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Abstract. We report on a successfulpreliminary experience in the de-
sign and implementation of a special-purpose Abstract Interpretation
basedstatic program analyzer for the veri�cation of safety critical embed-
ded real-time software. The analyzer is both precise (zero false alarm in
the consideredexperiment) and e�cien t (lessthan oneminute of analysis
for 10,000lines of code). Even if it is basedon a simple interval analysis,
many features have been added to obtain the desired precision: expan-
sion of small arrays, widening with several thresholds, loop unrolling,
trace partitioning, relations between loop counters and other variables.
The e�ciency of the tool mainly comes from a clever representation of
abstract environments basedon balanced binary search trees.

Dedicated to Neil Jones, for his 60th birthday.

1 In tro duction

1.1 General-Purp ose Static Program Analyzers

The objective of static program analysis is to automatically determine run-time
properties, statically, that is, at compile-time. This problem is in general un-
decidable,so static program analysis relies on approximations as formalized by
Abstract Interpretation [8,9]. For example, typable programs do not go wrong
but untypable programs do not all go wrong.

In many contexts, such as program transformation, the uncertainty induced
by the approximation is acceptable.For example, interval analysis can be used
to eliminate uselessarray bound checks at run-time [7]. The selection rate (i.e.
the proportion of potential alarms that are de�nitiv ely solved either positively
or negatively) is often between 80 and 95%, so the optimization is worthwhile.
Moreover, it is correct sincethe remaining 5 to 20%casesfor which tests cannot
be eliminated at compile-time will be checked at run-time. Sometimes,static
program analysis can discover de�nite errors at compile-time (e.g. uninitialized
variables), which is useful for debugging.The objectivesof such general-purpose
static program analyzers are:



1. to fully handle a generalpurposeprogramming language(such as Ada or C,
including the standard libraries);

2. to require no user-provided speci�cation/annotation (except maybe light
ones such as, e.g., ranges of input variables or stubs for library functions
the sourceof which is not available);

3. to be preciseenough to provide interesting information for most programs
(e.g. information pertinent to static program manipulation or debugging);

4. to be e�cien t enough to handle very large programs (from a cost of a few
megabytes and minutes to gigabytes and hours when dealing with hundreds
of thousandsof sourcecode lines).

Such general-purposestatic program analyzers are very di�cult to design be-
causeof the complexity of modern programming languagesand systems.Some
are commercially available and have had successesin repairing failures or pre-
venting them in the early development of programs. Sincethe coverageis 100%,
the false alarms can be handled, e.g., by classical testing methods, thus reduc-
ing the need for actual test of absenceof run-time error by an economically
signi�can t factor of 80 to 95%.

1.2 Program Veri�cation

In the context of safety critical real-time software as found, e.g., in the trans-
portation industry, run-time checking of errors may not be acceptable at all.
Hence,the debuggingcost is very high and signi�can tly higher than the software
development cost itself. In this particular industrial context where correctness
is required by safety and criticalit y, rigorous formal methods should be directly
applicable and economicallya�ordable.

Deductiv e Metho ds. In practice, deductive methods (see,for example,[1,17])
are hard to apply when lacking a formal speci�cation and when the program
sizeis very large. Indeed, the cost for developing the speci�cation and the proof,
even with a proof assistant or a theorem prover, is in generalmuch higher than
the cost for developing and testing of the program itself (�gures of 600 person-
years for 80; 000 lines of C code have beenreported). Only critical parts of the
software can be checked formally and errors appear elsewhere(e.g. at interfaces).
Moreover, for embedded software with a lifetime of ten to twenty years, both
the program and its proof have to be maintained over that long period of time.

Soft ware Mo del Checking. Software model checking (see,for example, [12])
is also hard to apply when lacking a formal speci�cation and when the program
sizeis very large.This is becausethe costof developingboth the speci�cation and
the model of the program can also be very large. Problems such as the di�cult y
to provide sensibletemporal speci�cations or the state explosionare well-known.
On one hand, if the model is not proved correct, then the program correctness
check is not rigorous and mostly amounts to debugging.On the other hand, the



model can be proved correct, either manually or using deductive methods, but
it is then logically equivalent to the correctnessproof of the original program
[6] and consequently requires an immensee�ort. Moreover, the program model
and its correctnessproof have to be maintained with the program itself, which
may be a signi�can t additional cost. Finally, abstraction is often required; in this
case,software model checking essentially boils down to static program analysis.

Static Program Analysis. Static program analyzersproveprogram properties
by e�ectiv ely computing an abstract semantics of programsexpressedin �xp oint
or constraint form. The collectedabstract information canthen beusedasa basis
for program manipulation, checking, or partial or total veri�cation. Dependingon
the consideredclassesof programsand abstract properties, several typesof static
program analyzerscan be designed,all founded on the Abstract Interpretation
theory [5].

1.3 On the Use of General-Purp ose Static Program Analyzers

General-purposestatic program analyzers require no human intervention and,
hence,are very cheap to use, in particular during the initial testing phaseand,
later, during the program maintenanceand modi�cation. However, even for sim-
ple speci�cations, they are hardly useful for formal veri�cation becauseof their
execution time (which is required to get precision but may prevent a routine
compiler-likeutilization during the initial program development process)and the
residual falsealarms (excluding full veri�cation). A selectionrate of 95%�whic h
is very high when consideringa general-purposestatic program analyzer�means
that a signi�can t part of the code still needsto be inspected manually, which
remains a prohibitiv e cost or, if bypassed,is incompatible with severe safety re-
quirements. Moreover, if the analysis time is of several hours, if not days, the
re�nement of the analysis,e.g.,by inserting correctnessassertions,is a very slow
processand will not, in general,eliminate all falsealarms becauseof the inherent
approximations wired in the analyzer.

