
A

Theories, Solvers and Static Analysis by Abstract Interpretation

Patrick Cousot, Courant Institute of Mathematical Sciences, New York University and École Normale Supérieure &
Inria, Paris
Radhia Cousot, École Normale Supérieure & Inria, Paris and Centre National de la Recherche Scientifique, Paris
Laurent Mauborgne, Instituto Madrileño de Estudios Avanzados, Madrid

The algebraic/model theoretic design of static analyzers uses abstract domains based on represen-
tations of properties and pre-calculated property transformers. It is very efficient. The logical/proof
theoretic approach uses SMT solvers/theorem provers and computation of property transformers
on-the-fly. It is very expressive. We propose to unify both approaches, so that they can be com-
bined to reach the sweet spot best adapted to a specific application domain in the precision/cost
spectrum. We first give a new formalization of the proof theoretic approach in the abstract inter-
pretation framework, introducing a semantics based on multiple interpretations to deal with the
soundness of such approaches. Then we describe how to combine them with any other abstract
interpretation-based analysis using an iterated reduction to combine abstractions. The key obser-
vation is that the Nelson-Oppen procedure, which decides satisfiability in a combination of logical
theories by exchanging equalities and disequalities, computes a reduced product (after the state is
enhanced with some new “observations” corresponding to alien terms). By abandoning restrictions
ensuring completeness (such as disjointness, convexity, stably-infiniteness, or shininess, etc) we can
even broaden the application scope of logical abstractions for static analysis (which is incomplete
anyway).

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Formal methods, validation, as-
sertion checkers; D.3.1 [Programming Languages]: Formal Definitions and Theory—Semantics; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about Programs—Mechanical verification, assertions, invari-
ants; F.3.2 [Logics and Meaning of Programs]: Semantics of Programming Languages—Program analysis

General Terms: Languages, Performance, Reliability, Theory, Verification

Additional Key Words and Phrases: Abstract Interpretation, Decision Procedures, Program Logics, Program Verification,
SAT Modulo Theory, SMT solver, Semantics, Static Analysis, Theorem Proving

1. INTRODUCTION

Program verification, where the inductive argument necessary for the proof is either provided by
the end-user or by refinement of the specification, typically use SMT solvers or theorem provers
[Bradley and Manna 2007]. Recent progress in such techniques allowed their exploitation for static
analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], (where the
inductive argument necessary for the proof is computed directly (e.g. by elimination) or iteratively
with convergence acceleration by widening/narrowing, using logical abstract domains [Tiwari and
Gulwani 2007; Gulwani et al. 2008]. But, because of efficiency restrictions of SMT solvers and
theorem provers, these analyzers hardly scale up beyond small programs. Moreover, because of ef-
fectiveness restrictions of SMT solvers and theorem provers, their soundness proofs rest on a math-

– Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
– École normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, Paris, France
– Fundación IMDEA Software, Facultad de Informática (UPM), Campus Montegancedo, 28660-Boadilla del Monte,,
Madrid, Spain
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Patrick Cousot et al.

ematical semantics that significantly differs from the implementation semantics of the programming
language. For example, the theory of integer arithmetic is considered instead of modular arithmetic
on 32 or 64 bits, or the theories of reals or rationals are considered instead of floats. It follows that
the static analysis is unsound for the machine semantics. Of course, modular arithmetic could be en-
coded with integer arithmetic and floats with rationals or bitwise, but then the performance of SMT
solvers and theorem provers would be significatively degraded. On the other end, static analyzers
such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] that are based on algebraic abstractions
of the machine semantics do not have such scalability, efficiency and soundness limitations. How-
ever, their expressiveness is limited by that of their abstract domains. It is therefore interesting not
only to use SMT solvers and theorem provers in logical abstract domains but to combine algebraic
and logical abstract interpretations to get the best of both worlds i.e. scalability, expressiveness,
natural interface with the end-user using logical formulæ, and soundness with respect to the ma-
chine semantics. The proposed combination is based on the iterated reduced product [Cousot and
Cousot 1979c], which is commonly used in algebraic abstract interpreters (e.g. in Astrée [Cousot
et al. 2008]) while logical abstract interpreters use the Nelson-Oppen procedure [Nelson and Op-
pen 1979] to combine (disjoint, convex, stably-infinite) theories. The key new idea is to show that
the Nelson-Oppen procedure computes a reduced product in an observational semantics, so that
algebraic and logical abstract interpretations can naturally be combined in a classical way using a
reduced product on this observational semantics. The main practical benefit is that reductions can
be performed within logical abstract domains, within algebraic abstract domains, and also between
the logical and the algebraic abstract domains, including the case of abstractions evolving during
the analysis.

We recall in section 2 the syntax, interpretation, satisfiability, validity, decidability, and com-
parison of first-order logical theories. In section 3, we define the the mono-interpreted and multi-
interpreted concrete semantics of programs [Cousot et al. 2010]. Section 4 introduces the basic
notions of abstract interpretation. Section 5 suggests possible abstractions of the multi-interpreted
semantics of programs. Section 6 defines the multi-interpreted semantics of first-order formulæ
and the axiomatic semantics of programs modulo a multi-interpretation, a necessary concept to de-
scribe the soundness and relative precision of the logical abstract domains defined in section 7.
Next section 8 introduces observational semantics, which is a new construction generalizing static
analysis practices and is necessary to describe the first step of the Nelson-Oppen procedure in the
abstract interpretation framework. Section 9 recalls the notions of Cartesian and reduced product.
Section 10 introduces iterated reduction, which can be used to implement the reduced product by
reduction of the Cartesian product. In particular section 10.3 contains new incompleteness results
on pairwise reductions and sufficient conditions for completeness. Then section 11 is focused on the
Nelson-Oppen procedure and the links with the abstract interpretation. Finally, section 12 develops
new methods to combine classical abstract interpretation and theorem provers. A comparison with
related work is provided in section 13, and the conclusion in section 14 proposes future work.

2. TERMINOLOGY FOR FIRST-ORDER LOGIC, THEORIES, INTERPRETATIONS AND MODELS

We use classical set-theoretical and predicate calculus notations [Monk 1969], see also [Chang and
Keisler 1990; Mendelson 1997; Poizat 2000].

2.1. First-Order Logic

The set F(x, f ,p) of first-order formulæ on variables x and a signature 〈f , p〉 (where f are the
function symbols, and p the predicate symbols such that f ∩ p = ∅), is defined as:
x, y, z, . . . ∈ x variables

a, b, c, . . . ∈ f0 constants

f, g, h, . . . ∈ fn, f ,
⋃
n>0

fn function symbols of arity n > 1

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:3

t ∈ T(x, f) t ::= x | c | f(t1, . . . , tn) terms

p, q, r, . . . ∈ pn, p0 , {ff, tt}, p ,
⋃

n>0 pn predicate symbols of arity n > 0,

a ∈ A(x, f ,p) a ::= ff | p(t1, . . . , tn) | ¬a atomic formulæ

ϕ ∈ C(x, f ,p) ϕ ::= a | ϕ ∧ ϕ clauses in simple conjunctive nor-
mal form

e ∈ E(x, f ,p) , T(x, f) ∪C(x, f ,p) program expressions

Ψ ∈ F(x, f ,p) Ψ ::= a | ¬Ψ | Ψ ∧ Ψ | ∃x : Ψ quantified first-order formulæ

In first-order logics with equality, there is a distinguished predicate = (t1, t2) which we write t1 = t2.

2.2. Theories

The set ~xΨ of free variables of a formula Ψ is defined inductively as the set of variables in the
formula that are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [Chang and Keisler 1990] (called the theorems
of the theory) and a signature, which must contain at least all the predicates and function symbols
that appear in the theorems. The language of a theory is the set of quantified first-order formulæ
that contain no predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The allowed meanings are those that make all sentences of the theory
true.

2.3. Interpretations

This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature 〈f , p〉 is the pair 〈IV, Iγ〉 such that

— IV is a non-empty set of values,
— ∀c ∈ f0 : Iγ(c) ∈ IV and ∀n > 1 : ∀f ∈ fn : Iγ(f) ∈ In

V
→ IV interpret functions, and

— ∀n > 0 : ∀p ∈ pn : Iγ(p) ∈ In
V
→B interprets predicates,

where B , {false, true} are the Booleans. Let I be the class of all such interpretations I. In a given
interpretation I ∈ I, an environment 1 is a function from variables to values

η ∈ RI , x→ IV environments

We note η[x← v] for the assignment of v to x in η such that η[x← v](x) , v and η[x← v](y) ,
η(y) when x , y.

An interpretation I and an environment η satisfy a formula Ψ, written I |=η Ψ, in the following
way:

I |=η a , JaKIη I |=η Ψ ∧ Ψ′ , (I |=η Ψ) ∧ (I |=η Ψ′)
I |=η ¬Ψ , ¬(I |=η Ψ) I |=η ∃x : Ψ , ∃v ∈ IV : I |=η[x←v] Ψ

where the value/evaluation JaKIη ∈ B of an atomic formula a ∈ A(x, f ,p) in environment η ∈ RI
is

JffKIη , false
Jp(t1, . . . , tn)KIη , Iγ(p)(Jt1KIη, . . . , JtnKIη), where Iγ(p) ∈ In

V
→B

J¬aKIη , ¬JaKIη, where ¬true = false, ¬false = true

and the value/evaluation JtKIη ∈ IV of the term t ∈ T(x, f) in environment η ∈ RI is

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Patrick Cousot et al.

JxKIη , η(x)
JcKIη , Iγ(c), where Iγ(c) ∈ IV

Jf(t1, . . . , tn)KIη , Iγ(f)(Jt1KIη, . . . , JtnKIη), where Iγ(f) ∈ IVn→ IV, n > 1

In addition, in a first-order logic with equality the satisfaction of equality is always

I |=η t1 = t2 , Jt1KIη =I Jt2KIη

where the equality relation =I is the unique reflexive, symmetric, antisymmetric, and transitive
relation on IV.

