
Responsibility Analysis
by Abstract Interpretation

Chaoqiang Deng and Patrick Cousot

Computer Science Department, New York University, USA
{deng,pcousot}@cs.nyu.edu

Abstract. Given a behavior of interest in the program, statically deter-
mining the corresponding responsible entity is a task of critical impor-
tance, especially in program security. Classical static analysis techniques
(e.g. dependency analysis, taint analysis, slicing, etc.) assist program-
mers in narrowing down the scope of responsibility, but none of them
can explicitly identify the responsible entity. Meanwhile, the causality
analysis is generally not pertinent for analyzing programs, and the struc-
tural equations model (SEM) of actual causality misses some informa-
tion inherent in programs, making its analysis on programs imprecise. In
this paper, a novel definition of responsibility based on the abstraction
of event trace semantics is proposed, which can be applied in program
security and other scientific fields. Briefly speaking, an entity ER is re-
sponsible for behavior B, if and only if ER is free to choose its input
value, and such a choice is the first one that ensures the occurrence of
B in the forthcoming execution. Compared to current analysis methods,
the responsibility analysis is more precise. In addition, our definition of
responsibility takes into account the cognizance of the observer, which, to
the best of our knowledge, is a new innovative idea in program analysis.

Keywords: Responsibility · Abstract Interpretation · Static Analysis
· Dependency · Causality · Program Security

1 Introduction

For any behavior of interest, especially potentially insecure behaviors in the
program, it is essential to determine the corresponding responsible entity, or
say, the root cause. Contrary to accountability mechanisms [40,23,15] that track
down perpetrators after the fact, the goal of this paper is to detect the respon-
sible entity and configure its permission before deploying the program, which
is important for safety and security critical systems. Due to the massive scale
of modern software, it is virtually impossible to identify the responsible entity
manually. The only solution is to design a static analysis of responsibility, which
can examine all possible executions of a program without executing them.

The cornerstone of designing such an analysis is to define responsibility in
programming languages. It is surprising to notice that, although the concepts
of causality and responsibility have been long studied in various contexts (law

2 C. Deng, P. Cousot

sciences [36], artificial intelligence [30], statistical and quantum mechanics, bi-
ology, social sciences, etc. [4]), none of these definitions is fully pertinent for
programming languages. Take the actual cause [19,20] as an example, its struc-
tural equations model (SEM) [10] is not suitable for representing programs: the
value of each endogenous variable in the model is fixed once it is set by the
equations or some external action, while the value of program variables can be
assigned for unbounded number of times during the execution. In addition, the
SEM cannot make use of the temporal information or whether an entity is free
to make choices, which plays an indispensable role in determining responsibility.

There do exist techniques analyzing the influence relationships in programs,
such as dependency analysis [1,7,37], taint analysis [31] and program slicing [39],
which help in narrowing down the scope of possible locations of responsible
entity. However, no matter whether adopting semantic or syntactic methods,
these techniques are not precise enough to explicitly identify responsibility.

To solve the above problems, we propose a novel definition of responsibility
based on the event trace semantics, which is expressive and generic to handle
computer programs and other scientific fields. Roughly speaking, an entity ER is
responsible for a given behavior B in a certain trace, if and only if ER can choose
various values at its discretion (e.g. inputs from external subjects), and such a
choice is the first one that guarantees the occurrence of B in that trace. Such
a definition of responsibility is an abstract interpretation [11,12] of event trace
semantics, taking into account both the temporal ordering of events and the
information regarding whether an entity is free to choose its value. Moreover, an
innovative idea of cognizance is adopted in this definition, which allows analyzing
responsibility from the perspective of various observers. Compared to current
techniques, our definition of responsibility is more generic and precise.

The applications of responsibility analysis are pervasive. Although an imple-
mentation of responsibility analyzer is not provided here, we have demonstrated
its effectiveness by examples including access control, “negative balance” and
information leakage. In addition, due to the page limit, a sound framework of
abstract responsibility analysis is sketched in the extended version of this paper
[13], which is the basis of implementing a responsibility analyzer. It is guaranteed
that the entities that are found definitely responsible in the abstract analysis
are definitely responsible in the concrete, while those not found potentially re-
sponsible in the abstract analysis are definitely not responsible in the concrete.

To summarize, the main contributions of this work are: (1) a completely new
definition of responsibility, which is based on the abstract interpretation of event
trace semantics, (2) the adoption of observers’ cognizance in program analysis
for the first time, (3) various examples of responsibility analysis, and (4) a sound
framework for the abstract static analysis of responsibility.

In the following, section 2 discusses the distinctions between responsibility
and current techniques via an example, and sketches the framework of respon-
sibility analysis. Section 3 formally defines responsibility as an abstraction of
event trace semantics. Section 4 exemplifies the applications of responsibility
analysis. Section 5 summarizes the related work.

Responsibility Analysis by Abstract Interpretation 3

2 A Glance at Responsibility

Given a behavior of interest (e.g. security policy violation), the objective of
responsibility analysis is to automatically determine which entity in the system
has the primary control over that behavior. Then security admins could decide
either to keep or to deny the responsible entity’s permission to perform the
behavior of interest. Take the information leakage in a social network as an
example: if the information’s owner is responsible for the leakage (e.g. a user
shares his picture with friends), then it is safe to keep its permission to perform
such a behavior; otherwise, if anyone else is responsible for the leakage, it could
be a malicious attacker and its permission to do so shall be removed. Such
human decisions can only be done manually and are beyond the scope of this
paper. In addition, it is worthwhile to note that responsibility analysis is not
the same as program debugging, since the analyzed program code is presumed
to be unmodifiable and the only possible change is on the permissions granted
to entities in the system.

In order to give an informal introduction to responsibility, as well as its main
distinctions with dependency, causality and other techniques in detecting causes,
this section starts with a simple example, which is used throughout the paper.

2.1 Discussion of an Access Control Program Example

Example 1 (Access Control). Consider the program in Fig. 1, which essentially
can be interpreted as an access control program for an object o (e.g. a secret file),
such that o can be read if and only if both two admins approve the access and the
permission type of o from system settings is greater than or equal to “read”: the
first two inputs correspond to the decisions of two independent admins, where 1
represents approving the access to o, and 0 represents rejecting the access; the
third input stored in typ represents the permission type of o specified in the
system settings, where 1 represents “read”, 2 represents “read and write” (this
is similar to the file permissions system in Linux, but is simplified for the sake
of clarity); by checking the value of acs at line 10, the assertion can guarantee
both admins approve the access and the permission type of o is at least 1. ut

1: apv = 1; //1: Approval, 0: Rejection
2: i1 = input_1(); //Input 0 or 1 from 1st admin
3: if (i1 == 0) {
4: apv = 0; }
5: i2 = input_2(); //Input 0 or 1 from 2nd admin
6: if (apv != 0 && i2 == 0) {
7: apv = 0; }
8: typ = input_3(); //Input 1 or 2 from system settings
9: acs = apv * typ;
10: assert(acs >= 1); //Check if the read access is granted
11: /* Read an object o here */