1.4 Special-Purp ose Static Program Analyzers

Becauseof undecidability, automaticit y, and e�ciency requirements, the absence
of false alarm can only be achieved by restricting both the consideredclasses
of speci�cations and programs. This leads to the idea of special-purpose static
program analyzers. Their objectivesare:

1. to handle a restricted family of programs (usually not using the full com-
plexity of modern programming languages);

2. to handle a restricted class of general-purposespeci�cations (without user
intervention except,maybe, light onessuch as,e.g.,rangesof input or volatile
variables);



3. to be preciseenoughto eliminate all falsealarms (maybe through a redesign
or, better, a convenient parameterization of the analyzer by a trained end-
user that does not need to be a static analysis or Abstract Interpretation
specialist);

4. to be e�cien t enoughto handle very large programs (a cost of a few mega-
bytes and minutes for hundreds of thousandsof sourcecode lines).

By handling a family of programs and not only a single program or model of
the program, we cope with the evolution over years and the economic cost-
e�ectiv enessproblems. By restricting the consideredclassof speci�cations and,
moreprecisely, consideringgeneral-purposerequirements (such asabsenceof run-
time error or unexpected interrupt), we avoid the costly development of speci�c
speci�cations and can apply the analyzer on legacy software (e.g. decades-old
applications the initial speci�cation of which, if any, has not been maintained
over time). Moreover, the trade-o� between analysis precision and cost can be
carefully balancedby the choice of appropriate and reusableabstractions.

1.5 Rep ort on a First Exp erience on the Design of a Special-Purp ose
Static Program Analyzer

In this paper, we report on a �rst experienceon the designof a special-purpose
static program analyzer. The consideredclass of software is critical real-time
synchronousembeddedsoftware written in a subsetof C. The consideredclassof
speci�cations is that of absenceof run-time error. This experiencereport explains
the crucial design decisionsand dead-endsthat lead from a too imprecise and
too slow initial implementation of a general-purposestatic program analyzer to
a completely rewritten, very fast, and extremely precisespecial-purposestatic
program analyzer.By providing details on the designand implementation of this
static analyzeraswell ason its precision(absenceof falsealarm), executiontime,
and memory usage,we prove that the approach is technically and economically
viable.

2 The Special Purp ose of our Analyzer

Becauseof its critical aspect, the classof softwareanalyzedin this �rst experience
was developed through a rigorous process.In this process,the software is �rst
described using schemata. These schemata are automatically translated into a
C code using handwritten macros which compute basic functionalities. This C
code, organizedin many source�les, is the input of the analyzer.

Becauseof the real-time aspect of the application, the global structure of the
software consistsin an initialization phasefollowed by a big global synchronized
loop. Becauseof this structure, nearly all variables in the program depend on
each other.

Becauseof the way the C code is generated, the program contains a lot
of global and static variables, roughly linear in the length of the code (about



1; 300 for 10; 000 LOCs3). It follows that memory spacecannot be saved by a
preliminary analysis of the locality of the program data.

2.1 Restrictions to C Follo wed by the Soft ware Class

Fortunately, the strong requirements enforced by the development of critical
software imply that some di�cult aspects of the C language are not used in
this classof software. First, there are neither goto s nor recursive function calls.
The data structures are quite simple: the software doesnot manipulate recursive
data structures, and the only pointers arestatically allocatedarrays (no dynamic
memory allocation). There is no pointer arithmetic except the basic array op-
erations. Becausethe code does not contain strings either, alias information is
trivial.

2.2 Speci�cation to be Veri�ed

The analyzer has to prove the following:

� absenceof out-of-bound array indexes;
� logical correctnessof integer and �oating-p oint arithmetic operations (essen-

tially , absenceof over�o w, of division by 0).

So, the analysis consistsin over-approximating the set of reachable states.

3 Program Concrete Semantics

The program concrete semantics is a mathematical formalization of the actual
execution of the program. A precisede�nition is necessaryto de�ne and prove
the soundnessof the veri�er, checker, or analyzer.For example,in static analysis,
the analyzer e�ectiv ely computesan abstract semantics which is a safeapprox-
imation of this concrete semantics. So, the rigorous de�nition of the program
concretesemantics is mandatory for all formal methods.

In practice, the concretesemantics is de�ned by:

� the ISO/IEC 9899standard for the C programming language[14] as well as
the ANSI/IEEE 754 standard for �oating-p oint arithmetic [2];

� the compiler and machine implementation of thesestandards;
� the end-userexpectations.

Each semantics is a re�nement of the previous onewheresomenon-determinism
is resolved.

3 The number of lines of code (LOCs) is counted with the Unix TM command wc -l
after stripping comments out and macro preprocessing.Then, the abstractions we
consider essentially conserve all variables and LOCs, seeSec.8.



3.1 The C Standard Semantics

The C standard semantics is often nondeterministic in order to account for dif-
ferent implementations. Here are three examples:

unspeci�e d behaviors are behaviors where the standard provides two or more
possibilities and imposesno further requirement on which should be chosen.
An example of unspeci�ed behavior is the order in which the arguments to
a function are evaluated;

unde�ned behaviors correspond to unportable or erroneousprogram constructs
on which no requirement is imposed.An example of unde�ned behavior is
the behavior on integer over�o w;

implementation-de�ned behaviors are unspeci�ed behaviors where each imple-
mentation documents how the choice is made. An example of implemen-
tation-de�ned behavior is the number of bits in an in t or the propagation
of the high-order bit when a signedinteger is right-shifted.