2.4. Models

An interpretation I ∈ I is said to be a model of Ψ when ∃η : I |=η Ψ (i.e. I makes Ψ true). An
interpretation is a model of a theory iff it is a model of all the theorems of the theory (i.e. makes true
all theorems of the theory). The class of all models of a theory T is

M(T) , {I ∈ I | ∀Ψ ∈ T : ∃η : I |=η Ψ}

= {I ∈ I | ∀Ψ ∈ T : ∀η : I |=η Ψ}

since if Ψ is a sentence and if there is a I and a η such that I |=η Ψ, then for all η′, I |=η′ Ψ.
Quite often, the set of sentences of a theory is not defined extensively, but using a (generally

finite) set of axioms that generates the set of theorems of the theory by implication. A theory is said
to be deductive iff it is closed by deduction ∀Ψ ∈ T : ∀Ψ′ ∈ F(x, f ,p), Ψ ⇒ Ψ′ implies Ψ′ ∈ T ,
that is all theorems that are true in all models of the theory are in the theory.

Let us recall that, by Gödel’s compactness theorem, a first-order theory has a model if and only if
every finite subset of it has a model and, by the Löwenheim-Skolem-Tarski theorem, no countable
first-order theory with an infinite model can have exactly one model up to isomorphism [Poizat
2000].

The theory T(I) of an interpretation I is the set T(I) , {Ψ | ∃η : I |=η Ψ} of sentences Ψ such that
I is a model of Ψ. Such a theory is trivially deductive and satisfiable (i.e. has at least one model).

2.5. Satisfiability and Validity (Modulo Interpretations and Theory)

A formula Ψ is satisfiable (with respect to the class I of interpretations defined in section 2.3)
if and only if there exists an interpretation I and an environment η that make the formula true
(satisfiable(Ψ) , ∃ I ∈ I : ∃η : I |=η Ψ). A formula is valid if all such interpretations make the
formula true (valid(Ψ) , ∀I ∈ I : ∀η : I |=η Ψ). The negations of the concepts are unsatisfiability
(¬satisfiable(Ψ) = ∀I ∈ I : ∀η : I |=η ¬Ψ) and invalidity (¬valid(Ψ) = ∃ I ∈ I : ∃η : I |=η ¬Ψ). So
Ψ is satisfiable iff ¬Ψ is invalid and Ψ is valid iff ¬Ψ is unsatisfiable.

These notions can be put in perspective in satisfiability and validity modulo interpretations I ∈
℘(I), where we only consider interpretations I ∈ I. So satisfiableI(Ψ) , ∃ I ∈ I : ∃η : I |=η Ψ and
validI(Ψ) , ∀I ∈ I : ∀η : I |=η Ψ (also denoted I |= Ψ).

The case I = M(T) corresponds to satisfiability and validity modulo a theory T , where we only
consider interpretations I ∈ M(T) that are models of the theory (i.e. make true all theorems of the
theory). So satisfiableT (Ψ) , satisfiableM(T)(Ψ) = ∃ I ∈ M(T) : ∃η : I |=η Ψ and validT (Ψ) ,
validM(T)(Ψ) = ∀I ∈ M(T) : ∀η : I |=η Ψ (also denoted T |= Ψ).

The four concepts can be extended to theories: a theory is satisfiable 2 (valid) if one (all) of the
interpretations is a (are) model(s) of the theory i.e. M(T) , ∅ (resp. M(T) = I), and a theory is
unsatisfiable (invalid) if all (one) of the interpretations make(s) one of the theorems of the theory
false.

2 Model theorists often use “consistent” as a synonym for “satisfiable”.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:5

2.6. Decidable Theories

A theory T is decidable iff there is an algorithm decideT ∈ F(x, f ,p)→B that can decide in finite
time if a given formula is in the theory or not, ∀Ψ ∈ F(x, f ,p) : decideT (Ψ) , (Ψ ∈ T).

Decidable theories provide approximations for the satisfiability problem: a formula Ψ is satisfi-
able iff there is an interpretation I and an environment η such that I |=η Ψ is true (satisfiable(Ψ) ,
∃ I ∈ I : ∃η : I |=η Ψ). So a formula Ψ with free variables ~xΨ is satisfiable iff the sentence ∃~xΨ : Ψ
obtained from the formula by existentially quantifying the free variables is satisfiable. So if we
know that this sentence is in a satisfiable theory, then the original formula is also satisfiable and, in
addition, we know that it is satisfiable for all models of that theory.

decideT (∃~xΨ : Ψ) ⇒ satisfiableT (Ψ) (when T is satisfiable) (1)

Proof of (1).

decideT (∃~xΨ : Ψ)
⇔ (∃~xΨ : Ψ) ∈ T Hdef. decision procedureI
⇒ ∀I ∈ M(T) : ∃η : I |=η ∃~xΨ : Ψ Hdef.M(T) , {I ∈ I | ∀Ψ′ ∈ T : ∃η′ : I |=η′ Ψ′}I
⇔ ∀I ∈ M(T) : ∃η : I |=η Ψ Hdef. I |=η ∃x : Ψ in section 2.3I
⇒ ∃ I ∈ M(T) : ∃η : I |=η Ψ HT is satisfiable soM(T) , ∅I
⇔ satisfiableT (Ψ) Hdef. satisfiableT (Ψ) , ∃ I ∈ M(T) : ∃η : I |=η ΨI

So the problem of satisfiability modulo a theory T can be approximated by decidability in T in the
sense that if the decision is true then the formula is satisfiable, otherwise we don’t know in general.

The same result holds for validity:
decideT (∀~xΨ : Ψ) ⇒ validT (Ψ) (2)

Proof of (2).

decideT (∀~xΨ : Ψ)
⇔ (∀~xΨ : Ψ) ∈ T Hdef. decision procedureI
⇒ ∀I ∈ M(T) : ∃η : I |=η ∀~xΨ : Ψ Hdef.M(T) , {I ∈ I | ∀Ψ′ ∈ T : ∃η′ : I |=η′ Ψ′}I
⇔ ∀I ∈ M(T) : ∀η : I |=η ∀~xΨ : Ψ

Hsince ∀~xΨ : Ψ has no free variable, I |=η ∀~xΨ : Ψ does not depend on ηI
⇔ ∀I ∈ M(T) : ∀η : I |=η Ψ Hdef. I |=η ∀x : Ψ in section 2.3I
⇔ validT (Ψ) HvalidT (Ψ) , ∀I ∈ M(T) : ∀η : I |=η ΨI

It is possible to obtain implications in the other direction so that we solve exactly the validity or
satisfiability problem, when the theory is deductive.

validT (Ψ) ⇔ decideT (∀~xΨ : Ψ) (when T is decidable and deductive) (3)

Proof of (3). T is deductive, hence all valid sentences are theorems of the theory, so if validT (Ψ)
then ∀~xΨ : Ψ is a valid sentence of T and so it is in T .

From that, we can obtain satisfiability of any formula:
satisfiableT (Ψ) ⇔ ¬

(
decideT (∀~xΨ : ¬Ψ)

)
(when T is decidable and deductive) (4)

Proof of (4).
satisfiableT (Ψ)

⇔ ¬ (validT (¬Ψ)) Hdef. satisfiableT and validT in section 2.5I
⇔ ¬

(
decideT (∀~xΨ : ¬Ψ)

)
Hsince T is decidable and deductiveI

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Patrick Cousot et al.

But in many tools, the decision of formulæ with universal quantifiers is problematic. If we want
an exact resolution of satisfiability using just existential quantifiers, we need stronger hypotheses.
One sufficient condition is that the theory is complete. In the context of classical first-order logic, a
theory can be defined to be complete if, for all sentences Ψ in the language of the theory, either Ψ
is in the theory or ¬Ψ is in the theory.

satisfiableT (Ψ) ⇔
(
decideT (∃~xΨ : Ψ)

)
(when T is decidable and complete) (5)

Proof of (5). Assume T is complete. Then, either ∃~xΨ : Ψ ∈ T , in which case decideT (∃~xΨ :
Ψ) returns true and we conclude satisfiableT (Ψ). Or ¬(∃~xΨ : Ψ) ∈ T so decideT (¬(∃~xΨ : Ψ))
returns true. But if a sentence is in the theory, that means that for all models of that theory, the
sentence is true, so:

¬decideT (∃~xΨ : Ψ)
⇔ decideT (¬(∃~xΨ : Ψ)) HT completeI
⇔ ¬(∃~xΨ : Ψ) ∈ T Hdef. decision procedureI
⇒ ∀I ∈ M(T) : ∃η : I |=η ¬(∃~xΨ : Ψ) Hdef.M(T ′) , {I ∈ I | ∀Ψ′ ∈ T ′ : ∃η′ : I |=η′ Ψ′}I
⇒ ∀I ∈ M(T) : ∀η : I |=η ¬(∃~xΨ : Ψ) H¬(∃~xΨ : Ψ) has no free variableI
⇔ ∀I ∈ M(T) : ¬(∃η : I |=η ∃~xΨ : Ψ) Hdef. ¬I
⇔ ∀I ∈ M(T) : ¬(∃η : I |=η Ψ) Hdef. I |=η ∃x : Ψ in section 2.3I
⇔ ¬(∃ I ∈ M(T) : ∃η : I |=η Ψ) Hdef. ¬I
⇔ ¬satisfiableT (Ψ) Hdef. satisfiableT (Ψ) , ∃ I ∈ M(T) : ∃η : I |=η ΨI

It might be the case that we only need the decision procedure to be equivalent to satisfiability for
a subset of the language of the theory. Then the same proof can be applied. Partial completeness
can be defined in the following way: a theory is partially complete for a set A of formulæ iff for all
Ψ ∈ A, either Ψ is in the theory or ¬Ψ is in the theory.