Fig. 1: Access Control Program Example

4 C. Deng, P. Cousot

Here the question we are interested is: when the assertion fails (referred as
“Read Failure” in the following, i.e. the read access to o fails to be granted),
which entity (entities) in the program shall be responsible? The literature has
several possible answers. By the definition of dependency ([1,7,37]), the value
of acs depends on the value of apv and typ, which further depend on all three
inputs. That is to say, the read failure depends on all variables in the program,
thus program slicing techniques (both syntactic slicing [39] and semantic slicing
[35]) would take the whole program as the slice related with read failure. Such a
slice is useful in debugging in the sense that it rules out parts of the program that
are completely irrelevant with the failure, and modifying any code left in the slice
may prevent the failure, e.g. replacing “acs=apv*typ” with “acs=2” trivially fixes
the read failure problem. However, this paper presumes the program code to be
unmodifiable, hence a statement like “acs=apv*typ”, which is fully controlled by
others and acts merely as the intermediary between causes and effects, shall not
be treated as responsible. In addition, the third input (i.e. the system setting of
o’s permission type) is also included in the slice. Although it does affect acs’s
value, it is not decisive in this case (i.e. no matter it is 1 or 2, it could not either
enforce or prevent the failure). Therefore, the dependency analysis and slicing
are not precise enough for determining responsibility.

Causation by counterfactual dependency [28] examines the cause in every
single execution and excludes non-decisive factors (e.g. the third input in this
example), but it is too strong in some circumstances. For example, in an execu-
tion where both the first two inputs are 0, neither of them would be determined
as the cause of read failure, because if one input is changed to value 1, the failure
would still occur due to the other input 0.

Actual cause introduced in [19,20] is based on the structural equations model
(SEM) [10], and extends the basic notion of counterfactual dependency to allow
“contingent dependency”. For this example here, it is straightforward to create
a SEM to represent the access control program (although it is not always the
case): three inputs are represented by exogenous variables, and five program
variables are represented by endogenous variables, in which the value of apv is
i1*i2. Consider an execution where both the first two inputs are 0, no matter
what value the third input takes, the actual causes of read failure (i.e. acs<1)
would be determined as “i1=0”, “i2=0”, “apv=0” and “acs=0”, since the failure
counterfactually depends on each of them under certain contingencies. Thus,
both two admins are equally determined as causes of failure, as well as two
intermediary variables. This structural-model method has allowed for a great
progress in causality analysis, and solved many problems of previous approaches.
However, as an abstraction of concrete semantics, the SEM unnecessarily misses
too much information, including the following three important points.

(P1) Time (i.e. the temporal ordering of events) should be taken into account.
For example, the SEM does not keep the temporal ordering of first two inputs (i.e.
the information that “i1=0” occurs before “i2=0” is missed), hence it determines
both of them equally as the cause of assigning 0 to apv, further as the cause of
read failure. However, in the actual execution where first two inputs are 0, the

Responsibility Analysis by Abstract Interpretation 5

first input already decides the value of apv before the second input is entered
and the assignment at line 7 is not even executed, thus it is unnecessary to
take the second input as a cause of assigning 0 to apv or the read failure. To
deal with this difficulty, Pearl’s solution is to modify the model and introduce
new variables [6] to distinguish whether apv is assigned by i1 or i2. However,
a much simpler method is to keep the temporal ordering of events, such that
only the first event that ensures the behavior of interest is counted as the cause.
Therefore, in an execution where both the first two inputs are 0, the first input
ensures the read failure before the second input is entered, hence only the first
input is responsible for failure; meanwhile, in another execution where the first
input is 1 and the second one is 0, the second input is the first and only one that
ensures the failure hence shall take the responsibility.

(P2) The cause must be free to make choices. For example, acs=0 is de-
termined as an actual cause of read failure, based on the reasoning that if the
endogenous variable acs in SEM is assigned a different value, say 2, then the read
failure would not have occurred. But such a reasoning ignores a simple fact that
acs is not free to choose its value and acts merely as an intermediary between
causes and effects. Thus, only entities that are free to make choices can possibly
be causes, and they include but are not limited to user inputs, system settings,
files read, parameters of procedures or modules, returned values of external func-
tions, variable initialization, random number generations and the parallelism. To
be more accurate, it is the external subject (who does the input, configures the
system settings, etc.) that is free to make choices, but we say that entities like
user inputs are free to make choices, as an abuse of language.

(P3) It is necessary to specify “to whose cognizance / knowledge” when
identifying the cause. All the above reasoning on causality is implicitly based on
an omniscient observer’s cognizance (i.e. everything that occurred is known), yet
it is non-trivial to consider the causality to the cognizance of a non-omniscient
observer. Reconsider the access control program example, and suppose we adopt
the cognizance of the second admin who is in charge of the second input. If
she/he is aware that the first input is already 0, she/he would not be responsible
for the failure; otherwise she/he does not know whether the first input is 0 or 1,
then she/he is responsible for ensuring the occurrence of failure. In most cases,
the cognizance of an omniscient observer will be adopted, but not always.

2.2 An Informal Definition of Responsibility

To take the above three points into account and build a more expressive frame-
work, this paper proposes responsibility, whose informal definition is as follows.

Definition 1 (Responsibility, informally). To the cognizance of an ob-
server, the entity ER is responsible for a behavior B of interest in a certain
execution, if and only if, according to the observer’s observation, ER is free
to choose its value, and such a choice is the first one that guarantees the
occurrence of B in that execution.

6 C. Deng, P. Cousot

It is worth mentioning that, for the whole system whose semantics is a set
of executions, there may exist more than one entities that are responsible for B.
Nevertheless, in every single execution where B occurs, there is only one entity
that is responsible for B. To decide which entity in an execution is responsi-
ble, the execution alone is not sufficient, and it is necessary to reason on the
whole semantics to exhibit the entity’s “free choice” and guarantee of B. Thus,
responsibility is not a trace property (neither safety nor liveness property).

