract operations can be estimated to be at most of the order of
the time to accessabstract values of variables, which is O(In v), wherev is the
number of program variables. In the programs consideredin our experimert, the
number of program variables is itself proportional to the number *~ of LOCs. It
follows that the cost of the elemeriary abstract operationsis O(In 7). A xp oint
iteration sweepsover the whole program. Becausethe abstract analysis of pro-
ceduresis semartically equivalent to an expansion(Sec.5), ead iteration step
of the xp oint takesO('® In> p %9 where Cis the number of LOCs after
procedureexpansion,p is a bound to the number of abstract ervironments that
needto be handled at each given program point®, and i%is a bound to the num-
ber of inner xp oint iterations. The xp oint computation is then of the order
O( p i "% In") wherei is a bound to the number of iterations.

We now estimate the bounds p, i, and i°. The number p only depends on
end-userparameters. The numbersi and i®are at worst O(l  t) wheret denotes
the number of thresholds, but are constart in practice. So, the execution time
is expected to be of the order of O(C'® In"). Our hypothesesare con rmed
experimentally by best curve tting [3] the analyzer execution time on various
experiments. The tting formula® y = ax yields a = 0:000136364 as shown in
Fig. 2.

The procedure expansionfactor giving “° asa function of the program size’
has also beendetermined experimentally, seeFig. 3. The best curve tting with
formulal®y=a x (Inx)?yieldsa = 0:927555 b= 0:638504 This shaws that,
for the consideredfamily of programs, the polyvariant analysis of procedures
(equivalert to a call by copy semartics), which is known to be more precisethan
the monovariant analysis (where all calls are mergedtogether), hasa reasonable
cost.

By composition, we get that the executiontime of the analyzeris O( (In *)?2)
where" is the program size.This is con rmed experimentally by curve tting the
analyzerexecutiontime for various experiments. The non-linear tting formula®t
y = a+ bx+ cx(Inx)? yields a = 22134 10 !, b= 516024 10 %, ¢ =
0:0001530%nd d = 1:55729 seeFig. 4.

The memory and time performancesof the analyzer,asextrapolatedin Fig. 5,
show that extreme precision (no alarm in the experiment) is not incompatible
with e ciency . Therefore we can expect such speci ¢ static analyzersto be rou-
tinely usable for absenceof run-time errors veri cation during the program de-

8 This number only dependson loop unrolling and trace partitioning.

° with assaiation gauged by Chi-square: 239.67, Correlation coe cien t: 0.941353,
RMS per cent error: 0.515156and Theil U coe cien t: 0.0628226for a tolerance of
10 ©.

10 with assaiation gauged by Chi-square: 7:00541 10%, Correlation coe cien t:
0.942645,RMS per cent error: 0.113283and Theil U coe cien t: 0.0464639at toler-
ance 10 ©.

11 with assaiation gauged by Chi-square: 40.1064, Correlation coe cien t: 0.956011,
RMS per cent error: 0.0595795and Theil U coe cien t: 0.0248341for a tolerance of
10 ©.
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velopmen, test, and maintenance processes.Thanks to parameterization, the
end-usercan easily adjust the analysisto cope with small modi cations of the
program.

9 Conclusion

When rst reading the program, we were somewhatpessimistic on the chances
of successof the zero false alarm objective since the numerical computations
which, not surprisingly for a non-linear control program, represern up to 80%
of the program, looked both rather complex and completely incomprehensible
for the neophyte. The fact that the code is mostly machine-generateddid not
help. Using complex numerical domains (such as polyhedral domains) would
have beenterribly costly. So, the design criterion was always the simpler, i.e.,
the most abstract, the better, i.e., the most e cien t.

Becauseof undecidability, human hinting is necessaryto analyze programs
without false alarm:

in deductive methods this is done by providing inductive argumerts (e.g.
invariants) aswell as hints for the proof strategy;

in model-cheding, this is done by providing the nite model of the program
to be cheded;
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in static program analysis, we have shovn on a non-trivial examplethat this
can be done by providing hints on the local choice of the abstract domains
and widenings.

In all cases,someunderstanding of the veri cation technique is necessary We
have the feeling that hints to a parameterized analyzer are much easierto pro-
vide than correct invariants or program models. Once specialists have designed
the domain-speci ¢ static analyzerin a parameterizedway, the local re nement
processis very easyto specify by end-userswho are not specialists in static
program analysis.

We have seriousdoubts on the fact that this re nement processcan be fully
automated. A courter-example basedre nement to handle false alarms would
certainly be able only to re ne abstract domains, abstract elemen by abstract
elemen, wheretheseabstract elemeris directly refer to concretevalues.In suc
an approacd, the sizeof the re ned analysiswould grow exponertially . Clearly, a
non-ohvious inferencestep and a signi cant rewriting of the analyzerarerequired
to move from examplesto abstraction techniques sud as partitioning or the
relational domain handling the loop counters.

So, our approach to get zero false alarm was to design a special purpose
analyzer which is parameterizedto allow for casualend-usersto choosefor the
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speci ¢ re nements which must be applied for any program in the considered
family.

The project is now goingon with real-life much larger programs(over 250, 000
LOCs) . The resourceusageestimatesof Figures 1 and 5 werecon rmed. Not sur-
prisingly, falsealarms shaowved up sincethe oating-p oint numerical computations
in theseprograms are much involved than in the reported rst experimentation.
A new re nement cycleis therefore restarted to designappropriate abstract do-
mains which are de nitely necessaryto reac the zero alarm objective at a low
analysis cost.
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