Decision procedures will be most useful to provide approximations of implication. In general,
however, one needs to know if an implication is valid, and most decision procedures can only decide
existential sentences. Here is the way to use decision procedures to approximate the validity of
implication:

decideT (∃~xΨ∧¬Ψ′ : Ψ ∧ ¬Ψ′) ⇒ ¬validT (∀~xΨ ∪ ~xΨ′ : Ψ⇒ Ψ′)
(⇔ when T is complete for ∃~xΨ∧¬Ψ′ : Ψ ∧ ¬Ψ′) (6)

Proof of (6).

validT (∀~xΨ ∪ ~xΨ′ : Ψ⇒ Ψ′)
, ∀I ∈ M(T) : ∀η : I |=η ∀~xΨ ∪ ~xΨ′ : Ψ⇒ Ψ′ Hdef. validity modulo T I
⇔ ¬(∃ I ∈ M(T) : ∃η : I |=η ∃~xΨ ∪ ~xΨ′ : Ψ ∧ ¬Ψ′) Hdef. negationI
⇔ ¬(satisfiableT (Ψ ∧ ¬Ψ′)) Hdef. satisfiability modulo T I
⇒ ¬decideT (∃~xΨ∧¬Ψ′ : Ψ ∧ ¬Ψ′)

Hwhen T is decidable and satisfiable. Equivalence ⇔ holds when T is complete for
∃~xΨ∧¬Ψ′ : Ψ ∧ ¬Ψ′I

2.7. Comparison of Theories

Except for decision procedures, theories are equivalent when they have the same models. A theory
T1 is more general than a theory T2 when all models of T2 are models of T1 i.e.M(T2) ⊆ M(T1).
A sufficient condition for T1 to be more general than T2 is T1 ⊆ T2 (since T1 ⊆ T2 implies
M(T2) ⊆ M(T1)). The converse holds for deductive theories. The most general theory for a given

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:7

signature is the theory {tt} (or equivalently its deductive closure), also called the theory of logical
validities. If a theory T1 is more general than T2, then we have, for all formulæ Ψ:

satisfiableT2 (Ψ)⇒ satisfiableT1 (Ψ), and validT1 (Ψ)⇒ validT2 (Ψ)

A consequence is that a decision procedure for a theory can be used to approximate satisfiability
in a more general theory. Another consequence is that the implication is less often true with a more
general theory.

The combination of two theories T1 and T2 is T1 ∪ T2. In other words, the combination of two
theories is the theory that satisfy the theorems of both theories. Thus, the models of the combina-
tion of two theories are models for each of them. The combination of two satisfiable theories is not
always satisfiable: it is possible that no model of the first theory satisfies all theorems of the second
one. In [Tinelli and Harandi 1996, Cor. 3.3], a sufficient condition for the combination of two sat-
isfiable theories to be satisfiable is described: if the two theories have disjoint signatures 3 and they
both have an infinite model, then their combination is satisfiable.

3. CONCRETE SEMANTICS

Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with different memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in sections 3.2 and 3.3.

3.1. Programs

We let P(x, f ,p) be the set of programs P over a signature 〈x, f , p〉.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature 〈x, f , p〉. Programs are built out of basic expressions e ∈ E(x, f ,p)
and imperative commands including assignments x := e and tests/guards ϕ appear in conditionals
and loops whose syntax, as well as that of programs, is irrelevant.

P, . . . ∈ P(x, f ,p) P ::= x := e | ϕ | . . . programs

Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on different machines or may
differ from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics

A mono-interpreted concrete semantics C
=
JPK of programs P as defined by a program interpretation

= ∈ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties 〈P=, ⊆〉 and a concrete
transformer F

=
JPK. We define postfp≤ f ,

{
x
∣∣∣ f (x) ≤ x

}
.

R= concrete observables4

P= , ℘(R=) concrete properties 5

F
=
JPK ∈ P=→P= concrete transformer of program P

C
=
JPK , postfp⊆ F

=
JPK ∈ ℘(P=) concrete semantics of program P.

3 F(x, f1,p1) and F(x, f2,p2) such that (f1∪p1)∩(f2∪p2) = {=} and all equalities in common have the same interpretation.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Patrick Cousot et al.

Example 3.2. In the context of [Floyd 1967]’s method to prove invariance properties for imper-
ative languages with program interpretation = ∈ I, we can take a concrete state to be a function
from variables 6 to elements in the set =V, so that properties, that is global invariants, are sets of
such functions.

R= , x→=V concrete environments
P= , ℘(R=) concrete invariance properties

The concrete transformer F
=
JPK of program P defines the (set-theoretic version of the) verification

condition F
=
JPK(S) ⊆ S for S ∈ R= to be a program inductive invariant (assigning possible values to

program variables at each program point). This concrete transformer F
=
JPK is defined by structural

induction on the program P in terms of the complete lattice operations 〈℘(R=), ⊆, ∅, R=, ∪, ∩〉 and
the following local invariance transformers

f=Jx := eKP , {η[x← JeK
=
η] | η ∈ P)} Floyd’s assignment post-condition

p=JϕKP , {η ∈ P | JϕK
=
η = true} test/guards

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only that
least fixpoint and we do not need to compute the entire set of post-fixpoints (see also section 4.3).

Example 3.3 (Least fixpoint concrete semantics). 〈P=, ⊆, ∅, R=, ∪, ∩〉 is a complete lat-
tice so if the transformer F

=
JPK is increasing then, by [Tarski 1955], we have lfp⊆ F

=
JPK =⋂

postfp⊆ F
=
JPK ∈ postfp⊆ F

=
JPK which is the strongest post-fixpoint. Notice that all {P ∈ P= |

lfp⊆ F
=
JPK ⊆ P} are all valid program properties but only the elements of postfp⊆ F

=
JPK are induc-

tive properties as needed for proofs. This is the case in example 3.2, where lfp⊆ F
=
JPK defines the

strongest invariant for the Floyd program proof method [Floyd 1967].

Example 3.4. The program P , x=1; while true {x=incr(x)} with the arithmetic interpre-
tation = on integers =V = Z has loop invariant lfp⊆ F

=
JPK where F

=
JPK(X) , {η ∈ R= | η(x) =

1} ∪ {η[x← η(x) + 1] | η ∈ X}. The increasing chain of iterates F
=
JPKn = {η ∈ R= | 0 < η(x) < n}

has the limit lfp⊆ F
=
JPK =

⋃
n>0 F

=
JPKn = {η ∈ R= | 0 < η(x)}.

If the concrete transformer of a program has no least fixpoint, the entire set of post-fixpoints is
defined by the concrete semantics although only one of them is needed for a given proof (because
the concrete semantics defines all the possible ways to make proofs).

3.3. Multi-Interpreted Concrete Semantics

A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I ∈ ℘(I). Then a program property in PI provides, for each interpretation in I, a
set of program observables satisfying that property in that interpretation.

RI program observables under the interpretation I ∈ I
PI , I ∈ I 67→ ℘(RI) interpreted properties under the set of interpretations I
' ℘({〈I, η〉 | I ∈ I ∧ η ∈ RI}) 7

The multi-interpreted semantics of a program P in the context of I is

4 Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
5 A property is understood as the set of elements satisfying this property.
6 maybe including the program counter etc.
7 A partial function f ∈ A 9 B with domain dom(f) ∈ ℘(A) is understood as the relation {〈x, f (x)〉 ∈ A × B | x ∈ dom(f)}
and maps x ∈ A to f (x) ∈ B, written x ∈ A 67→ f (x) ∈ B or x ∈ A 67→ Bx when ∀x ∈ A : f (x) ∈ Bs ⊆ B.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:9

F
I
JPK ∈ PI→PI multi-interpreted concrete transformer of program P
, λ P ∈ PI . λ I ∈ I . FIJPK(P(I))

C
I
JPK ∈ ℘(PI) multi-interpreted concrete semantics

, postfp⊆̇ F
I
JPK

where ⊆̇ is the pointwise subset ordering.

Example 3.5. In the context of invariance properties for imperative languages with multiple
program interpretations I ∈ ℘(I), example 3.2 can be generalized by taking

RI , x→ IV concrete interpreted environments for interpretation I ∈ I.

The multi-interpreted concrete semantic transformer F
I
JPK ∈ PI 7→ PI for the invariance semantics

is defined by structural induction on the program P in terms of the complete lattice operations 〈PI,
⊆, ∅, >I, ∪, ∩〉where>I , {〈I, η〉 | I ∈ I∧η ∈ RI} and the following local invariance transformers

fIJx := eKP , {〈I, η[x← JeKIη]〉 | I ∈ I ∧ 〈I, η〉 ∈ P)} assignment post-condition
bIJx := eKP , {〈I, η〉 | I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ P} assignment pre-condition (7)

pIJϕKP , {〈I, η〉 ∈ P | I ∈ I ∧ JϕKIη = true} test.

In particular for I = {=}, we get the transformers of example 3.2, up to the isomorphism ι=(P) ,
{〈=, η〉 | η ∈ P} with inverse ι−1

=
(Q) , {η | 〈=, η〉 ∈ Q}. Observe that the transformers are complete

morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer F

I
JPK for the invariance semantics has the same properties.

The natural ordering to express abstraction (or precision) on multi-interpreted semantics is the
subset ordering, which gives a lattice structure to the set of multi-interpreted properties: a property
P2 is more abstract than P1 when P1 ⊂ P2, meaning that P2 allows more behaviors for some in-
terpretations, and maybe that it allows new interpretations. Following that ordering, we can express
systematic abstractions of the multi-interpreted semantics in section 5. But first we will recall the
foundations of static analysis of program properties by abstract interpretation in section 4.

4. BACKGROUND ON ABSTRACT INTERPRETATION

4.1. Abstract Domains

In static analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c],
abstract domains are used to encapsulate abstract program properties and abstract operations (in-
cluding the logical lattice structure, elementary transformers, convergence acceleration operators,
etc.).