To put such a definition into effect, our framework of responsibility analysis
is designed as Fig. 2, which essentially consists of three components: (1) System
semantics, i.e. the set of all possible executions, each of which can be analyzed
individually. (2) A lattice of system behaviors of interest, which is ordered such
that the stronger a behavior is, the lower is its position in the lattice. (3) An
observation function for each observer, which maps every (probably unfinished)
execution to a behavior in the lattice that is guaranteed to occur, even though
such a behavior may have not occurred yet. These three components are formally
defined in section 3, and their abstractions are sketched in [13].

 apv=1

i1=0

i2=0

System Semantics Lattice of System Behaviors
of Interest

Observation 1

2

3

4

5

6

(Omniscient)

(Non-omniscient)

i1==0

apv=0

⊤Max = S Max

RS

RF

⊥Max= Ø

RO RW

Behaviors
RF: Read Failure
RS: Read Success
RO: Read Only access
RW: Read and Write access

Fig. 2: Framework of Responsibility Analysis for Example 1

In this framework, if an observer’s observation finds that the guaranteed
behavior grows stronger after extending an execution, then the extension part
of execution must be responsible for ensuring the occurrence of the stronger
behavior. Consider the example in Fig. 2 which sketches the analysis for a certain
execution of the access control program. Suppose >Max in the lattice represents
“not sure if the read access fails or not” and RF represents the behavior of read
failure, whose formal definitions are given in section 3.2. The solid arrow from
executions to the lattice stands for the observation of an omniscient observer,
while the dashed arrow stands for the observation of the second admin who is
unaware of the first input. As illustrated in the figure, the omniscient observer
finds that the execution from point 1 to point 2 can guarantee only >Max, while
the stronger behavior RF is guaranteed if the execution reaches point 3. Thus,
to the cognizance of the omniscient observer, “i1=0” between point 2 and 3 is
responsible for the read failure. Meanwhile, the second admin observes that all
the executions upto point 5 guarantee>Max, and RF is guaranteed only after point

Responsibility Analysis by Abstract Interpretation 7

6 is reached. Hence, to the cognizance of the second admin, “i2=0” between point
5 and point 6 is responsible for the read failure. For the sake of completeness,
the entire desired analysis result for Example 1 is included in the following.

Example 2 (Access Control, Continued). To the cognizance of an omniscient
observer: for any execution, if the first input is 0, no matter what the other two
inputs are, only the first admin is responsible for the read failure; if the first
input is 1 and the second one is 0, the second admin is responsible.

To the cognizance of the second admin, two cases need to be considered sepa-
rately. If she/he is aware of the input of first admin, the analysis result is exactly
the same as the omniscient observer. Otherwise, she/he does not know the first
input: in every execution where the second input is 0, the second admin is re-
sponsible, no matter what the first and third input are; in every execution where
the second input is 1, nobody shall be responsible for the failure, since whether
the failure occurs or not is uncertain from the second admin’s perspective. ut

After finishing responsibility analysis, it is time for the security admin to
configure permissions granted to each responsible entity at her/his discretion.
If the behavior of interest is desired or the responsible entity is authorized, the
permissions granted to the responsible entity can be kept. On the contrary, if
that behavior is undesired or it is against the policy for the responsible entity to
control it, the permissions granted to the responsible entity shall be confined. For
instance, in the access control program, if the first two inputs are from admins
who are authorized to control the access, their permissions to input 0 and 1 can
be kept; if those two inputs come from ordinary users who have no authorization
to deny other users’ access, their permissions to input 0 shall be removed.

3 Formal Definition of Responsibility
In order to formalize the framework of responsibility analysis, this section intro-
duces event traces to represent the system semantics, builds a lattice of system
behaviors by trace properties, proposes an observation function that derives
from the observer’s cognizance and an inquiry function on system behaviors.
Furthermore, this section formally defines responsibility as an abstraction of
system semantics, using the observation function. To strengthen the intuition of
responsibility analysis, the analysis of Example 1 will be illustrated step by step.

3.1 System Semantics

Generally speaking, no matter what system we are concerned with and no matter
which programming language is used to implement that system, the system’s
semantics can be represented by event traces.

Event Trace In general, an event could be used to represent any action in the
system, such as “input an integer”, “assign a value to a variable”, or even “launch
the program”. Take the classic While programming language as an example, there

8 C. Deng, P. Cousot

are only three types of events: skip, assignment, and Boolean test. In order to
make the definition of responsibility as generic as possible, here we do not adopt
a specific programming language or restrict the range of possible events.

A trace σ is a sequence of events that represents an execution of the system,
and its length |σ| is the number of events in σ. If σ is infinite, then its length
|σ| is denoted as ∞. A special trace is the empty trace ε , whose length is 0. A
trace σ is � - less than or equal to another trace σ′, if and only if, σ is a prefix
of σ′. The concatenation of a finite trace σ and an event e is simply defined by
juxtaposition σe, and the concatenation of a finite traces σ and another (finite
or infinite) trace σ′ is denoted as σσ′.

e ∈ E event
σ ∈ E+∞ ≜

∪
n⩾1

{[0, n− 1] 7→ E} ∪ {N 7→ E} nonempty trace

σ ∈ E∗∞ ≜ {ε} ∪ E+∞ empty or nonempty trace
σ � σ′ ≜ |σ| ⩽ |σ′| ∧ ∀ 0 ⩽ i ⩽ |σ| − 1 : σi = σ′

i prefix ordering of traces

The function Pref(P) returns the prefixes of every trace in the set P of traces.

Pref ∈ ℘(E∗∞) 7→ ℘(E∗∞) prefixes of traces
Pref(P) ≜ {σ′ ∈ E∗∞ | ∃σ ∈ P. σ′ � σ}

Trace Semantics For any system that we are concerned with, its maximal trace
semantics, denoted as SMax ∈ ℘(E∗∞), is the set of all possible maximal traces
of that system. Especially, the maximal trace semantics of an empty program
is {ε}. Correspondingly, the prefix trace semantics SPref ∈ ℘(E∗∞) is the set of
all possible prefix traces, which is an abstraction of maximal trace semantics via
Pref, i.e. SPref = Pref(SMax). Besides, a trace σ is said to be valid in the system,
if and only if σ ∈ SPref . Obviously, both maximal and prefix trace semantics do
preserve the temporal ordering of events, which is missed by the SEM.

Example 3 (Access Control, Continued). For the program in Fig. 1, only two
types of events are used: assignment (e.g. apv=1) and Boolean test (e.g. i1==0
and ¬(acs>=1), where ¬ denotes the failure of a Boolean test). To clarify the
boundary among events, the triangle ▷ is used in the following to separate events
in the trace. The access control program has three inputs, each of which has two
possible values, thus its maximal trace semantics SMax consists of 8 traces (T1-
T8), each of which is represented as a path in Fig. 3 starting at the entry point
of program and finishing at the exit point. E.g. T1 = apv=1 ▷ i1=0 ▷ i1==0 ▷ apv=0
▷ i2=0 ▷ ¬(apv!=0&&i2==0) ▷ typ=1 ▷ acs=0 ▷ ¬(acs>=1) denotes the maximal
execution where the first two inputs are 0 and the third input is 1. Meanwhile,
the prefix trace semantics SPref = Pref(SMax) are represented by the paths that
start at the entry point and stop at any point (including the entry point for the
empty trace ε). ut