A static analyzer based on the standard C semantics would be sound/correct
for all possibleconformant compilers. The approach seemsunrealistic since the
worst-caseassumptions to be made by the concrete semantics are not always
easyto imagine in caseno requirement is imposedand will anyway lead to huge
lossesof precision, hence,to unacceptably many false alarms. For instance, the
C standard does not impose the sizesand precisionsof the various arithmetic
types,only someminimal sizes,thus the analysiswould be very imprecisein case
of suspected over�o ws.

3.2 The Implemen tation Semantics

A correct compiler for a given machine will implement a re�nement of the stan-
dard semantics by choosing among the allowed behaviors during the execution.
To achieve precision, the design of a static analyzer will have to take into ac-
count behaviors which are unspeci�ed (or even unde�ned) in the norm but are
perfectly predictable for a given compiler and a given machine (provided the
machine is predictable). For example:

unspeci�e d behaviors: the arguments to a function are evaluated left to right;
unde�ned behaviors: integerover�o w is impossiblebecauseof modulo arithmetic

(division and modulo by zero are the only possibleinteger run-time errors);
implementation-de�ned behaviors: there are 32 bits in an in t and the high-order

bit is copied when right-shifting a signedinteger.

3.3 The End-User Semantics

The end-usermay have in mind a semantics which is a re�nement of the imple-
mentation semantics. Examples are:

initialization to zero which is to be performed by the system before launching
the program (whereasthe C standard requiresthis for static variablesonly);



volatile variables for using interface hardware can be assigneda range, so that
reads from thesevariables always return a value in the speci�ed range;

integer arithmetic computations which are subject to over�o w (sincethey repre-
sent integer boundedquantities for which modulo arithmetic is meaningless)
or not (such as shift operations to extract �elds of words on interface hard-
ware for which over�o w is meaningless).

For meaningful analysis results, one has to distinguish betweencaseswhere
the execution of the program proceedsor not after hitting unde�ned or imple-
mentation-de�ned behaviors. In the former case,we take into account the imple-
mentation-de�ned execution; in the latter, we consider the trace to be inter-
rupted. Let us take two examples:

� In a context where x 2 [0; maxint ] is an unsignedinteger variable, the anal-
ysis of the assignment y := 1=x will signal a logical error in casex = 0. In
the consideredimplementation, integer divisions by zero always generatea
system exception that aborts the normal execution of the program. Hence
we consider that the execution can only go on when there is no run-time
error with y 2 [1=maxint ; 1]. In that case,the implementation and intended
concretesemantics do coincide;

� In a context where x 2 [0; maxint ] is an integer variable, the analysis of the
assignment y := x + 1 will signal a logical error in casex = maxint . Since
the implementation doesnot signal any error, the end-usercan considerthe
logical error as a simple warning and chooseto go on according to several
possibleconcretesemantics:
Implementation concrete semantics: from an implementation point of view,

the execution goes on in all casesx 2 [0; maxint ], that is with y 2
f� maxint � 1g [ [1; maxint ] (since with modulo arithmetic, the imple-
mentation doesnot signal the potential logical error).

This choicemay causethe later analysisto bepolluted by the logically
infeasible cases(y = � maxint � 1 in our example). Such a behavior is
in fact intentional in certain parts of the program (such as to extract
�elds of unsigned integers to select volatile quantities provided by the
hardware which is logically correct with wrapping);

Logical concrete semantics: from a purely logical point of view, the exe-
cution goes on with error-free casesx 2 [0; maxint � 1], that is with
y 2 [1; maxint ] (as if the implementation had signaledthe logical error).

One can think that this point of view would be implementation cor-
rect for error-free programs (assuming programs will not be run until
all logical warnings are shown to be impossible). This is not the caseif
the programmer makes some explicit use of the hardware characteris-
tics (such as modulo arithmetic). For example, the correctnessof some
program constructs (such as �eld extraction) relies on the absenceof
over�o w in modulo arithmetic and, so, ignoring this fact would lead to
the erroneousconclusion that the subsequent program points are un-
reachable!



Becausesomeconstructs (such assignedintegerarithmetic) require to takea
logical concretesemantics and others (such as �eld extraction from unsigned
integers)require to explicitly rely on the implementation concretesemantics,
the analyzerhasto beparameterizedsoasto leavethe �nal choiceto the end-
user (who can indicate to the analyzer which semantics is intended through
a con�guration �le, for exampleon a per-type and per-operator basis).

4 Preliminary Manipulations of the Program

To reducethe later cost of the static analysis,we perform a few preliminary ma-
nipulations of the program. Sincethe program usesC macrosand the semantics
of macros in C is not always clear, macros are expanded before the analysis,
so the analyzedprogram is the pre-processedprogram. Then, all input �les are
gathered into a single source�le. Becausethe program is automatically gener-
ated, it hasnumeroussymbolic constants, so,a classicalconstant propagation is
performed. Note that �oating-p oint constants must be evaluated with the same
rounding mode as at run-time, in general to the nearest, whereasduring the
analysis, interval operations will always be over-approximated: we consider the
worst-caseassumptionsfor the rounding mode, to make sure that the computed
interval is larger than the actual one. The constant propagation is extended to
the partial evaluation [13] of constant expressionsincluding, in particular, ac-
cessesto constant arrays with a constant index. This was particularly useful for
arrays containing indirections to hardware addressesfor interfaces.

Other manipulations can be speci�ed in a con�guration �le. We can specify
volatile variables. Volatile variables should in fact be mentioned as such in the
source �le; however, they are sometimesomitted from the source becausethe
compiler does not optimize memory accesses,so volatile declarations have no
e�ect on the compilation. We can also specify for volatile variables a range
that represents, for instance, the value of sensors.The analyzer then makesthe
assumption that all accessesto these variables return a value in the indicated
range.The �rst manipulation passinserts the rangeasa special kind of initializer
for the consideredvariables. The resulting syntax is then an extensionof the C
syntax that is taken as input by the other phasesof the analyzer.