Example 4.1. Typically, an abstract domain for an imperative language would be a tuple

〈A,v,⊥,>,t,u,
`
,
a
, f̄, b̄, p̄, . . .〉

where

P,Q, . . . ∈ A abstract properties
v ∈ A × A→B abstract partial order 8

⊥,> ∈ A infimum, supremum (∀P ∈ A : ⊥ v P v >)
t,u,

`
,
a
∈ A × A→A abstract join, meet, widening, narrowing

. . .
f̄ ∈ (x ×E(x, f ,p))→A→A abstract forward assignment transformer
b̄ ∈ (x ×E(x, f ,p))→A→A abstract backward assignment transformer
p̄ ∈ C(x, f ,p)→A→A abstract condition transformer.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Patrick Cousot et al.

A procedural language would include projection (to handle procedure calls) and the analysis of
a higher-order functional language would require the domain to provide an operation to abstract
partial application of a function to a subset of its arguments.

4.2. Abstract Semantics

The abstract semantics CJPK ∈ ℘(A) of a program P is assumed to be given as a set of post-
fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfpv FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK ∈ A→A is the abstract transformer of program P built out of the primi-
tives⊥,>,t,u,

`
,
a
, f̄, b̄, p̄, . . . 9. As was the case for the concrete semantics, we preferably use least

fixpoints where possible.

4.3. Soundness of Abstract Domains

Soundness relates abstract properties to concrete properties using a function γ such that

γ ∈ A 1
→P= concretization 10

The soundness of abstract domains, is defined as, for all P,Q ∈ A,

(P v Q)⇒ (γ(P) ⊆ γ(Q)) order γ(⊥) = ∅ infimum

γ(P t Q) ⊇ (γ(P) ∪ γ(Q)) join γ(>) = >= supremum 11

...

Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization γ. So, this essentially consists in choosing a set of concrete properties γ[A] (where
γ[X] , {γ(x) | x ∈ X}) that can be exactly represented in the abstract while the other concrete
properties P ∈ P= \ γ[A] cannot and so must be over-approximated by some P ∈ A such that
P ⊆ γ(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are preferred.

4.4. Soundness of Abstract Semantics

Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics
CJPK ∈ ℘(A) for an abstract domain 〈A, v〉 of a program P is sound with respect to a concrete
semantics CJPK ∈ ℘(C) for a concrete domain 〈C, 6〉 and an increasing concretization γ ∈ A 7→ C
whenever

∀P ∈ A : (∃C ∈ CJPK : C v P)⇒ (∃C ∈ CJPK : C 6 γ(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

∀P ∈ A : (∃C ∈ CJPK : C 6 γ(P))⇒ (∃C ∈ CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).

Theorem 4.3 (Compositionality of abstractions). The composition of sound (resp. complete)
abstractions is sound (resp. complete).

8 If v is a pre-order then A is assumed to be quotiented by the equivalence relation ≡ , v ∩ v−1.
9 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all diffi-
culties.
10 Given posets 〈L, v〉 and 〈P, 6〉, we let L 1

→P to be the set of increasing (isotone, monotone, . . .) maps f of L into P i.e.
∀x, y ∈ L : x v y implies f (x) 6 f (y).
11 For example, >= , R= in the context of invariance properties for imperative languages in example 3.2.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:11

Proof. Assume (8) respectively for A1, v1, C1JPK and A2, v2, C2 with γ21 ∈ A2
1
→A1 and C2JPK

and A3, v3, C3JPK with γ32 ∈ A3
1
→A2. For all P ∈ A3, we have

(∃C3 ∈ C3JPK : C3 v3 P)
⇒ (∃C2 ∈ C2JPK : C2 v2 γ32(P)) Hby (8) for A2, v2, C2JPK and A3, v3, C3JPK with γ32I
⇒ (∃C1 ∈ C1JPK : C1 v1 γ21 ◦ γ32(P)) Hby (8) for A1, v1, C1JPK and A2, v2, C2JPK with γ21I

proving (8) for A1, v1, C1JPK and A3, v3, C3JPK with γ21 ◦ γ32. The proof for completeness is
similar.

It follows from theorem 4.3 that the soundness (resp. completeness) of an abstract semantics with
respect to the concrete semantics of section 3 can be proved directly or using the composition of
intermediate abstractions.

When the concrete and abstract semantics are defined in post-fixpoint form, the soundness of the
abstract semantics follows from the soundness of the abstraction in section 4.3 and the soundness
of the abstract transformer [Cousot and Cousot 1977; Cousot and Cousot 1979c]

∀P ∈ A : FJPK ◦ γ(P) 6 γ ◦ FJPK(P)12 (9)

Theorem 4.4 (Soundness of an abstract post-fixpoint semantics). If CJPK , postfp6 FJPK,
CJPK , postfpv FJPK and γ : A→C is increasing, then (9) implies (8).

Proof. For all P ∈ A, we have

∃C ∈ CJPK : C v P
⇒ ∃C : FJPK(C) v C ∧C v P Hdef. CJPK , postfpv FJPK = {P | FJPK(P) v P}I
⇒ ∃C : γ(FJPK(C)) 6 γ(C) ∧ γ(C) 6 γ(P) Hγ increasingI
⇒ ∃C : FJPK(γ(C)) 6 γ(C) ∧ γ(C) 6 γ(P) Hby hypothesis (9), def. ◦, and transitivityI
⇒ ∃C : FJPK(C) 6 C ∧C 6 γ(P) Hchoosing C = γ(C)I
⇒ ∃C ∈ CJPK : C 6 γ(P) Hdef. CJPK , postfp6 FJPK , {C | FJPK(C) 6 C}I

Example 4.5. Continuing example 3.2 in the context of invariance properties for imperative lan-
guages, the soundness of the abstract transformer generally follows from the following local sound-
ness conditions on abstract transformers, for all P ∈ A,

γ(f̄Jx := eKP) ⊇ f=Jx := eKγ(P) assignment post-condition

γ(b̄Jx := eKP) ⊇ b=Jx := eKγ(P) assignment pre-condition

γ(p̄JϕKP) ⊇ p=JϕKγ(P) test/guard

Observe that soundness is preserved by composition of increasing concretizations.

4.5. Iterates with Widening

When the abstract domain does not satisfy the ascending chain condition, a widening is needed both
to cope with the absence of infinite disjunctions and to enforce the convergence of iterations to a
post-fixpoint. Let us recall the following definitions and results [Cousot and Cousot 1976; Cousot
and Cousot 1977; Cousot 1978].

Definition 4.6 (Widening). Let 〈A, v〉 be a poset. Then an over-approximating widening
`
∈

A × A 7→ A is such that

12 The composition of functions is defined such that f ◦ g(x) = f (g(x)) where x ∈ dom(g) and g(x) ∈ dom(f).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Patrick Cousot et al.

(a) ∀x, y ∈ A : x v x
`

y ∧ y 6 x
`

y13.

A terminating widening
`
∈ A × A 7→ A is such that

(b) Given any sequence 〈xn, n > 0〉, the sequence y0 = x0, . . . , yn+1 = yn `
xn,

. . . converges, i.e. ∃` ∈ N : ∀n > ` : yn = y` in which case y` is called the limit
of the widened sequence 〈yn, n > 0〉.

Traditionally a widening is considered to be both over-approximating and terminating.

Definition 4.7 (Iterates with widening). The iterates of a transformer FJPK ∈ A 7→ A from the
infimum ⊥ ∈ A with widening

`
∈ A × A 7→ A in the poset 〈A, v〉 are defined by recurrence as

F
0

= ⊥, F
n+1

= F
n

when FJPK(F
n
) v F

n
and F

n+1
= F

n `
FJPK(F

n
) otherwise.

Theorem 4.8 (Limit of the iterates with widening). The iterates in a poset 〈A, v, ⊥〉 of a trans-
former FJPK from the infimum ⊥ with widening

`
converge and their limit is a post-fixpoint of the

transformer.

Proof. The assumption that the iterates diverge (that is ∀n ∈ N : F
n+1
, F

n
) contradicts condi-

tion (b) of definition 4.6. By reductio ad absurdum, the limit F
`

does exist. By definition 4.7, either
FJPK(F

`
) v F

`
or else F

`
= F

`+1
= F

` `
FJPK(F

`
) w FJPK(F

`
), by condition (a) of definition 4.6.

In both cases, F
`
∈ postfpv FJPK.

4.6. Best Abstraction

Let us recall from [Cousot and Cousot 1979c] that if any concrete property P ∈ P= has a best
abstraction in the abstract domain 〈A, v〉, we have a Galois connection 〈P=, ⊆〉 −−−→←−−−α

γ
〈A, v〉 such

that, by definition, ∀P ∈ P= : ∀P ∈ A : α(P) v P ⇔ P ⊆ γ(P). This implies that α(P) is a sound
abstraction of P since P ⊆ γ(α(P)). Moreover α(P) is the best sound abstraction of P since if P is
another sound abstraction of P then P ⊆ γ(P) which implies α(P) v P and so α(P) is more precise
than P in the abstract (and so also in the concrete since γ is increasing). Moreover the abstraction
α preserves existing least upper bounds and so is increasing, i.e. preserves the concrete implication
⊆ and, by duality, γ preserves existing greatest lower bounds and so is increasing, i.e. preserves the
abstract implication v. We write 〈P=, ⊆〉 −−−→−→←−−−−α

γ
〈A, v〉 when α is onto (or equivalently γ is injective

or equivalently α ◦ γ = 1A is the identity).
In case of existence of a best abstraction, γ ◦ α is an upper closure operator (increasing, extensive

and idempotent) characterizing the abstraction (up to isomorphic representations A of the abstract
domain γ ◦ α(P=)). If 〈P=,⊆〉 is a complete lattice then so is its image 〈γ ◦ α(P=),⊆〉 by the an upper
closure operator γ ◦ α [Ward 1942, Th. 4.1], [Monteiro and Ribeiro 1942, Th. 8.2]. Moreover, all
possible best abstractions are, up to concretization, given by the complete lattice of upper closure
operators ordered pointwise on the complete lattice 〈P=, ⊆〉 [Ward 1942, Th. 4.2], [Cousot and
Cousot 1979a, Th. 4.3] (a result extended to CPOs by [Ranzato 1999]).