Responsibility Analysis by Abstract Interpretation 9

a
p
v
=
1

 i1=1

 i1=0

i
1
=
=
0

a
p
v
=
0

 i2=1 ¬
(
a
p
v
!
=
0

&
&
i
2
=
=
0
)

typ=2

 ¬(acs>=1)

a
c
s
=
0

typ=1 ¬(acs>=1)

a
c
s
=
0

 i2=0

¬
(
a
p
v
!
=
0

&
&
i
2
=
=
0
)

typ=2

 ¬(acs>=1)

a
c
s
=
0

typ=1 ¬(acs>=1)

a
c
s
=
0

¬
(
i
1
=
=
0
)

 i2=1 ¬
(
a
p
v
!
=
0

&
&
i
2
=
=
0
)

typ=2

 acs>=1

a
c
s
=
2

typ=1
 acs>=1

a
c
s
=
1

 i2=0

a
p
v
!
=
0
&
&
i
2
=
=
0

a
p
v
=
0

typ=2

 ¬(acs>=1)

a
c
s
=
0

typ=1
 ¬(acs>=1)

a
c
s
=
0

T1

T2

T3

T4

T5

T6

T7

T8

S

Max

RF

RS

RO

RW

Entry

Exit

Fig. 3: Trace Semantics and Properties of Example 1

3.2 Lattice of System Behaviors of Interest

Trace Property A trace property is a set of traces in which a given property
holds. Most behaviors of a given system, if not all, can be represented as a
maximal trace property P ∈ ℘(SMax).

Example 4 (Access Control, Continued). As illustrated in Fig. 3, the behavior
“Read Failure” RF is represented as a set of maximal traces such that the last
event is ¬(acs>=1), i.e. RF = {σ ∈ SMax | σ|σ|−1 = ¬(acs>=1)} = {T1, T2, T3,
T4, T5, T6}; the behavior “Read Success” RS (i.e. the read access succeeds to be
granted) is the complement of RF, i.e. RS = SMax\RF = {T7, T8}, whose subset
RO = {T7} and RW = {T8} represent stronger properties “Read Only access is
granted” and “Read and Write access is granted”, respectively. ut

Complete Lattice of Maximal Trace Properties of Interest We build a
complete lattice of maximal trace properties, each of which represents a behavior
of interest. Typically, such a lattice is of form 〈LMax, ⊆, >Max, ⊥Max, ·∪, ·∩〉, where

– LMax ∈ ℘(℘(E∗∞)) is a set of behaviors of interest, each of which is represented
by a maximal trace property;

– >Max = SMax, i.e. the top is the weakest maximal trace property which holds
in every valid maximal trace;

– ⊥Max = ∅, i.e. the bottom is the strongest property such that no valid trace
has this property, hence it is used to represent the property of invalidity;

– ⊆ is the standard set inclusion operation;
– ·∪ and ·∩ are join and meet operations, which might not be the standard ∪

and ∩, since LMax is a subset of ℘(SMax) but not necessarily a sublattice.

10 C. Deng, P. Cousot

For any given system, there is possibly more than one way to build the
complete lattice of maximal trace properties, depending on which behaviors are
of interest. A special case of lattice is the power set of maximal trace semantics,
i.e. LMax = ℘(SMax), which can be used to examine the responsibility for every
possible behavior in the system. However, in most cases, a single behavior is
of interest, and it is sufficient to adopt a lattice with only four elements: B
representing the behavior of interest, SMax\B representing the complement of
the behavior of interest, as well as the top SMax and bottom ∅. Particularly, if B
is equal to SMax, i.e. every valid maximal trace in the system has this behavior of
interest, then a trivial lattice with only the top and bottom is built, from which
no responsibility can be found, making the corresponding analysis futile.

Example 5 (Access Control, Continued). We assume that “Read Failure” is of
interest, as well as the behavior of granting write access. As illustrated by the
lattice in Fig. 2, regarding whether the read access fails or not, the top >Max is
split into two properties “Read Failure” RF and “Read Success” RS, which are
defined in Example 4 such that RF ·∪ RS = SMax and RF ·∩ RS = ∅. Furthermore,
regarding whether the write access is granted or not, RS is split into “Read Only
access is granted” RO and “Read and Write access is granted” RW. Now every
property of interest corresponds to an element in the lattice, and the bottom
⊥Max = ∅ is the meet ·∩ of RF, RO and RW. In addition, if “Read Failure” is the
only behavior of interest, RO and RW can be removed from the lattice. ut

Prediction Abstraction Although the maximal trace property is well-suited
to represent system behaviors, it does not reveal the point along the maximal
trace from which a property is guaranteed to hold later in the execution. Thus,
we propose to abstract every maximal trace property P ∈ LMax isomorphically
into a set Q of prefixes of maximal traces in P, excluding those whose maximal
prolongation may not satisfy the property P. This abstraction is called prediction
abstraction, and Q is a prediction trace property corresponding to P. It is easy
to see that Q is a superset of P, and is not necessarily prefix-closed.

αPredJSMaxK ∈ ℘(E∗∞) 7→ ℘(E∗∞) prediction abstraction
αPredJSMaxK(P) ≜ {σ ∈ Pref(P) | ∀σ′ ∈ SMax. σ � σ′ ⇒ σ′ ∈ P}

γPredJSMaxK ∈ ℘(E∗∞) 7→ ℘(E∗∞) prediction concretization
γPredJSMaxK(Q) ≜ {σ ∈ Q | σ ∈ SMax} = Q∩ SMax

We have a Galois isomorphism between maximal trace properties and pre-
diction trace properties:

〈℘(SMax), ⊆〉 −−−−−−−−−→−→←←−−−−−−−−−−
αPredJSMaxK
γPredJSMaxK

〈ᾱPredJSMaxK(℘(SMax)), ⊆〉 (1)

where the abstract domain is obtained by a function ᾱPredJSMaxK ∈ ℘(℘(E∗∞)) 7→
℘(℘(E∗∞)), which is defined as ᾱPredJSMaxK(X) ≜ {αPredJSMaxK(P) | P ∈ X}. The
following lemma immediately follows from the definition of αPredJSMaxK.

Responsibility Analysis by Abstract Interpretation 11

Lemma 1. Given a prediction trace property Q that corresponds to a maximal
trace property P, if a prefix trace σ belongs to Q, then σ guarantees the satisfac-
tion of property P (i.e. every valid maximal trace that is greater than or equal
to σ is guaranteed to have property P).

Example 6 (Access Control, Continued). By αPred, each behavior in the lattice
LMax of Example 5 can be abstracted into a prediction trace property:

– αPredJSMaxK(>Max) = SPref , i.e. every valid trace in SPref guarantees >Max.
– αPredJSMaxK(RF) = {σ ∈ SPref | apv=1 ▷ i1=0 � σ ∨ apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷

i2=0 � σ }, i.e. for any valid trace, if at least one of first two inputs is 0, then
it guarantees “Read Failure” RF.

– αPredJSMaxK(RS) = {σ ∈ SPref | apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1 � σ}, i.e. for
any valid trace, if first two inputs are 1, it guarantees “Read Success” RS.

– αPredJSMaxK(RO) = {σ ∈ SPref | apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1 ▷ ¬(apv!=0&&i2==0)
▷ typ=1 � σ}, i.e. for any valid trace, if first two inputs are 1 and the third
input is 1, then it guarantees “Read Only access is granted” RO.