The user can also declare functions to be ignored. These functions are then
given an empty code. (If they were not already de�ned, then they are de�ned
with an empty code. If they were already de�ned, then their code is removed.)
This declaration has two purposes.The �rst one is to give a code to built-in
system calls that do not in�uence the rest of the behavior of the program. The
secondoneis to help �nding the origin of errorsdetectedby the analyzer:ignoring
declarations can be used to simplify the program, and seeif the analyzer still
�nds the error in the simpli�ed program. This usagewas not intended at the
beginning, but it proved useful in practice.



5 Structure of the Analyzer

To over-approximate the reachable states of a well-structured program, the an-
alyzer proceedsby induction on the program syntax. Sincethe number of global
variables is large (about 1; 300 and 1; 800 after array expansion, seeSec. 6.3)
and the program is large (about 10; 000 LOCs), an abstract environment can-
not be maintained at each program point as usual in toy/p edagogicalanalyzers
[4]. Instead, the analysis proceedsby induction on the syntax with one current
abstract environment only. Loops are handled by local �xp oint computations
with widenings and narrowings. During this iteration, an abstract environment
is maintained at the head of the loop only. So, the number of environments
which has to be maintained is of the order of the level of nesting of loops. After
the �xp oint is reached, an additional iteration is performed so that all runtime
errors can be detected even if environments are not recorded at each program
point. Nevertheless,special precaution must be taken for implementing these
environments e�cien tly , asdiscussedbelow in Sec.6.2. Moreover, there are only
few user-de�ned proceduresand they are not recursive, so they can be handled
in a polyvariant way (equivalent to a call by copy).

6 Special-Purp ose Abstract Domains

6.1 Iterativ e Construction of the Analyzer

We started with classicalanalyzes(e.g. interval analysisfor integer and �oating-
point arithmetics, handling of arrays by abstraction into a single element, etc.),
which, as expected from a preliminary useof a commercial general-purposean-
alyzer by the end-user,lead to unacceptableanalysis times and too many false
alarms.

The development of the analyzer then followedcyclesof iterativ ere�nements.
A version of the analyzer is run, outputting an abstract execution trace as well
as a list of the alarms. Each alarm (or, rather, group of related alarms) is then
manually inspectedwith the help of the abstract trace. The goal is to di�eren tiate
betweenlegitimate alarms, coming for instance from insu�cien t speci�cation of
the inputs of the program, and falsealarmsarising from lack of analysisprecision.
When a lack of precisionis detected,its causesmust beprobed.Oncethe causeof
the lossof precisionis understood, re�nements for the analysismay be proposed.

Various re�nements of the analyzer were related to memory and time e�-
ciencywhich wereimproved either by redesignof data structures and algorithms
or by selectingcoarserabstract domains.

These re�nements are reported below. Someare speci�c to the considered
classof programs, but others are of generalinterest to many analyzers�suc h as
the useof functional maps as discussedin the following section Sec.6.2.



6.2 E�cien t Implemen tation of Abstract Environmen ts through
Maps

One of the simplest abstract domains is the domain of intervals [7]: an abstract
environment maps each integer or real variable x 2 V to an interval X 2 I . The
abstract semantics of arithmetic operations are then ordinary interval arith-
metic. The least upper bound and widening operations operate point-wise (i.e.
for each variable). More generally, we shall considerthe casewhere the abstract
environment is a mapping from V to any abstract domain I .

A naive implementation of this abstract domain represents abstract environ-
ments as arrays of elements of I . If destructive updates are allowed in abstract
transfer functions (i.e. the environment representing the state before the opera-
tion can be discarded), the abstract functions corresponding to assignments are
easyto implement; if not, a new array has to be allocated.

For all its simplicit y, this approach su�ers from two drawbacks:

� it requires many array allocations; this can strain the memory allocation
system, although most of the allocated data is short-lived;

� more annoyingly, its complexity on the classof programs we are considering
is prohibitiv e: the cost of a least upper bound operation, which is performed
for each test construct in the program, is linear in the number of variables;
on the programs we consider, the number of static variables is linear in the
length of the program, thus leading to a quadratic cost.

A closer look at the program shows that most least upper bound operations
are performed between very similar environments; that is, environments that
di�er in a small number of variables, corresponding to the updates done in
the two branches of a test construct. This suggestsa system that somehow
represents the similarities betweenenvironments and optimizes the least upper
bound operation betweensimilar environments.

We decided to implement the mappings from V to I as balanced binary
search trees that contain, at each node, the name of a variable and its abstract
value. This implementation is provided by the functional map module Map of
Objective Caml [15]. The accesstime to the environment for reading or updat-
ing an element is logarithmic with respect to the number of variables (whereas
arrays, for instance, would yield a constant time access).

A salient point is that all the operations are then performed fully function-
ally (no side e�ect) with a large sharing betweenthe data structures describing
di�eren t related environments. The functional nature allows for straightforward
programming in the analyzer�no needto keeptrack of data structures that may
or may not be overwritten�and the sharing keepsthe memory usagelow.

Functional maps also provide a very e�cien t computation of binary opera-
tions between similar environments, when the operation o : I � I ! I satis�es
8x 2 I ; o(x; x) = x. This is true in particular for the least upper bound and
the widening. More precisely, we added the function map2 de�ned as follows:
if f 1 and f 2 : V ! I and o : I � I ! I satis�es 8x 2 I ; o(x; x) = x, then
map2(o;f 1; f 2) = x 7! o(f 1(x); f 2(x)) . This function is implemented by walking



recursively both trees representing f 1 and f 2; when f 1 and f 2 sharea common
subtree, the result is the samesubtree, which can be returned immediately. The
function map2 has to traverseonly the nodes that di�er between f 1 and f 2�
which correspond to paths from the root to the modi�ed variables.This strategy
leadsto a time complexity O(m logn) wherem the number of modi�e d variables
between f 1 and f 2, and n is the total number of variables in the environment
(logn is the maximum length of a path from the root to a variable). When
only a few variables in the functional map have di�eren t values (for example,
when merging two environments after the end of a test), a very large part of the
computation can be optimized away thanks to this technique.