Given a concrete transformer F
I
JPK ∈ PI → PI the best abstract transformer is FIJPK , α ◦

F
I
JPK ◦ γ which yields 〈P=

1
→P=, ⊆̇〉 −−−−−−−−−−→←−−−−−−−−−−

λ F .α◦F◦γ
λ F . γ◦F◦α

〈A 1
→ A, v̇〉. In practice, the best transformer

may be difficult to compute algorithmically, so that a strict over-approximation, such as FIJPK Ȧ
α ◦ F

I
JPK ◦ γ, has to be used instead.

13Note that in theorem 4.8, only condition ∀y ∈ A : y ∧ y 6 x
`

y is needed.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:13

5. ABSTRACTION OF MULTI-INTERPRETED CONCRETE SEMANTICS

The interpreted concrete semantics of section 3.2 is relative to one interpretation = of the program-
ming language data, functions, and predicates. But the theories used in theorem provers or SMT
solvers can have many different models, corresponding to possible interpretations. In fact, the same
holds for programs: they can be executed on different platforms, and it can be useful to collect all
the possible behaviors, e.g. to provide a more general proof of correctness (e.g. valid for all imple-
mentations according to the considered interpretations). In this case, the multi-interpreted concrete
semantics of section 3.3 is useful.

5.1. Abstractions Between Multi-Interpretations

If we can only compute properties under one interpretation =, as in the case of section 3.2, then we
can approximate a multi-interpreted program saying that we know the possible behaviors when the
interpretation is = and we know nothing (so all properties are possible) for the other interpretations
of the program. On the other hand, if we analyze a program that can only have one possible inter-
pretation with a multi-interpreted property, then we are abstracting in the sense that we add more
behaviors and forget the actual property that should be associated with the program. So, in general,
we have two sets of interpretations, one I is the context of interpretations for the program and the
other I] is the set of interpretations used in the analysis. The relation between the two is a Galois
connection.

Lemma 5.1. 〈PI, ⊆〉 −−−−−−−→←−−−−−−−
α
I→I]

γ
I]→I

〈PI] , ⊆〉 is a Galois connection where

αI→I] (P) , P ∩ PI]

γI]→I(Q) ,
{
〈I, η〉

∣∣∣∣∣∣ I ∈ I ∧ η ∈ RI ∧
(
I ∈ I] ⇒ 〈I, η〉 ∈ Q

) }
Proof. Suppose P ∈ PI and Q ∈ PI] . Then

αI→I] (P) ⊆ Q
⇔ P ∩ PI] ⊆ Q Hdef. αI→I]I
⇔ ∀〈I, η〉 ∈ P ∩ PI] : 〈I, η〉 ∈ Q Hdef. ⊆I
⇔ ∀〈I, η〉 ∈ P : 〈I, η〉 ∈ PI] ⇒ 〈I, η〉 ∈ Q Hdef. ∩I
⇔ ∀〈I, η〉 ∈ P, I ∈ I ∧ η ∈ RI ∧

(
〈I, η〉 ∈ PI] ⇒ 〈I, η〉 ∈ Q

)
HP ∈ PI ' ℘({〈I, η〉 | I ∈ I ∧ η ∈ RI}I

⇔ P ⊆
{
〈I, η〉 | I ∈ I ∧ η ∈ RI ∧

(
〈I, η〉 ∈ PI] ⇒ 〈I, η〉 ∈ Q

)}
Hdef. ⊆I

⇔ P ⊆
{
〈I, η〉

∣∣∣∣∣∣ I ∈ I ∧ η ∈ RI ∧
(
I ∈ I] ⇒ 〈I, η〉 ∈ Q

) }
HPI] ' ℘({〈I, η〉 | I ∈ I] ∧ η ∈ RI}I

⇔ P ⊆ γI]→I(Q) Hdef. γI]→II

Note that if the intersection of I] and I is empty then the abstraction is trivially ∅ for all proper-
ties, and if I ⊆ I] then the abstraction is identity.

Example 5.2. Considering the soundness of transformers defined in section 4.4 for the forward
assignment of section 3.3, we get, for all P] ∈ PI] ,

fIJx := eK ◦ γI]→I(P])

=

{
〈I, η[x← JeKIη]〉

∣∣∣∣ 〈I, η〉 ∈ γI]→I(P])
}

Hdef. fIJx := eKP ,
{
〈I, η[x← JeKIη]〉

∣∣∣ 〈I, η〉 ∈ P)
}
I

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Patrick Cousot et al.

=

{
〈I, η[x← JeKIη]〉

∣∣∣∣∣∣ I ∈ I ∧ η ∈ RI ∧
(
I ∈ I] ⇒ 〈I, η〉 ∈ P]

) }
Hdef. γI]→II

=

{
〈I, η[x← JeKIη]〉

∣∣∣∣∣∣ I ∈ I ∧ η ∈ RI ∧
(
I ∈ I] ⇒ (I ∈ I] ∧ 〈I, η〉 ∈ P])

) }
Hdef.⇒I

⊆

 〈I, η′〉
∣∣∣∣∣∣∣∣ I ∈ I ∧ η′ ∈ RI ∧

(
I ∈ I] ⇒ 〈I, η′〉 ∈

{
η[x← JeKIη]

∣∣∣∣ I ∈ I] ∧ η ∈ RI ∧ 〈I, η〉 ∈ P]
}) 

Hdef. ⊆I

=

{
〈I, η〉

∣∣∣∣∣∣ I ∈ I ∧ η ∈ RI ∧
(
I ∈ I] ⇒ 〈I, η〉 ∈ fI]Jx := eK(P])

) }
Hby defining fI]Jx := eK ∈ PI]

1
→PI] such that

fI]Jx := eKP] ,
{
〈I, η[x← JeKIη]〉

∣∣∣∣ I ∈ I] ∧ η ∈ RI ∧ 〈I, η〉 ∈ P]
}

I
⊆ γI]→I ◦ fI]Jx := eK(P]) Hdef. γI]→II

Observe that fI]Jx := eK and fIJx := eK have exactly the same definition. However, the correspond-
ing post-fixpoint semantics do differ when I] , I since 〈PI] , ⊆〉 , 〈PI, ⊆〉. By changing the order
on the lattice of properties one changes the least fixpoint/post-fixpoint abstract semantics.

5.2. Homogeneous Abstraction of Interpretations

In some cases, we describe the properties of the program without distinguishing the interpretations
in the context of the program. This is the case when expressing properties that should hold for all
interpretations that are possible for the program. This abstraction simply forgets the interpretations
and just keeps the union of all the possible behaviors.

Example 5.3. That is what the Astrée analyzer [Cousot et al. 2005] does when taking all possi-
ble rounding error modes for floating points computations.

The abstraction is described by 〈PI, ⊆〉 −−−−→←−−−−αI

γI
〈∪I∈IRI , ⊆〉 where

αI(P) ,
{
η
∣∣∣ ∃ I ∈ I : 〈I, η〉 ∈ P

}
and γI(E) ,

{
〈I, η〉

∣∣∣ I ∈ I ∧ η ∈ E
}
. (10)

Proof. We have a Galois connection since for all P ∈ PI and E ∈ ∪I∈IRI ,

αI(P) ⊆ E
⇔

{
η
∣∣∣ ∃ I ∈ I : 〈I, η〉 ∈ P

}
⊆ E Hdef. αI(P)I

⇔ ∀η : (∃ I ∈ I : 〈I, η〉 ∈ P)⇒ η ∈ E Hdef. ⊆I
⇔ ∀η : ∀I ∈ I : 〈I, η〉 ∈ P⇒ η ∈ E Hdef.⇒I
⇔ ∀〈I, η〉 ∈ P : I ∈ I ∧ η ∈ E Hsince P ∈ PI ' ℘({〈I, η〉 | I ∈ I ∧ η ∈ RI}I
⇔ P ⊆

{
〈I, η〉

∣∣∣ I ∈ I ∧ η ∈ E
}

Hdef. ⊆I
⇔ P ⊆ γI(E) Hdef. γI(E)I

5.3. Abstraction by a Theory

In some cases it can be difficult to represent exactly an infinite set I of interpretations as proposed in
section 5.1. A solution is to use theories (preferably deductive with a recursively enumerable number
of axioms) to represent the set I = M(T) of interpretations that are models of these theories. The
relationship between theories and multi-interpreted semantics is expressed by the concretization
function:

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:15

γM(T) ,
{
〈I, η〉

∣∣∣ I ∈ M(T)
}

(11)

Notice, though, that because the lattice of theories is not complete, there is, in general, no best
abstraction of a set of interpretations by a theory.

Example 5.4. If = interprets programs over the natural numbers N, then by Gödel’s first incom-
pleteness theorem there is no enumerable first-order theory characterizing this interpretation, so the
poset has no best abstraction of {=}.

Once an (arbitrary) theory T has been chosen to abstract a set I of interpretations there is a best
abstraction αI→γM(T)(P) , P ∩ γM(T) of interpreted properties in P ∈ PI by abstract properties

in PγM(T). By lemma 5.1, 〈PI, ⊆〉 −−−−−−−−−−−→←−−−−−−−−−−−
αI→γM (T)(P)

γγM (T)→I(P)
〈PγM(T), ⊆〉, so the best abstract transformer is

FM(T)JPK , αI→γM(T) ◦ F
I
JPK ◦ αγM(T)→I. However, there might be no finite formula to encode

these best abstraction and best abstract transformer.

5.4. Algebraic Abstraction of Interpretations

Another direction for abstraction is to keep the context of interpretations and forget variable proper-
ties. This is simply a projection on the first component of the pairs of interpretation and environment.
Given a set I of interpretations and, for each interpretation I ∈ I, an algebraic abstraction 〈℘(RI),
⊆〉 −−−−→←−−−−αI

γI
〈AI , vI〉, we have an abstraction

〈PI, ⊆〉 −−−→←−−−
α̇

γ̇
〈
�
I∈I

AI , v̇〉 (12)

of PI ' ℘({〈I, η〉 | I ∈ I ∧ η ∈ RI}) by defining

α̇(P) ,
�
I∈I

αI({η | 〈I, η〉 ∈ P}),

γ̇(P) , {〈I, η〉 | I ∈ I ∧ η ∈ γI(PI)},

and P v̇ Q , ∀I ∈ I : PI vI QI .