– αPredJSMaxK(RW) = {σ ∈ SPref | apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1 ▷ ¬(apv!=0&&i2==0)
▷ typ=2 � σ }, i.e. for any valid trace, if first two inputs are 1 and the third is
2, then it guarantees “Read and Write access is granted” RW.

– αPredJSMaxK(⊥Max) = ∅, i.e. no valid trace can guarantee ⊥Max. ut

3.3 Observation of System Behaviors

Let SMax be the maximal trace semantics and LMax be the lattice of system
behaviors designed as in Section 3.2. Given any prefix trace σ ∈ E∗∞, an observer
can learn some information from it, more precisely, a maximal trace property
P ∈ LMax that is guaranteed by σ from the observer’s perspective. In this section,
an observation function O is proposed to represent such a “property learning
process” of the observer, which is formally defined in the following three steps.

Inquiry Function First, an inquiry function I is defined to map every trace
σ ∈ E∗∞ to the strongest maximal trace property in LMax that σ can guarantee.
I ∈ ℘(E∗∞) 7→ ℘(℘(E∗∞)) 7→ E∗∞ 7→ ℘(E∗∞) inquiry (2)
I(SMax,LMax, σ) ≜
let αPredJSK(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in
·∩{P ∈ LMax | σ ∈ αPredJSMaxK(P)}

Specially, for an invalid trace σ 6∈ SPref , there does not exist any P ∈ LMax

such that σ ∈ αPredJSMaxK(P), therefore I(SMax,LMax, σ) = ∅ = ⊥Max.

Corollary 1. Given the semantics SMax and lattice LMax of system behaviors,
if the inquiry function I maps a trace σ to a maximal trace property P ∈ LMax,
then σ guarantees the satisfaction of P (i.e. every valid maximal trace that is
greater than or equal to σ is guaranteed to have property P).

12 C. Deng, P. Cousot

Lemma 2. The inquiry function I(SMax,LMax) is decreasing on the inquired
trace σ: the greater (longer) σ is, the stronger property it can guarantee.

Example 7 (Access Control, Continued). Using SMax defined in Example 3 and
LMax defined in Example 5, the inquiry function I of definition (2) is such that:

– I(SMax,LMax, apv=1) = >Max, i.e. apv=1 can guarantee only >Max.
– I(SMax,LMax, apv=1 ▷ i1=0) = RF, i.e. after setting the first input as 0, “Read

Failure” RF is guaranteed.
– I(SMax,LMax, apv=1 ▷ i1=1) = I(SMax,LMax, apv=1▷i1=1 ▷¬(i1==0)) = >Max, i.e.

if the first input is 1, only >Max is guaranteed before entering the second input.
– I(SMax,LMax, apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=0) = RF, i.e. if the second input is 0,

“Read Failure” RF is guaranteed.
– I(SMax,LMax, apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1) = RS, i.e. if first two inputs are

1, “Read Success” RS is guaranteed.
– I(SMax,LMax, apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1 ▷ ¬(i2==0) ▷ typ=2) = RW, i.e. if

first two inputs are 1, after the third input is set to be 2, a stronger property
“Read and Write access is granted” RW is guaranteed. ut

Cognizance Function As discussed in (P3) of section 2.1, it is necessary to
take the observer’s cognizance into account. Specifically, in program security, the
observer’s cognizance can be used to represent attackers’ capabilities (e.g. what
they can learn from the program execution). Given a trace σ (not necessarily
valid), if the observer cannot distinguish σ from some other traces, then he does
not have an omniscient cognizance of σ, and the cognizance function C(σ) is
defined to include all traces indistinguishable from σ.

C ∈ E∗∞ 7→ ℘(E∗∞) cognizance (3)
C(σ) ≜ {σ′ ∈ E∗∞ | observer cannot distinguish σ′ from σ}

Such a cognizance function is extensive, i.e. ∀σ ∈ E∗∞. σ ∈ C(σ). In particu-
lar, there is an omniscient observer and its corresponding cognizance function is
denoted as Co such that ∀σ ∈ E∗∞. Co(σ) = {σ}, which means that every trace
is unambiguous to the omniscient observer.

To facilitate the proof of some desired properties for the observation function
defined later, two assumptions are made here without loss of generality:
(A1) The cognizance of a trace σσ′ is the concatenation of cognizances of σ and

σ′. I.e. ∀σ, σ′ ∈ E∗∞. C(σσ′) = {ττ ′ | τ ∈ C(σ) ∧ τ ′ ∈ C(σ′)}.
(A2) Given an invalid trace, the cognizance function would not return a valid

trace. I.e. ∀σ ∈ E∗∞. σ 6∈ SPref ⇒ C(σ) ∩ SPref = ∅.
To make the assumption (A1) sound, we must have C(ε) = {ε}, because

otherwise, for any non-empty trace σ, C(σ) = C(σε) = {ττ ′ | τ ∈ C(σ) ∧ τ ′ ∈
C(ε)} does not have a fixpoint. In practice, {〈σ, σ′〉 | σ′ ∈ C(σ)} is an equivalence
relation, but the symmetry and transitivity property are not used in the proofs.
Example 8 (Access Control, Continued). Consider two separate observers.

(i) For an omniscient observer: ∀σ ∈ E∗∞. Co(σ) = {σ}.

Responsibility Analysis by Abstract Interpretation 13

(ii) For an observer representing the second admin who is unaware of the
first input: C(i1=0 ▷ i1==0 ▷ apv=0) = C(i1=1 ▷ ¬(i1==0)) = {i1=0 ▷ i1==0 ▷

apv=0, i1=1 ▷ ¬(i1==0)}, i.e. this observer cannot distinguish whether the first
input is 0 or 1. Thus, for a prefix trace in which the first two inputs are 0,
C(apv=1 ▷ i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=0) = {apv=1 ▷ i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=0,
apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=0}, where apv=1 and i2=0 are known by this ob-
server. In the same way, its cognizance on other traces can be generated. ut

Observation Function For an observer with cognizance function C, given a
single trace σ, the observer cannot distinguish σ with traces in C(σ). In order
to formalize the information that the observer can learn from σ, we apply the
inquiry function I on each trace in C(σ), and get a set of maximal trace prop-
erties. By joining them together, we get the strongest property in LMax that σ
can guarantee from the observer’s perspective. Such a process is defined as the
observation function O(SMax,LMax,C, σ).
O ∈ ℘(E∗∞) 7→ ℘(℘(E∗∞)) 7→ (E∗∞ 7→ ℘(E∗∞)) 7→ E∗∞ 7→ ℘(E∗∞)

O(SMax,LMax,C, σ) ≜ observation (4)
let αPredJSK(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in
let I(S,L, σ) = ·∩{P ∈ L | σ ∈ αPredJSK(P)} in
·∪{I(SMax,LMax, σ′) | σ′ ∈ C(σ)}.