In conclusion, functional maps implemented using balanced binary search
trees decreasetremendously the practical complexity of the analyzer.

6.3 Expansion of Small Arra ys

When consideringan array variable, onecansimply expand it in the environment,
that is to say, consider one abstract element in I for each index in the array.
One can also chooseto smashthe array elements into oneabstract element that
represent all the possiblevaluesfor all indices.

When dealing with large arrays, smashingthem results in a smaller memory
consumption. Transfer functions on smashedarrays are also much more e�-
cient. For example, the assignment tab[i] := exp with i 2 [0; 99] leadsto 100
abstract assignments if tab is expanded,and only one if tab is smashed.

Expanded arrays, however, are much more precisethan smashedones.Not
only they can represent heterogeneousarrays�suc h as arrays of non-zero �oat
elements followed by a zero element that marks the end of the array�but they
result in lessweak updates4. For example,if the two-elements array tab is initial-
ized to zero, and then assignedby tab[0] := 1; tab[1] := 1, smashing the
array will result in weak updates that will conclude that tab[i] 2 [0; 1]. The
precisiongain of expandedarrays is particularly interesting when combined with
semantics loop unrolling (seeSec.6.5).

To addressthe precision/cost trade-o� of smashedvs. expandedarrays, the
analyzer is parameterized so that the end-user can specify in a con�guration
�le which arrays should be expanded either by providing an array size bound
(arrays of size smaller than the bound are expanded) and/or by enumerating
them nominatively.

6.4 Staged Widenings with Thresholds

The analyzer is parameterizedby a con�guration �le allowing the user to specify
re�nements of the abstract domainswhich are usedby the analyzer.An example
is the staged widenings with thresholds.

4 A weak update denotes an assignement where some variables may or may not be
updated, either becausethe assigned variable is not uniquely determined by the
analyzer, or becausethe assignedvariable is smashedwith someothers.



The classicalwidening on intervals is [a; b] 5 [c;d] = [(c < a? � 1 : a); (d >
b? + 1 : b)]5 [8]. It is known since a long time that interval analysis with
this widening is lessprecisethan sign analysis since, e.g., [2; + 1 ] 5 [1; + 1 ] =
[�1 ; + 1 ] whereassign analysiswould lead to [0; + 1 ] (or [1; + 1 ] depending on
the chosenabstract domain [9]). So, most widenings on intervals useadditional
thresholds,such as-1, 0 and +1. The analyzeris parameterizedby a con�guration
�le allowing the user to specify thresholds of his choice.

The thresholds can be chosen by understanding the origin of the loss of
precision.A classicalexampleis (n is a given integerconstant):

in t x;
x := 0;
while x <> n do

x := x + 1;
end while

(whereas writing x < n would allow the narrowing to capture the bound n
[7,8]). A more subtle example is:

volatile boolean b;
in t x;
x := 0;
while true do

if b then
x := x + 1;
if x > n then

x := 0;
end if

end if
end while

In both cases,a widening at the loop headwill extrapolate to + 1 and the later
narrowing will not recover the constant n bound within the loop body. This was
surprising, sincethis workedwell for the following pieceof code:

in t x;
x := 0;
while true do

x := x + 1;
if x > n then

x := 0;
end if

end while

In the �rst casehowever, the test:
if x > n then

x := 0;
end if

5 (true?a : b) = a whereas(false?a : b) = b.



may not be run at each iteration so once the analyzer over-estimatesthe range
of x, it cannot regain precision even with this test. A solution would be to ask
for a user hint in the form of an assertionx � n. An equivalent hinting strategy
is to add the constant n as a widening threshold. In both cases,the widening
will not lead to any lossof precision. Another threshold idea, depending on the
program, is to add arithmetic, geometric or exponential progressionsknown to
appear in the courseof the program computations.

6.5 Semantic Lo op Unrolling

Although the software we analyze always starts with some initialization code
before the main loop, there is still someinitialization which is performed during
the �rst iteration of that main loop. The mechanism used in the software is a
global boolean variable which is true when the code is in the �rst iteration of
the main loop.

If we try to compute an invariant at the head of the loop and the domain is
not relational, then this boolean can contain both the valuestrue and falseand
we cannot distinguish between the �rst iteration and the other ones.To solve
this problem, we applied semantic loop unrolling.

Semantic loop unrolling consists,given an unrolling factor n, in computing
the invariants I 0 which is the set of possible values before the loop, then I k ,
1 � k < n the set of possiblevaluesafter exactly k iterations, and �nally Jn the
set of possiblevaluesafter n or more iterations. Then, we mergeI 0; : : : ; I n � 1; Jn

in order to get the invariant at the end of the loop. Another point of view is
to analyze the loop while B do C as if B then (C; if B then (. . . if B
then (C; (while B do C)). . . )). Such a technique is more precise than the
classical analysis of while loops when the abstract transfer functions are not
fully distributiv e or when we usewidenings.

In our case,the �rst iteration of the main loop is an initialization phasethat
behavesvery di�eren tly than subsequent iterations. Thus, by setting n = 1, the
invariant Jn is computed taking into account initialized values only so we can
get a more preciseresult and even suppresssomefalse alarms.