Proof of (12). We have a Galois connection since for all P ∈ PI and P ∈
�

I∈I AI ,

α̇(P) v̇ P
⇔
�
I∈I

αI({η | 〈I, η〉 ∈ P}) v̇ P Hdef. α̇I

⇔ ∀I ∈ I : αI({η | 〈I, η〉 ∈ P}) v PI Hpointwise def. of v̇I
⇔ ∀I ∈ I : {η | 〈I, η〉 ∈ P} ⊆ γI(PI) HGalois connection 〈℘(RI), ⊆〉 −−−−→←−−−−αI

γI
〈AI , vI〉I

⇔ ∀I ∈ I : ∀η : 〈I, η〉 ∈ P⇒ η ∈ γI(PI) Hdef. ⊆I
⇔ ∀〈I, η〉 ∈ P : I ∈ I ∧ η ∈ γI(PI) Hsince P ∈ PI ' ℘({〈I, η〉 | I ∈ I ⇒ η ∈ RI}I
⇔ P ⊆ {〈I, η〉 | I ∈ I ∧ η ∈ γI(PI)} Hdef. ⊆I
⇔ P ⊆ γ̇(P) Hdef. γ̇I

Of course if I is infinite, one may have to group interpretations in a finite partition, each block being
abstracted uniformly e.g. as proposed in section 5.2.

5.5. Comparative Abstraction of Interpretations

Another example of abstraction of multi-interpreted semantics consists in comparing interpretations
such as the difference between a mathematical interpretation of programs on reals and an interpre-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Patrick Cousot et al.

tation on floats, to study the propagation of rounding errors in floating-point computations as in
Fluctuat [Goubault et al. 2002].

We can also change the interpretation of expressions in section 2.3, so as to keep track of all
possible evaluations when applying mathematical identities such as commutativity, associativity,
distributivity, etc. which hold for reals but not for floats. Again the abstraction keeps track for
each order of evaluation of the difference when evaluating with reals and floats so as to determine
the most precise evaluation order minimizing the rounding errors in arithmetic expressions [Martel
2009].

6. FIRST ORDER LOGICAL SEMANTICS

For theorem-prover based program verification, the multi-interpreted semantics of section 3.3 must
be expressed using first-order logical formulæ. This involves an abstraction since, on one hand, not
all concrete program properties and property transformers can be exactly expressed with logical
formulæ and, on the other hand, not all concrete set-theoretic inclusions can be proved by logical
implication.

6.1. Multi-Interpretation of First-Order Logic Formulæ

A logical formula Ψ ∈ F(x, f ,p) describes a property γa
I

(Ψ) for multi-interpretations I ∈ ℘(I) as
follows

γa
I
∈ F(x, f ,p) 1

→PI

γa
I

(Ψ) , {〈I, η〉 | I ∈ I ∧ I |=η Ψ} (13)

By definition of I |=η Ψ, γa
I

is increasing in that for all Ψ,Ψ′ ∈ F(x, f ,p), Ψ Z⇒ Ψ′ implies that
γa
I

(Ψ) ⊆ γa
I

(Ψ′).

Example 6.1 (Universal interpretation). The universal interpretation consists in describing the
properties encoded by a formula on all possible interpretations. Thus, the concretization of a formula
will be given by γaI(Ψ) = {〈I, η〉 | I ∈ I ∧ I |=η Ψ}.

Example 6.2 (Strict approximation). The use of first-order logic instead of set theory may en-
force strict approximations in program verification [Cook 1978]. For example, in the context of
Presburger arithmetic with interpretation N on the natural numbers, a program may compute a mul-
tiplication by successive additions, in which case the concrete set-theoretic property involving a
multiplication (such as P = {〈N, η〉 | η(x) = η(y) × η(z)}) may not be expressible by a finite first-
order logical formula involving only addition.

6.2. Axiomatic Semantics Modulo a Multi-Interpretation

Once concrete program properties have been abstracted by first-order logic formulæ, the concrete
program semantics of section 3 must be abstracted in terms of first-order logic. Because this sound
abstraction step will not lead to an effectively computable analysis, we aim for the most precise
semantics at this point, and, in fact, we can usually be as precise as the concrete semantics.

As shown in [Cousot 2002] for safety properties, an axiomatic semantics CaJPK of a program P
specifies program properties encoded by formulæ in F(x, f ,p) pre-ordered by implication Z⇒. The
axiomatic semantics CaJPK ∈ ℘(F(x, f ,p)) is specified as a set of post-fixpoints:

CaJPK ,
{
Ψ

∣∣∣ FaJPK(Ψ) Z⇒ Ψ
}

where FaJPK ∈ F(x, f ,p) 1
→F(x, f ,p) is the predicate transformer defining the axiomatic semantics

of program P where the verification condition for I ∈ F(x, f ,p) to be an inductive invariant of
program P is FaJPK(I) Z⇒ I.

Observe that (Ψ Z⇒ Ψ′) , valid(Ψ ⇒ Ψ′) is a pre-order so that F(x, f ,p) is considered to be
quotiented by (Ψ ⇐ \Z⇒ Ψ′) , valid(Ψ ⇔ Ψ′) meaning that logical formulæ are understood up to

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:17

equivalence. The resulting quotient poset14 is a lattice 〈F(x, f ,p), Z⇒, ff, tt, ∨, ∧〉 although not a
complete lattice (since infinite disjunctions or conjunctions are missing in first-order logic).

Again the program transformer Fa can be defined in terms of primitive operations
ff, tt,∨,∧,

`
,∧, fa, ba, pa, . . . whose local soundness conditions imply the soundness of the pro-

gram transformer and the verification condition.

Example 6.3. Continuing example 3.2 in the context of invariance properties for imperative
languages, the primitive operations will be false, true, ∨ for control flow joins, and the following
primitives for assignments and tests:

fa ∈ (x ×T(x, f))→F(x, f ,p)→F(x, f ,p) axiomatic forward assignment trans-
formerfaJx := tKΨ , ∃x′ : Ψ[x← x′] ∧ x = t[x← x′]15

ba ∈ (x ×T(x, f))→F(x, f ,p)→F(x, f ,p) axiomatic backward assignment trans-
formerbaJx := tKΨ , Ψ[x← t]

pa ∈ C(x, f ,p)→F(x, f ,p)→F(x, f ,p) axiomatic transformer for program test
of condition ϕ.paJϕKΨ , Ψ ∧ ϕ

6.3. Soundness of the Axiomatic Semantics Modulo a Multi-Interpretation

In general, the soundness of transformers

∀Ψ ∈ F(x, f ,p) : FIJPK ◦ γaI(Ψ) ⊆ γa
I
◦ FaJPK(Ψ), (14)

follows from similar local soundness conditions on the operations of the abstract domain16 (see e.g.
example 4.5). This implies that the axiomatic semantics modulo a multi-interpretation is sound.

Theorem 6.4. The axiomatic semantics CaJPK of a program P is sound according to (8) with
respect to a multi-interpreted semantics C

I
JPK of section 3.3 and the increasing concretization γa

I

defined in (13).

Proof. By theorem 4.4 using the instance (14) of (9).

Example 6.5. Note that in the case of the axiomatic invariance semantics for imperative lan-
guages of example 6.3, the interpretation of the axiomatic semantics is exactly the multi-interpreted
concrete semantics. For example, for assignment,

γa
I

(faJx := tKΨ)
, γa

I
(∃x′ : Ψ[x← x′] ∧ x = t[x← x′]) Hdef. faJx := tKΨI

= {〈I, η〉 | I ∈ I ∧ I |=η (∃x′ : Ψ[x← x′] ∧ x = t[x← x′])} Hdef. (13) of γa
I
I

= {〈I, η′[x← JtKIη
′]〉 | I ∈ I ∧ I |=η′ Ψ}

Hsince I |=η (∃x′ : Ψ[x← x′] ∧ x = t[x← x′]) if and only if ∃η′ : I |=η′ Ψ and η =
η′[x← JtKIη

′] as defined in section 2.3I
= {〈I, η[x← JtKIη]〉 | I ∈ I ∧ 〈I, η〉 ∈ {〈I, η〉 | I |=η Ψ}} Hrenaming η′ to η and def. ∈I
= {〈I, η[x← JtKIη]〉 | I ∈ I ∧ 〈I, η〉 ∈ γa

I
(Ψ)} Hdef. (13) of γa

I
I

= fIJx := tK ◦ γa
I

(Ψ) Hdef. (7) of fIJx := tKPI

Example 6.6 (Uninterpreted axiomatic semantics). The uninterpreted axiomatic semantics cor-
responds to the universal interpretation of example 6.1, that is I = I.

14 Following the tradition, we write 〈F(x, f ,p), Z⇒〉 instead of the more rigorous quotient notation 〈F(x, f ,p)/⇐\Z⇒ , Z⇒〉.
15 Ψ[x← t] is the substitution of term t for variable x in formula Ψ, assuming renaming whenever t has variables bound in
Ψ.
16In general, we do not have equality since there may be no logical formula that exactly encodes FIJPK ◦ γaI(Ψ).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Patrick Cousot et al.

Example 6.7 (Axiomatic semantics modulo theory). An axiomatic semantics modulo a theory
T corresponds to the choice I = M(T) so that the difference with the uninterpreted axiomatic
semantics of example 6.6 is uniquely in the way implication can be proved with or without using a
theorem of the theory T .

7. LOGICAL ABSTRACT DOMAINS

As a generalization of section 6, we define logical abstract domains to perform program verification
in the first-order logic setting. Computing the predicate transformer FaJPK is quite immediate. The
two hard points are

(1) the computation of the least fixpoint (or a post-fixpoint approximation of it since, in general, the
logical lattice is not complete), and

(2) proving that the final formula implies the desired property.