From the above definition, it is easy to see that, for every invalid trace σ,
O(SMax,LMax,C, σ) = ⊥Max, since every trace σ′ in C(σ) is invalid by (A2) and
I(SMax,LMax, σ′) = ⊥Max. In addition, for an omniscient observer with cognizance
function Co, its observation O(SMax,LMax,Co, σ) = I(SMax,LMax, σ).

Corollary 2. For any observer with cognizance C, if the corresponding obser-
vation function maps a trace σ to a maximal trace property P ∈ LMax, then σ
guarantees the satisfaction of property P (i.e. every valid maximal trace that is
greater than or equal to σ is guaranteed to have property P).

Lemma 3. The observation function O(SMax,LMax,C) is decreasing on the ob-
served trace σ: the greater (longer) σ is, the stronger property it can observe.

Example 9 (Access Control, Continued). For an omniscient observer, the obser-
vation function is identical to the inquire function in Example 7. If the cognizance
of the second admin defined in Example 8 is adopted, we get an observation func-
tion that works exactly the same as the dashed arrows in Fig.2:
– O(SMax,LMax,C, apv=1 ▷ i1=0) = I (SMax,LMax, apv=1▷ i1=0) ·∪ I(SMax,LMax,

apv=1 ▷ i1=1) = RF ·∪ >Max = >Max, i.e. even if the first input is already 0 in
the trace, no property except >Max can be guaranteed for the second admin.

– O(SMax,LMax,C, apv=1 ▷ i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=1) = I (SMax, LMax, apv=1▷
i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=1) ·∪ I (SMax, LMax, apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=1) =
RF ·∪ >Max = >Max, i.e. if the second input is 1, only >Max can be guaranteed.

– O(SMax,LMax,C, apv=1 ▷ i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=0) = I (SMax, LMax, apv=1▷
i1=0 ▷ i1==0 ▷ apv=0 ▷ i2=0) ·∪ I (SMax, LMax, apv=1 ▷ i1=1 ▷ ¬(i1==0) ▷ i2=0) =
RF ·∪ RF = RF, i.e. RF is guaranteed only after the second input is entered 0. ut

14 C. Deng, P. Cousot

3.4 Formal Definition of Responsibility

Using the three components of responsibility analysis introduced above, respon-
sibility is formally defined as the responsibility abstraction αR in (5). Specifically,
the first parameter is the maximal trace semantics SMax, the second parameter
is the lattice LMax of system behaviors, the third parameter is the cognizance
function of a given observer, the fourth parameter is the behavior B whose re-
sponsibility is of interest, and the last parameter is the analyzed traces T .

Consider every trace σHσRσF ∈ T where H, R and F respectively stand for
History, Responsible part and Future. If ∅ ⊊ O(SMax,LMax,C, σHσR) ⊆ B ⊊
O(SMax,LMax,C, σH) holds, then σH does not guarantee the behavior B, while
σHσR guarantees a behavior which is at least as strong as B and is not the inva-
lidity property represented by ⊥Max = ∅. Therefore, σR is said to be responsible
for ensuring behavior B in the trace σHσRσF.

In particular, the length of σR is restricted to be 1 (i.e. |σR| = 1), such that the
responsible entity σR must be a single event and the responsibility analysis could
be as refined as possible. Otherwise, if we do not have such a restriction, then
for every analyzed trace σ ∈ T where the behavior B holds, the responsibility
analysis may split the trace σ into three parts σ = σHσRσF such that σH =
ε, σR = σ and σF = ε. In such a case, ∅ ⊊ O(SMax,LMax,C, σHσR) ⊆ B ⊊
O(SMax,LMax,C, σH) holds, and the whole trace σ would be found responsible
for B. This result is trivially correct, but too coarse to be useful in practice.

Responsibility Abstraction αR

αR ∈ ℘(E∗∞) 7→ ℘(℘(E∗∞)) 7→ (E∗∞ 7→ ℘(E∗∞))

7→ ℘(E∗∞) 7→ ℘(E∗∞) 7→ ℘(E∗∞× E× E∗∞) (5)
αR(SMax,LMax,C,B, T) ≜
let αPredJSK(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in
let I(S,L, σ) = ·∩{P ∈ L | σ ∈ αPredJSK(P)} in
let O(S,L,C, σ) = ·∪{I(S,L, σ′) | σ′ ∈ C(σ)} in
{〈σH, σR, σF〉 | σHσRσF ∈ T ∧ |σR| = 1 ∧
∅⊊O(SMax,LMax,C, σHσR) ⊆ B ⊊ O(SMax,LMax,C, σH)}

Since αR(SMax,LMax,C,B) preserves joins on analyzed traces T , we have a
Galois connection: 〈℘(E∗∞), ⊆〉 −−−−−−−−−−−−−−→←−−−−−−−−−−−−−−

αR(SMax,LMax,C,B)

γR(SMax,LMax,C,B)
〈℘(E∗∞× E× E∗∞), ⊆〉.

Lemma 4. If σR is said to be responsible for a behavior B in a valid trace
σHσRσF, then σHσR guarantees the occurrence of behavior B, and there must
exist another valid prefix trace σHσ

′
R such that the behavior B is not guaranteed.

Recall the three desired points (time, free choices and cognizance) for defining
responsibility in section 2.1. It is obvious that αR has taken both the temporal
ordering of events and the observer’s cognizance into account. As for the free
choices, it is easy to find from lemma 4 that, if σR is determined by its history

Responsibility Analysis by Abstract Interpretation 15

trace σH and is not free to make choices (i.e. ∀σHσR, σHσ
′
R ∈ SPref . σR = σ′

R),
then σR cannot be responsible for any behavior in the trace σHσRσF.

3.5 Responsibility Analysis

To sum up, the responsibility analysis typically consists of four steps: I) collect
the system’s trace semantics SMax (in Section 3.1); II) build the complete lattice
of maximal trace properties of interest LMax (in Section 3.2); III) derive an
inquiry function I from LMax, define a cognizance function C for each observer,
and create the corresponding observation function O (in Section 3.3); IV) specify
the behavior B of interest and the analyzed traces T , and apply the responsibility
abstraction αR(SMax,LMax,C,B, T) to get the analysis result (in Section 3.4).
Hence, the responsibility analysis is essentially an abstract interpretation of the
event trace semantics.

In the above definition of responsibility, the semantics and lattice of system
behaviors are concrete, and they are explicitly displayed in the access control
example for the sake of clarity. However, they may be uncomputable in practice,
and we do not require programmers to provide them in the implementation
of responsibility analysis. Instead, they are provided in the abstract, using an
abstract interpretation-based static analysis that is sketched in [13].

Example 10 (Access Control, Continued). Using the observation functions cre-
ated in example 9, the abstraction αR can analyze the responsibility of a certain
behavior B in the set T of traces. Suppose we want to analyze “Read Failure” in
every possible execution, then B is RF, and T includes all valid maximal traces,
i.e. T = SMax. Thus, αR(SMax,LMax,C, RF,SMax) computes the responsibility
analysis result, which is essential the same as desired in Example 2.