6.6 Trace Partitioning

The reasonwhy semantic loop unrolling is more precise is that, for each loop
unrolling, a new set of values is approximated. So, instead of having one set of
values, we have a collection of sets of values which is more precise than their
union becausewe cannot represent this union exactly in the abstract domain.
We could be even more preciseif we did not mergethe collection of setsof values
at the end of the loop but later.

Consider, for example, the following algorithm which computes a linear in-
terpolation:

t = {-10, -10, 0, 10, 10};
c = {0, 2, 2, 0};



d = {-20, -20, 0, 20};
i := 0;
while i < 3 and x � t [i +1] do

i := i +1;
end while
r := (x - t [i ]) � c[i ] + d[i ];

The resulting variable r ranges in [� 20; 20], but if we perform a standard
interval analysisthe result will be [min(� 20; 2x� � 40); max(20; 2x+ + 40)] (where
x is in [x� ; x+ ]). This information is not preciseenoughbecauseinterval analysis
is not distributiv e. It is the caseeven with semantic loop unrolling because,when
we arrive at the statement where r is computed, all unrollings are mergedand
we have lost the relationship betweeni and x.

Tracepartitioning consistsin delaying the usual mergingswhich might occur
in the transfer functions. Such mergingshappen at the end of the two branches
of an if , or at the end of a while loop when there is semantic loop unrolling.
Control-based trace partitioning was �rst intro ducedby [11]. Trace partitioning
is more precisefor non-distributiv e abstract domains but can be very expensive
as it multiplies the number of environments by 2 for each if that is partitioned
and by k for each loop unrolled k times. And this is even worse in the caseof
trace partitioning inside a partitioned loop.

So, we improved [11] techniques to allow the partition to be temporary: the
merging is not delayed forever but up to a parameterizable point. It worked
well to mergepartitions created inside a function just before return points, and
partitions created inside a loop at the end of the loop. This notion of merging
allowed the useof trace partitioning even inside the non-unrolled part of loops.
In practice, this technique seemsto be a good alternativ e to the more complex
classicalreducedcardinal power of [9].

6.7 Relation between Variables and Lo op Coun ters

As explained in the beginning of the section, non-relational domains, such as
the interval domain, can be e�cien tly implemented. However, non-relational
invariants are sometimenot su�cien t, even for the purposeof bounding variable
values.Consider the following loop:

volatile boolean b;
i := 0;
x := 0;
while i < 100 do

x := x + 1;
if b then

x := 0;
end if
i := i + 1;

end while



In order to discover that x < 100, one must be able to discover the invariant
relation x � i . Staged widenings are ine�ectiv e here becausex is never com-
pared explicitly to 100. Switching to fully relational abstract domains (such as
polyhedra, or even linear equality) is clearly impossibledue to the tremendous
amount of global live variables in our application (in fact, even non-relational
domains would be too costly without the representation technique of Sec.6.2).

Our solution is to consider only relations between a variable and a loop
counter � (either explicit in a for loop or implicit in a while loop). We denote
by � the interval of the counter � (� is either determined by the analysis or
speci�ed by the end-user in the con�guration �le, e.g., becausethe application
is designedto run for a certain maximum amount of time). Instead of mapping
each variable x to an interval X, our enhancedinvariants map each variable x to
three intervals: X, X+ and X� which are, respectively, the possiblevalues for x,
for x+ � , and for x � � . When too much information on the interval X is lost (after
a widening, for example), X+ , X� , and � are used to recover someinformation
using a so-called reduction operator (see Sec. 6.8 below), which replaces the
interval X by the interval X\ (X+ � � ) \ (X� + � ). This is a simple abstract way
of capturing the evolution of the value of the variables over time (abstracted by
the loop counter).

From a practical point of view, this domain is implemented asa non-relational
domain using the data-structures of Sec.6.2. It greatly increasesthe precision
of the analysis for a small speedand memory overheadfactor.

6.8 Reduction and its In teraction with Widening

In order to take into account the relations between program variables and the
loop counters, we use a reduction operator � which is a conservative endomor-
phism (i.e. such that 
 (d) � 
 (� (d)) ). The way this reduction is usedhasa great
impact, not only on accuracy, but also on complexity: on the �rst hand it is
crucial to make the reduction beforecomputing someabstract transfer functions
(testing a guard for instance) to gain someprecision;on the other hand, the cost
of the reduction must not exceedthe cost of the abstract transfer function itself.

Our choicewasto perform reductionson the �y insideeach abstract primitiv e.
This allows us to focus the reduction on the program variables which needto be
reduced. It is very simple for unary operators. As for the binary operators, we
detect which part of the result must be reduced thanks to the functional map
implementation, which leads to a sub-linear implementation of the reduction�
which coincideswith the amortized cost of abstract transfer functions.

The main problem with this approach is that the reduction may destroy the
extrapolation constructed by widening6. Usually, the reduction operator cannot
be applied directly to the results of a widening. Somesolutions already existed,
but they were not compatible with our requirement of having a sub-linear im-
plementation of the reduction.

6 The reader may have a look at the Fig. 3 of [16] to have an illustration of this
problem in the context of a relational domain.



To solve this problem, we require non-standard conditions on the reduction:
we especially require that there are no cyclic propagation of information between
abstract variables. For instance, we prevent information propagation from the
intervals � of the loop counter and X of a program variable x to the intervals X+

and X� corresponding to the sum and the di�erence of x and � . We only make
propagation from the intervals � , X+ , and X� to the interval X. This allows
extrapolation to be �rst performed on the intervals � , X+ , and X� . Once the
iterate of the intervals � , X+ , and X� have becomestable, the extrapolation of
the interval X is not disturb ed anymore.