To solve the first problem, the usual approach consists of asking the end-user to provide a solution or
in restricting the set of formulæ used to represent program properties such that the ascending chain
condition (ACC) is enforced. Using an infinite abstract domain not satisfying the ACC together with
a widening can be much more precise [Cousot and Cousot 1992b].

Solving the second problem requires the proof of an implication for which a decidable theory can
be used.

7.1. Definition of Logical Abstract Domains

We define logical abstract domains in the following general setting (without the ACC restriction):

Definition 7.1. A logical abstract domain is 〈A,v, ff, tt,∨,∧,
`
,
a
, f̄a, b̄a, p̄a, . . .〉 defined by a

pair 〈A, T〉 of a set A ∈ ℘(F(x, f ,p)) of logical formulæ and of a theory T of F(x, f ,p). The
abstract properties Ψ ∈ A define the concrete properties γa

T
(Ψ) ,

{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η Ψ
}

relative to the models M(T) of theory T . The abstract pre-order v on the abstract domain 〈A, v〉
is defined as (Ψ v Ψ′) , ((∀~xΨ ∪ ~xΨ′ : Ψ ⇒ Ψ′) ∈ T) (and can be quotiented to a partial order by
(Ψ ≡ Ψ′) , ((∀~xΨ ∪ ~xΨ′ : Ψ⇔ Ψ′) ∈ T)).

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developed by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The main
difference in our approach is that we consider a concrete semantics corresponding to the actual be-
havior of the program, whereas in the work of Gulwani and Tiwari, the behavior of the program is
assumed to be described by formulæ in the same theory as the theory of the logical abstract domain,
which may yield unsoundness. Our approach allows the description of the abstraction mechanism,
the comparison of logical abstract domains, and the formal, rigorous proof of soundness.

7.2. Abstraction to Logical Abstract Domains

Because A ∈ ℘(F(x, f ,p)), we need to approximate formulæ in ℘(F(x, f ,p)) \ A by a formula in
A. The alternatives [Cousot and Cousot 1992a] are either to choose a context-dependent abstraction
(a different abstraction is chosen in different circumstances, which can be understood as a widening
extrapolation [Cousot 1978, Ch. 4.1]) or to define an abstraction function to use a uniform context-
independent approximation whenever needed. The abstraction

αIA ∈ F(x, f ,p)→A abstraction (function/algorithm)

abstracts a concrete first-order logic formula appearing in the axiomatic semantics into a formula in
the logical abstract domain A. To be sound, the following must hold

∀Ψ ∈ F(x, f ,p), ∀I ∈ I : I |= (Ψ⇒ αIA(Ψ)) soundness (15)

The abstraction αIA can be chosen to be computable in which case we speak of an abstraction
algorithm, which can be directly used in the implementation of the abstract domain and semantics.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:19

When the abstraction αIA is not computable, we speak of an abstraction specification, which has to
be eliminated from the definition of the abstract domain and semantics (e.g. by automatic or manual
design of an over-approximation of the abstract operations).

Example 7.2 (Literal elimination). Assume that the axiomatic semantics is defined on
F(x, f ,p) and that the logical abstract domain is A = F(x, fA,pA) where fA ⊆ f and pA ⊆ p.
The abstraction αIA(Ψ) of Ψ ∈ F(x, f ,p) can be defined by repeating the following approximations
until stabilization.

— If the formula Ψ contains one or several occurrences of a term t ∈ f \ fA (so is of the form
Ψ[t, . . . , t]), they can all be approximated by ∃x : Ψ[x, . . . , x] where x is a fresh variable;

— If the formula Ψ contains one or several occurrences of an atomic formula a ∈ p \ pA (so has
the form Ψ[a, . . . , a]), this atomic formula can be replaced by true in the positive positions and
by false in the negative positions.

In both cases, this implies soundness (15) and the abstraction algorithm terminates since Ψ is finite.

Example 7.3 (Quantifier elimination). If the abstract domain A ⊆ C(x, fA,pA) is quantifier-
free then the quantifiers must be eliminated, which is possible without loss of precision in some
theories such as Presburger arithmetic (but with a potential blow-up of the formula size see e.g.
[Cooper 1972; Ferrante and Rackoff 1975; Ferrante and Geiser 1977]). Otherwise, besides trivial
simplifications of formulæ (e.g. replacing ∃x : x = t ∧ Ψ[x] by Ψ[t]), a very coarse abstraction to
A ⊆ C(x, f ,p) would eliminate quantifiers bottom up, putting the formula in disjunctive normal
form and eliminating the literals containing existentially quantified variables (or dually [McMillan
2002]), again with a potential blow-up. Other proposals of abstraction functions (often not identified
as such) include the quantifier elimination heuristics defined in Simplify [Detlefs et al. 2005, Sect.
5], [de Moura et al. 2003, Sect. 6], or the (doubly-exponential) methods of [Ge et al. 2007; Ge
and de Moura 2009] (which might even be made more efficient when exploiting the fact that an
implication rather than an equivalence is required).

Example 7.4 (Interval abstraction). Let us consider the minimal abstraction αm, whose reduced
product with the maximal abstraction αM , yields the interval abstraction [Cousot and Cousot 1976;
Cousot and Cousot 1977].

αm(Ψ) ,
∧
x∈x

{c 6 x | c ∈ c ∧ min(c, x,Ψ)}

min(c, x,Ψ) , ∀x : (∃~xΨ \ {x} : Ψ)⇒ (c 6 x) ∧
∀m : (∀x : (∃~xΨ \ {x} : Ψ)⇒ (m 6 x))⇒ m 6 c

Replacing the unknown constant c by a variable c in min(c, x,Ψ), a solver might be able to determine
a suitable value for c. Otherwise the maximality requirement of c might be dropped to get a coarser
abstraction and true returned in case of the complete failure of the solver.

7.3. Abstract Logical Transformers

For soundness with respect to a set of interpretations I, the abstract transformers must be chosen
such that [Cousot and Cousot 1977; Cousot and Cousot 1979c] for each program P

FaJPK ∈ A→A abstract transformer
∀Ψ ∈ A,∀I ∈ I : I |= FaJPKΨ ⇒ I |= FaJPKΨ abstract transformer soundness (16)

Again, the abstract program transformer FaJPK can be defined in terms of primitive operations (e.g.
fa, ba, and pa of example 4.1) satisfying local soundness conditions, which imply the soundness

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Patrick Cousot et al.

of the program transformer. In many static analyzers, the abstract transfer functions are usually
designed, proved correct and implemented by hand.

Example 7.5. Continuing example 6.3, the abstract logical transformers should be designed so
as to satisfy the following local soundness conditions

fa ∈ (x ×T(x, f))→A→A abstract forward assignment trans-
former

∀Ψ ∈ A,∀I ∈ I : : I |= fJx := tKΨ ⇒ faJx := tKΨ abstract postcondition soundness

ba ∈ (x ×T(x, f))→A→A abstract backward assignment
transformer

∀Ψ ∈ A,∀I ∈ I : : I |= bJx := tKΨ ⇒ baJx := tKΨ abstract precondition soundness

pa ∈ L→A→A condition abstract transformer
∀Ψ ∈ A,∀I ∈ I : pJlKΨ ⇒ paJlKΨ abstract test soundness

It follows from the definition of the uninterpreted axiomatic semantics in example 6.6 that we can
define the abstract transformer to be the axiomatic transformer. This requires a closure hypothesis
on A to ensure that they map a formula in A to a formula in A. Otherwise, an overapproximation may
be necessary. For example, A may just contain formulæ without disjunction ∨ so that disjunction
must be overapproximated. This is one of the uses of widening [Cousot 1978] (the other being to
enforce convergence of iterates as in section 4.5).

∀Ψ1,Ψ2 ∈ A,∀I ∈ I : I |= (Ψ1 ∨ Ψ2 ⇒ Ψ1
`
a Ψ2) widening soundness

This design and implementation should be totally automatized, resorting to a manual solution only
when automation is too inefficient or imprecise. For example, when an abstraction algorithm αIA is
available (section 7.2), a simple sound implementation of the abstract transformers would be

FaJPKΨ , α
I
A(FaJPKΨ) .

Example 7.6. Continuing example 6.3 for an abstraction αIA of section 7.2, the abstract logical
transformers would be

faJx := tKΨ , αIA(faJx := tKΨ) abstract forward assignment transformer

baJx := tKΨ , αIA(baJx := tKΨ) abstract backward assignment transformer

paJϕKΨ , α
I
A(paJϕKΨ) abstract transformer for program test of condition ϕ

Ψ1
`
a Ψ2 , α

I
A(Ψ1 ∨ Ψ2) abstract lub widening.

These abstract transformers (or some over-approximations satisfying local soundness conditions as
in example 7.5) might be automatically computable using solvers (see e.g. [Reps et al. 2004] when
A satisfies the ACC).

Example 7.7. With the interval abstraction of example 7.4, where the abstract domain is A =
{
∧
x∈x cx 6 x | ∀x ∈ x : cx ∈ f0} and αIA = αm, an SMT solver (e.g. with linear arithmetic or

even simple inequalities [Pratt 1977]) might be usable when restricting Ψ in αm(Ψ) to the formulæ
obtained by the transformation of formulæ of A by the abstract transformers of example 7.6.

Finally the logical abstract transformer can be defined using a specific local abstraction.