Furthermore, the responsibility of “granting write access” can be analyzed
by setting the behavior B as RW instead, and we get the following result. To the
cognizance of an omniscient observer, in every execution that both the first two
inputs are 1, the third input (i.e. system setting of permission type) is responsible
for RW. Meanwhile, to the cognizance of the second admin who is unaware of the
first input, no one is found responsible for RW, because whether the write access
fails or not is always uncertain, from the second admin’s perspective. ut

4 Examples of Responsibility Analysis
Responsibility is a broad concept, and our definition of responsibility based on
the abstraction of event trace semantics is universally applicable in various sci-
entific fields. We have examined every example supplied in actual cause [19,20]
and found that our definition of responsibility can handle them well, in which
actions like “drop a lit match in the forest” or “throw a rock at the bottle” are
treated as events in the trace. In the following, we will illustrate the responsibility
analysis by two more examples: the “negative balance” problem of a withdrawal
transaction, and the information leakage problem.

16 C. Deng, P. Cousot

4.1 Responsibility Analysis of “Negative Balance” Problem

Example 11 (Negative Balance). Consider the withdrawal transaction program
in Fig. 4 in which the query_database() function gets the balance of a cer-
tain bank account before the transaction, and input() specifies the withdrawal
amount that is positive. When the withdrawal transaction completes, if the bal-
ance is negative, which entity in the program shall be responsible for it? ut

It is not hard to see that, the “negative balance” problem can be transformed
into an equivalent buffer overflow problem, where the memory of size balance is
allocated and the index at n-1 is visited. Although this problem has been well
studied, it suffices to demonstrate the advantages of responsibility analysis over
dependency/causality analysis.

1: balance = query_database();
2: n = input(); //Positive
3: balance -= n;

Fig. 4: Withdrawal Transaction Program
⊥Max = ∅

NB ¬NB

⊤Max = SMax

Fig. 5: Lattice of Behaviors

As discussed in section 3.5, the responsibility analysis consists of four steps.
For the sake of simplicity, we consider only the omniscient observer here.

(1) Taking each assignment as an event, each maximal trace in this program
is of length 3, and the program’s maximal trace semantics consists of in-
finite number of such traces. E.g. balance=0 ▷ n=5 ▷ balance=-5 denotes a
maximal execution, in which the balance before the transaction is 0 and the
withdrawal amount is 5 such that “negative balance” occurs.

(2) Since “negative balance” is the only behavior that we are interested here, a
lattice LMax of maximal trace properties in Fig. 5 with four elements can be
built, where NB (Negative Balance) is the set of maximal traces where the
value of balance is negative at the end, and ¬NB is its complement.

(3) Using the omniscient observer’s cognizance Co, the observation function O
can be easily derived from the lattice LMax, such that:
– O(SMax,LMax,Co, ε) = >Max;
– O(SMax,LMax,Co, balance=i) = NB where i ≤ 0, i.e. if the balance before

the transaction is negative or 0, the occurrence of “negative balance” is
guaranteed before the withdrawal amount n is entered;

– O(SMax,LMax,Co, balance=i) = >Max where i > 0, i.e. if the balance be-
fore the transaction is strictly greater than 0, whether “negative balance”
occurs or not has not been decided;

– O(SMax,LMax,Co, balance=i ▷ n=j) = NB where i > 0 and j > i, i.e. “neg-
ative balance” is guaranteed to occur immediately after input() returns
a value strictly greater than balance;

– O(SMax,LMax,Co, balance=i ▷ n=j) = ¬NB where i > 0 and j ≤ i, i.e.
“negative balance” is guaranteed not to occur immediately after input()
returns a value less than or equal to balance.

Responsibility Analysis by Abstract Interpretation 17

(4) Suppose the behavior B = NB and the analyzed traces T = SMax, the abstrac-
tion αR(SMax,LMax,Co,B, T) gets the following result. If query_database()
returns 0 or a negative value, no matter what value input() returns, the
function query_database() (i.e. event balance=i) is responsible for “negative
balance”, and further responsibility analysis shall be applied on the previous
transactions of the database. Otherwise, if query_database() returns a value
strictly greater than 0, the function input() (i.e. event n=j) takes the respon-
sibility for “negative balance”, thus “negative balance” can be prevented by
configuring the permission granted to input() such that its permitted return
value must be less than or equal to the returned value of query_database().

4.2 Responsibility Analysis of Information Leakage

Essentially, responsibility analysis of information leakage is the same as read
failure or “negative balance” problem, and the only significant distinction is on
defining the behaviors of interest. Here we adopt the notion of non-interference
[16] to represent the behavior of information leakage.

In the program, the inputs and outputs are classified as either Low (pub-
lic, low sensitivity) or High (private, high sensitivity). For a given trace σ, if
there is another trace σ′ such that they have the same low inputs but differ-
ent low outputs, then the trace σ is said to leak private information. If no
trace in the program leaks private information (i.e. every two traces with the
same low inputs have the same low outputs, regardless of the high inputs), the
program is secure and has the non-interference property. Thus, for any pro-
gram with maximal trace semantics SMax, the behavior of “Information Leak-
age” IL is represented as the set of leaky traces, i.e. IL = {σ ∈ SMax | ∃σ′ ∈
SMax. low_inputs(σ) = low_inputs(σ′) ∧ low_outputs(σ) 6= low_outputs(σ′)},
where functions low_inputs and low_outputs collects low inputs and outputs
along the trace, respectively. The behavior of “No information Leakage” NL is
the complement of IL, i.e. NL = {σ ∈ SMax | ∀σ′ ∈ SMax. low_inputs(σ) =
low_inputs(σ′)⇒ low_outputs(σ) = low_outputs(σ′)}. Thus, the lattice LMax

of maximal trace properties regarding information leakage can be built as in in
Fig. 6. Further, the corresponding observation function O can be created, and
the analysis result can be obtained by applying the responsibility abstraction.

⊥Max = ∅

IL NL

⊤Max = SMax Behaviors:
IL : Information Leakage
NL : No information Leakage

Fig. 6: Lattice of Behaviors regarding Information Leakage

Notice that we are interested in analyzing only the insecure programs in
which some traces leak private information while others do not, i.e. IL ⊊ >Max.
For the erroneous programs where every trace leaks private information, i.e.

18 C. Deng, P. Cousot

IL = >Max, we need to admit that our responsibility analysis cannot identify
any entity responsible for the leakage, unless “launching the program” is treated
as an event and it would be found responsible for leaking private information.

5 Related Work

Definition of Causality and Responsibility Hume [22] is the first one to
specify causation by counterfactual dependence [29]. The best known counter-
factual theory of causation is proposed by Lewis [28], which defines causation as
a transitive closure of counterfactual dependencies. Halpern and Pearl [19,20,30]
defines actual causality based on SEM and extends counterfactual dependency
to allow “contingent dependency”. Chockler and Halpern [8] defines responsibil-
ity to have a quantitative measure of the relevance between causes and effects,
and defines blame to consider the epistemic state of an agent. Their application
of actual causality, responsibility and blame is mainly on artificial intelligence.

