
Static Analysis and Verification of Aerospace Software

by Abstract Interpretation

(Abstract)

Julien Bertrane∗

École normale supérieure, Paris

Patrick Cousot∗,†

Courant Institute of Mathematical Sciences, NYU, New York & École normale supérieure, Paris

Radhia Cousot∗

École normale supérieure & CNRS, Paris

Jérôme Feret∗

École normale supérieure & INRIA, Paris

Laurent Mauborgne∗,‡

École normale supérieure, Paris & IMDEA Software, Madrid

Antoine Miné∗

École normale supérieure & CNRS, Paris

Xavier Rival∗

École normale supérieure & INRIA, Paris

The validation of software checks informally (e.g., by code reviews or tests) the conformance of the
software executions to a specification. More rigorously, the verification of software proves formally the con-
formance of the software semantics (that is, the set of all possible executions in all possible environments) to a
specification. It is of course difficult to design a sound semantics, to get a rigorous description of all execution
environments, to derive an automatically exploitable specification from informal natural language require-
ments, and to completely automatize the formal conformance proof (which is undecidable). In model-based
design, the software is often generated automatically from the model so that the certification of the software
requires the validation or verification of the model plus that of the translation into an executable software
(through compiler verification or translation validation). Moreover, the model is often considered to be the
specification, so there is no specification of the specification, hence no other possible conformance check.
These difficulties show that fully automatic rigorous verification of complex software is very challenging and
perfection is impossible.

We present abstract interpretation1 and show how its principles can be successfully applied to cope with
the above-mentioned difficulties inherent to formal verification.

• First, semantics and execution environments can be precisely formalized at different levels of abstraction,
so as to correspond to a pertinent level of description as required for the formal verification.

• Second, semantics and execution environments can be over-approximated, since it is always sound to
consider, in the verification process, more executions and environments than actually occurring in real
executions of the software. It is crucial for soundness, however, to never omit any of them, even rare
events. For example, floating-point operations incur rounding (to nearest, towards 0, plus or minus
infinity) and, in the absence of precise knowledge of the execution environment, one must consider the

∗École normale supérieure, Département d’informatique, 45 rue d’Ulm, 75230 Paris cedex 05, First.Last@ens.fr.
†Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street New York, N.Y. 10012-1185,

co o ysu u@t ue.s.np dc .
‡Fundación IMDEA Software, Facultad de Informática (UPM), Campus Montegancedo, 28660-Boadilla del Monte, Madrid,

Spain.

1 of 2

American Institute of Aeronautics and Astronautics

AIAA Infotech@Aerospace 2010 
20 - 22 April 2010, Atlanta, Georgia

AIAA 2010-3385

Copyright © 2010 by Patrick Cousot. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.


	Current Disc (4)
	Welcome
	Conference Listing
	View Full Paper on Disc 4
	IAA TOC (by TITLE)
	IAA TOC (by NUMBER)
	All Meetings This Year TOC (by TITLE)
	All Meetings This Year TOC (by NUMBER)

	Disc First Loaded (Click to Display Number of Disc First Loaded)
	Welcome
	Conference Listing
	All Meetings This Year TOC (by TITLE)
	All Meetings This Year TOC (by NUMBER)

	Search