6.9 On the Analysis of Floating-P oin t Arithmetic

A major di�cult y of the analysis of �oating-p oint arithmetic is the rounding
errors, both in the analyzed semantics and in the analyzer itself. One has to
consider that:

� transfer functions should model �oating-p oint arithmetic, that is to say (ac-
cording to the IEEE standard [2]), in�nite-precision real arithmetic followed
by a rounding phase;

� abstract operators should be themselves implemented using �oating-p oint
arithmetic (for e�ciency , arbitrary precision �oating-p oint, rational, and al-
gebraic arithmetics should be prohibited).

In particular, special care has to be taken since most classical mathematical
equalities (associativit y, distributivit y, etc.) no longer hold when the operations
are translated into �oating-p oint; it is necessaryto know at every point if the
quantities dealt with are lower or upper bounds.

Interval arithmetic is relatively easy. Operations on lower bounds have to
be rounded towards �1 , operations on upper bounds towards + 1 . A compli-
cation is added by the use of float �IEEE single precision�v ariables in the
analyzed programs: abstract operations on these should be rounded in IEEE
single precision arithmetic.

7 Dead-Ends

The analyzer went through three successive versionsbecauseof dead-endsand
to allow for experimentation on the adequateabstractions. In this section, we
discussa number of bad initial designdecisionswhich werecorrected in the later
versions.

Syntax. An initial bad idea was to usea program syntax tailored to the consid-
ered class of automatically generatedprograms. The idea was to syntactically
check for potential errors, e.g., in macros.Besidesthe additional complexity, it
was impossible to test the analyzer with simple examples.Finally, expanding
the macrosand using a standard C grammar with semantic actions to check for
local restrictions turned out to be more productive.



Functional Array Representation of the Environment. The �rst versionsof the
analyzer used Caml arrays to represent abstract environments. As discussedin
Sec.6.2, the idea that O(1) accesstime to abstract values of variables makes
non-relational analyzese�cien t turned to be erroneous.

LivenessAnalysis. Becauseof the largenumber of global variables, livenessanal-
ysis was thought to be useful to eliminate uselessupdates in abstract environ-
ments represented as arrays. The gain was in fact negligible. Similar ideasusing
classical data-�o w analysis intermediate representations such as use-de�nition
chains, single static assignment, etc. would probably have also been ine�ectiv e.
The key idea was to usebalancedtrees as explained in Sec.6.2.

Open Floating-Point Intervals. The �rst version of the analyzer used closed
and open �oating-p oint intervals. For soundness,the intervals had to be over-
estimated to take rounding errors into account, as explained in Sec.6.9, which
makesthe analysisvery complex with no improvement in precision, so, the idea
of using open intervals was abandoned.

Relational Floating-Point Domains. Most literature consideronly relational do-
mains over �elds, such as rationals or reals, and do not addressthe problem of
�oating-p oint. With somecare, one could designa sound approximation of real
arithmetic using �oating-p oint arithmetic: each computation is rounded such
that the result is always enlarged, in order to preserve soundness.Then, each
abstract �oating-p oint operator can be implemented as an abstract operator
on reals, followed by an abstract rounding that simply adds to the result an
interval representing the absolute error�or, more precisely, the ulp [10]. How-
ever, this crude approach of rounding can causethe abstract element to drift
at each iteration, which prevents its stabilization using widenings. No satisfying
solution has been found yet to addressthis problem, as well as the time and
memory complexity inherent to relational domains, so, they are not usedin our
protot ype.

Case Analysis. Case analysis is a classical re�nement in static analysis. For
example[9, Sec.10.2] illustrates the reducedcardinal power of abstract domains
by a caseanalysison a booleanvariable, the analysisbeing split on the true and
false cases.Implementations for several variables can be basedon BDDs. The
sameway abstract valuescan be split accordingto several concretevaluesof the
variables (such as intervals into sub-intervals). This turned out to be ine�ectiv e
since the costs can explode exponentially as more splittings are intro duced to
gain in precision.So,caseanalysiswasultimately replacedby trace partitioning,
as discussedin Sec.6.6.

On Prototyping. The �rst versionsof the analyzer can be understood as initial
protot ypesto help decideon the abstractions to be used.The completerewriting
of the successive versionsby di�eren t personsavoided the accumulation of levels,
corrections, translations which over time can make large programs tangled and
ine�cien t.
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Fig. 1. Memory usageas a function of the subject program size.

8 Performances

The whole problem of static analysis is to �nd the right cost-performancebal-
ance. In program veri�cation, the precision is �xed to zero (false-)alarm. When
the zero alarm precision problem is solved, it remains to estimate the perfor-
manceof the analysis. To estimate memory and timing performances,we made
variousanalysisexperiments with slicesof the program aswell asthe synchronous
product of the program several times with itself.

The memory usedto store an abstract environement grows linearly with the
number of variables,which is itself proportional, for the consideredapplications,
to the size of the program itself `. Due to nested loops, loop unrolling, and
trace partitioning, the analyzermay needto store several abstract environements
during the analysis.However, thanks to the useof functional maps, a huge part
of these environement is shared, thus reducing the memory consumption. We
have found experimentally (Fig. 17) that the peak memory consumption of the
analyzer is indeadO(`). For our application, it is of the order of a few megabytes,
which is not a problem for modern computers.

7 The best curve �tting [3] with formula y = a + bx and a tolerance of 10� 6 yields
a = 0:623994 and b = 0:00176291with association gauged by Chi-square: 6.82461,
Correlation coe�cien t: 0.951324, Regression Mean Square (RMS) per cent error:
0.0721343and Theil Uncertain ty (U) coe�cien t: 0.0309627.