Our definition of responsibility also adopts the idea of counterfactual de-
pendence in the sense that, suppose an event σR is said to be responsible for
behavior B in the trace σHσR, there must exist another event σ′

R such that, if
σR is replaced by σ′

R, then B is not guaranteed (by lemma 4).

Error Cause Localization Classic program analysis techniques, e.g. depen-
dency analysis [1,7,37] and program slicing [39,38,27,2], are useful in detecting
the code that may be relevant to errors, but fail to localize the cause of error.

In recent years, there are many papers [3,18,25,17,34,33,32,24] on fault lo-
calization for counterexample traces, and most of them compare multiple traces
produced by a model checker and build a heuristic metric to localize the point
from which error traces separate from correct traces. Other related papers in-
clude error diagnosis by abductive/backward inference [14], tracking down bugs
by dynamic invariant detection [21]. Actual causality is applied to explain coun-
terexamples from model checker [5] and estimate the coverage of specification
[9]. Besides, there are researches on analyzing causes of specific security issues.
E.g. King et al. [26] employ a blame dependency graph to explain the source of
information flow violation and generate a program slice as the error report.

Compared to the above techniques, this paper succeeds to formally define the
cause or responsibility, and the proposed responsibility analysis, which does not
require a counterexample from the model checker, is sound, scalable and generic
to cope with various problems.

6 Conclusion and Future Work

This paper formally defines responsibility as an abstraction of event trace se-
mantics. Typically, the responsibility analysis consists of four steps: collect the
trace semantics, build a lattice of behaviors of interest, create an observation
function for each observer, and apply the responsibility abstraction on analyzed
traces. Its effectiveness has been demonstrated by several examples.

Responsibility Analysis by Abstract Interpretation 19

In the future, we intent to: (1) formalize the abstract responsibility analy-
sis that is sketched in [13], (2) build a lattice of responsibility abstractions to
cope with possible alternative weaker or stronger definitions of responsibility,
(3) generalize the definition of cognizance function as an abstraction of system
semantics, and (4) study the responsibility analysis of probabilistic programs.

Acknowledgment

This work was supported in part by NSF Grant CNS-1446511. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Sci-
ence Foundation. P. Cousot thanks Marco Pistoia for initial discussions on re-
sponsibility while visiting the Thomas J. Watson Research Center at Hawthorne
in 2005.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: POPL. pp. 147–160. ACM (1999)

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: PLDI. pp. 246–256. ACM
(1990)

3. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: POPL. pp. 97–105. ACM (2003)

4. Beebee, H., Hitchcock, C., Menzie, P.: The Oxford Handbook of Causation. Oxford
University Press (2009)

5. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. Formal Methods in System Design 40(1), 20–40 (2012)

6. Chen, B., Pearl, J., Bareinboim, E.: Incorporating knowledge into structural equa-
tion models using auxiliary variables. In: IJCAI. pp. 3577–3583. IJCAI/AAAI Press
(2016)

7. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathe-
matical Structures in Computer Science 21(6), 1301–1337 (2011)

8. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model ap-
proach. J. Artif. Intell. Res. 22, 93–115 (2004)

9. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Trans. Comput. Log. 9(3), 20:1–20:26 (2008)

10. Christopher, W.J.: Structural Equation Models, From Paths to Networks. Studies
in Systems, Decision and Control 22, Springer (2015)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252. ACM (1977)

12. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282. ACM Press (1979)

13. Deng, C., Cousot, P.: Responsibility analysis by abstract interpretation. Extended
version of this paper, at http://cs.nyu.edu/~deng/ (2019)

14. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference.
In: PLDI. pp. 181–192. ACM (2012)

20 C. Deng, P. Cousot

15. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.J.: Practical account-
ability of secret processes. In: USENIX Security Symposium. pp. 657–674. USENIX
Association (2018)

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20. IEEE Computer Society (1982)

17. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Electr. Notes Theor. Comput. Sci. 174(4), 95–111 (2007)

18. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

19. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach:
Part 1: Causes. In: UAI. pp. 194–202. Morgan Kaufmann (2001)

20. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part i: Causes. The British journal for the philosophy of science 56(4), 843–887
(2005)

21. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: ICSE. pp. 291–301. ACM (2002)

22. Hume, D.: An enquiry concerning human understanding. London: A. Millar (1748),
http://www.davidhume.org/texts/ehu.html

23. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability
and audit. In: ESORICS. Lecture Notes in Computer Science, vol. 5789, pp. 152–
167. Springer (2009)

24. Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: TACAS.
Lecture Notes in Computer Science, vol. 2280, pp. 445–459. Springer (2002)

25. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI. pp. 437–446. ACM (2011)

26. King, D., Jaeger, T., Jha, S., Seshia, S.A.: Effective blame for information-flow
violations. In: SIGSOFT FSE. pp. 250–260. ACM (2008)

27. Korel, B., Rilling, J.: Dynamic program slicing methods. Information & Software
Technology 40(11-12), 647–659 (1998)

28. Lewis, D.: Causation. The journal of philosophy 70(17), 556–567 (1973)
29. Menzies, P.: Counterfactual theories of causation. In: Zalta, E.N. (ed.) The Stan-

ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2017 edn. (2017)

30. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press,
2nd edn. (2013)

31. Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for
privileged code placement and tainted variable detection. In: ECOOP. Lecture
Notes in Computer Science, vol. 3586, pp. 362–386. Springer (2005)

32. Qi, D., Roychoudhury, A., Liang, Z., Vaswani, K.: Darwin: an approach for debug-
ging evolving programs. In: ESEC/SIGSOFT FSE. pp. 33–42. ACM (2009)

33. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In:
TACAS. Lecture Notes in Computer Science, vol. 2988, pp. 31–45. Springer (2004)

34. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE.
pp. 30–39. IEEE Computer Society (2003)

35. Rival, X.: Understanding the origin of alarms in astrée. In: SAS. Lecture Notes in
Computer Science, vol. 3672, pp. 303–319. Springer (2005)

36. van Sliedregt, E.: Individual Criminal Responsibility in International Law. Oxford
Monographs in International Law, Oxford University Press (2012)

37. Urban, C., Müller, P.: An abstract interpretation framework for input data usage.
In: ESOP. Lecture Notes in Computer Science, vol. 10801, pp. 683–710. Springer
(2018)

http://www.davidhume.org/texts/ehu.html

Responsibility Analysis by Abstract Interpretation 21

38. Weiser, M.: Program slicing. In: ICSE. pp. 439–449. IEEE Computer Society (1981)
39. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984)
40. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.A., Suss-

man, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

	Responsibility Analysis by Abstract Interpretation