Thanks to the use of functional maps (Sec. 6.2), the amortized cost of the
elementary abstract operations can be estimated to be at most of the order of
the time to accessabstract valuesof variables, which is O(ln v), where v is the
number of program variables. In the programsconsideredin our experiment, the
number of program variables is itself proportional to the number ` of LOCs. It
follows that the cost of the elementary abstract operations is O(ln `). A �xp oint
iteration sweepsover the whole program. Becausethe abstract analysis of pro-
ceduresis semantically equivalent to an expansion(Sec. 5), each iteration step
of the �xp oint takesO(`0 � ln ` � p � i 0) where `0 is the number of LOCs after
procedureexpansion,p is a bound to the number of abstract environments that
needto be handled at each given program point 8, and i 0 is a bound to the num-
ber of inner �xp oint iterations. The �xp oint computation is then of the order
O(i � p � i 0 � `0 � ln `) where i is a bound to the number of iterations.

We now estimate the bounds p, i , and i 0. The number p only depends on
end-userparameters.The numbers i and i 0 are at worst O(l � t) where t denotes
the number of thresholds, but are constant in practice. So, the execution time
is expected to be of the order of O(`0 � ln `). Our hypothesesare con�rmed
experimentally by best curve �tting [3] the analyzer execution time on various
experiments. The �tting formula9 y = ax yields a = 0:000136364, as shown in
Fig. 2.

The procedureexpansionfactor giving `0 as a function of the program size`
has also beendetermined experimentally , seeFig. 3. The best curve �tting with
formula10 y = a� x � (ln x)b yields a = 0:927555, b = 0:638504. This shows that,
for the consideredfamily of programs, the polyvariant analysis of procedures
(equivalent to a call by copy semantics), which is known to be more precisethan
the monovariant analysis(where all calls are mergedtogether), hasa reasonable
cost.

By composition, we get that the execution time of the analyzer is O(`(ln `)a)
where` is the program size.This is con�rmed experimentally by curve �tting the
analyzerexecutiontime for various experiments. The non-linear �tting formula11

y = a + bx + cx(ln x)d yields a = 2:2134� 10� 11, b = 5:16024� 10� 08, c =
0:00015309and d = 1:55729, seeFig. 4.

The memory and time performancesof the analyzer,asextrapolated in Fig. 5,
show that extreme precision (no alarm in the experiment) is not incompatible
with e�ciency . Therefore we can expect such speci�c static analyzersto be rou-
tinely usable for absenceof run-time errors veri�cation during the program de-

8 This number only depends on loop unrolling and trace partitioning.
9 with association gauged by Chi-square: 239.67, Correlation coe�cien t: 0.941353,

RMS per cent error: 0.515156and Theil U coe�cien t: 0.0628226for a tolerance of
10� 6 .

10 with association gauged by Chi-square: 7:00541 � 1007 , Correlation coe�cien t:
0.942645,RMS per cent error: 0.113283and Theil U coe�cien t: 0.0464639at toler-
ance 10� 6 .

11 with association gauged by Chi-square: 40.1064, Correlation coe�cien t: 0.956011,
RMS per cent error: 0.0595795and Theil U coe�cien t: 0.0248341for a tolerance of
10� 6 .
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Fig. 2. Execution time asa function of `0� ln `, where`0 is the expandedsubject
program sizeand ` its size.

velopment, test, and maintenance processes.Thanks to parameterization, the
end-usercan easily adjust the analysis to cope with small modi�cations of the
program.

9 Conclusion

When �rst reading the program, we were somewhatpessimistic on the chances
of successof the zero false alarm objective since the numerical computations
which, not surprisingly for a non-linear control program, represent up to 80%
of the program, looked both rather complex and completely incomprehensible
for the neophyte. The fact that the code is mostly machine-generateddid not
help. Using complex numerical domains (such as polyhedral domains) would
have been terribly costly. So, the design criterion was always the simpler, i.e.,
the most abstract, the better, i.e., the most e�cien t.

Becauseof undecidability, human hinting is necessaryto analyze programs
without falsealarm:

� in deductive methods this is done by providing inductiv e arguments (e.g.
invariants) as well as hints for the proof strategy;

� in model-checking, this is doneby providing the �nite model of the program
to be checked;
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Fig. 3. Procedure-expandedprogram size`0 asa function of the subject program
size`.

� in static program analysis,we have shown on a non-trivial examplethat this
can be done by providing hints on the local choice of the abstract domains
and widenings.

In all cases,someunderstanding of the veri�cation technique is necessary. We
have the feeling that hints to a parameterizedanalyzer are much easierto pro-
vide than correct invariants or program models. Once specialists have designed
the domain-speci�c static analyzer in a parameterizedway, the local re�nement
processis very easy to specify by end-userswho are not specialists in static
program analysis.

We have seriousdoubts on the fact that this re�nement processcan be fully
automated. A counter-example basedre�nement to handle false alarms would
certainly be able only to re�ne abstract domains, abstract element by abstract
element, where theseabstract elements directly refer to concretevalues.In such
an approach, the sizeof the re�ned analysiswould grow exponentially . Clearly, a
non-obvious inferencestepand a signi�can t rewriting of the analyzerarerequired
to move from examples to abstraction techniques such as partitioning or the
relational domain handling the loop counters.

So, our approach to get zero false alarm was to design a special purpose
analyzer which is parameterized to allow for casual end-usersto choosefor the
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Fig. 4. Execution time as a function of the subject program size.

speci�c re�nements which must be applied for any program in the considered
family.

The project is now goingon with real-life much larger programs(over 250; 000
LOCs) . The resourceusageestimatesof Figures1 and 5 werecon�rmed. Not sur-
prisingly, falsealarmsshowedup sincethe �oating-p oint numerical computations
in theseprograms are much involved than in the reported �rst experimentation.
A new re�nement cycle is therefore restarted to designappropriate abstract do-
mains which are de�nitely necessaryto reach the zero alarm objective at a low
analysis cost.
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