Example 7.8 (Abstract assignment). The non-invertible assignment transformer returns a quan-
tified formula

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:21

fJx := tKΨ , ∃x′ : Ψ[x/x′] ∧ x = t[x/x′] non-invertible assignment

which may have to be abstracted to A can be realized using the abstraction α of section 7.2 or the
widening of section 4.5 or on the fly, using program specificities. For example, in straight line code
outside of iteration or recursion, the existential quantifier can be eliminated

— using logical equivalence, by Skolemization where ∀x1 : . . .∀xn : ∃y : p(x1, . . . , xn, y) is
replaced by the equi-satisfiable formula ∀x1 : . . .∀xn : p(x1, . . . , xn, fy(x1, . . . , xn)) where fy is
a fresh symbol function;

— using a program transformation, since x′ denotes the value of the variable x before the assign-
ment we can use a program equivalence introducing new fresh program variable x′ to store this
value since “x := t” is equivalent to “x′ := x; x := t[x← x′]” 17. We get

faJx := tKΨ , Ψ[x← x′] ∧ x = t[x← x′] abstract non-invertible assignment

which may be a formula in A. This ensures soundness by program equivalence.

These local solutions cannot be used with iteration or recursion (but with a k-limiting abstraction as
in bounded model checking) since a fresh auxiliary function/variable is needed for each iteration/re-
cursive call, whose number may be unbounded.

7.4. Soundness of the Abstract Logical Semantics

The abstract logical semantics CaJPK ∈ ℘(A) of a program P in a logical abstract domain 〈A, v〉
defined by 〈A, T〉 is specified in post-fixpoint form (since, in general, least fixpoints do not exist).

CaJPK ,
{

Ψ ∈ A
∣∣∣∣ FaJPK(Ψ) Z⇒ Ψ

}
Theorem 7.9 (Soundness of the abstract logical semantics). Under the abstract transformer

soundness hypotheses (14) with I = M(T) and (16), the abstract logical semantics CaJPK of a
program P is sound according to (8) with respect to a multi-interpreted semantics CM(T)JPK of sec-
tion 3.3 and the increasing concretization γa

T
, γa

M(T) where (13) is relative to the modelsM(T) of
theory T .

Proof. By (13), γa
T

(Ψ) , γa
M(T)(Ψ) =

{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η Ψ
}
. First, we know that γa

T
is

increasing for the implication in T . Then it is also increasing for v, as (Ψ v Ψ′) , ((∀~xΨ ∪ ~xΨ′ :
Ψ⇒ Ψ′) ∈ T), and this implies that T |= Ψ⇒ Ψ′. Then we prove (9), that is for all Ψ ∈ A,

γa
T
◦ FaJPK(Ψ)

=

{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η FaJPK(Ψ)
}

Hsince γa
T

(Ψ) =
{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η Ψ
}
I

⊇
{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η FaJPK(Ψ)
}
Hdef. ⊆ and (16) so that I |= FaJPKΨ implies I |= FaJPKΨI

= γa
T
◦ FaJPK(Ψ) Hsince γa

T
(Ψ) =

{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ I |=η Ψ
}
I

= γaM(T) ◦ FaJPK(Ψ) Hdef. γa
T
I

⊇ FM(T)JPK ◦ γaM(T)(Ψ) Hhypothesis (14) with I = M(T)I
= FM(T)JPK ◦ γ

a
T

(Ψ) Hdef. γa
T

(Ψ)I

Theorem 7.9 then immediately follows from theorem 4.4.

17 This is similar to but different from Skolemization since we use auxiliary program variables instead of auxiliary functions.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Patrick Cousot et al.

7.5. Approximations of the Abstract Ordering

When implementing a logical abstract domain, in addition to the transfer functions, we need to
implement the abstract order v by providing an effective decision procedure for formulæ of the
form ∀~xΨ ∪ ~xΨ′ : Ψ ⇒ Ψ′. For efficiency reasons, or because the theory is undecidable, one may
approximate this decision procedure. Then the approximation must be correct with respect to the
positive answer to the decision problem: if the approximate algorithm answers that the formula is
in the theory, then that must hold.

In the particular case of decision procedures based on SMT solvers, we can only decide satisfia-
bility results. So we will rephrase our formulæ into ∃~xΨ ∪ ~xΨ′ : Ψ ∧ ¬Ψ′. In this case, the answer
of an SMT solver must be correct on the negative answer: if the solver says that the formula is
unsatisfiable, then it must be the case to be unsatisfiable in the theory. So, for our applications, the
refutation completeness of SMT solvers is not compulsory to insure soundness.

Notice that in section 7.4, the soundness of the abstract logical semantics, in particular theo-
rem 7.9, is with respect to the abstract order v and theory T of definition 7.1, with respect to the
concrete order ⇒. It follows that if the approximation of the abstract order v changes (e.g. due to
a modification in or change of the theorem prover or SMT solver), then the soundness proof of the
static analysis remains valid. The limit of the iterates with widening in theorem 4.8 also remains
sound with respect to the concrete semantics for sound modifications of the approximation of the
abstract order. A change in the approximation of the abstract ordering may change the cost and pre-
cision of the analysis (since provable facts may no longer be provable or vice-versa) but its result,
although possibly different, always remains sound.

This would not be necessarily the case if the order v of definition 7.1 had been chosen to refer to
the approximation algorithm, hence to a specific version of a theorem prover or SMT solver, since
a change in the definition of the abstract order would have required to redo all soundness proofs.

7.6. Logical Widening and Narrowing

Designing a universal widening for logical abstract domains is difficult since powerful widenings
prevent infinite evolution in the semantic computation, evolution that does not always manifest itself
as a syntactic evolution in logical abstract domains. Nevertheless, we can propose several possible
widenings.

(1) Widen to a finite sub-domain W of A organized in a partial order choosing X
`

Y to be Ψ ∈ W
such that Y ⇒ Ψ and starting from the smallest elements of W (or use a further abstraction into
W as in section 7.2);

(2) Limit the size of formulæ to k > 0, eliminating new literals in the simple conjunctive normal
form appearing beyond the fixed maximal size (e.g. depth) k (the above widenings are always
sound and terminating but not very satisfactory, see [Cousot and Cousot 1992b]);

(3) Follow the syntactic evolution of successive formulæ and reduce the evolving parts as proposed
by [Mauborgne 1998] for Typed Decision Graphs.

(4) Make generalizations (e.g. l(1) ∨ l(2) ∨ . . . implies ∃k > 0 : l(k) and abstract the existential
quantifier, see example 7.3) or use saturation 18 [Ganzinger 1996].

(5) Use a bounded widening
`

(u) when an upper bound u is known (e.g. from specifications to be
checked) so that x

`
(u) y where x v y satisfies either x v y v x

`
(u) y v u when y v u or

else x
`

(u) y = > (since specification u cannot be proved to be satisfied anyway). Notice that
the widening may not use at all its first argument x, in which case a dual narrowing satisfying
y v y ˜au v u whenever y v u can also be used (provided convergence is enforced by widening to
the upper bound u after a number of non-convergent steps and beyond to > if necessary). Craig
interpolation [Craig 1957] is an example for logical abstract domains [McMillan 2003].

18 Saturation means to compute the closure of a given set of formulas under a given set of inference rules.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:23

7.7. Enforcing Soundness of Unsound Abstractions

As noted in section 6, the axiomatic semantics modulo theory T (and thus the logical abstract
domains with that semantics) are sound when all the interpretations we wish to consider for the
program are models ofT . But what we see in practice is that the actual interpretations corresponding
to the machine execution of programs are not models of the theories used in the program proofs.
Typical examples include proofs on mathematical integers, whereas the size of machine integers is
bounded, or reasoning on floating point arithmetic as if floats behaved as reals. Indeed, it already
happened that the Astrée analyzer found a buffer overrun in programs formally “proven” correct,
but with respect to a theory of infinite arrays that was an unsound approximation of the program
semantics where arrays are finite.

Still, such reasoning can give some informations about the program provided the invariant they
find is precise enough. One way for them to be correct for an interpretation = is to have one model
of the theory to agree with = on the formulæ that appear during the computation. Formally, two
theories T1 and T2 agree on Ψ when

{
η
∣∣∣∣ I1 |=η Ψ

}
=

{
η
∣∣∣∣ I2 |=η Ψ

}
This can be achieved by monitoring the formulæ during the computation, for example insuring

that the formulæ implies that numbers are always smaller than the largest machine integer. It is
enough to perform this monitoring during the invariant checking phase (FaJPK(Ψ) Z⇒T Ψ), so we
can just check for Ψ and FaJPK(Ψ), but, in some cases, it can be worthwhile to detect early that the
analysis cannot be correct because of an initial difference between one of the concrete interpretations
and the models of the theory used to reason about the program.

In section 12.2, after studying the reduced product between logical abstract domains and algebraic
abstract domains, we will show how this early detection can be extended so that even when such
unsound cases occur, the analysis can proceed.

8. OBSERVATIONAL SEMANTICS

Program static analysis involves the of the possible data manipulated by programs such as values
of variables, the control stack or the heap. It may also be interesting to observe other quantities
such as functions of program control and data. An example is the inclusion of auxiliary variables in
the Owicki and Gries proof method of parallel programs to observe the control of other processes
(since assertions cannot directly refer to program counters as in Lamport’s method) [Cousot 1990].
Another example is the queue of threads associated with wait conditions in monitors [Hoare 1974],
which cannot be directly manipulated by programs but to which correctness proofs must refer. Sim-
ilarly for programming languages for which Hoare logic is incomplete [Cousot 1990], the assertions
might have to refer to the local variables of procedures passed as parameters whose values may have
to be tracked in the control stack although they may not be directly visible at some program point.
The idea of observing the norm of quaternions in the analysis of space programs [Bertrane et al.
2010] is similar. Finally, some data may have to be decomposed into pieces observed separately so
that the data are a function of these pieces. This is the case in [Chen et al. 2011] where a vector
x = (xi)n

i=1 is observed as x+ , (max(xi, 0))n
i=1 and x− , (max(−xi, 0))n

i=1 so that x = x+ − x− and
|x| = x+ + x−.

It is possible to cope with all these cases in a uniform way by explicitly defining the observables
of the program semantics

8.1. Observable Properties of Multi-interpreted Programs

We name observables by identifiers in xO (which, in particular, can be variable identifiers in xP).

Σ = 〈x, f , p, #〉 signature
ΣP = 〈xP, f , p, #〉 ⊆̇ Σ program signature (xP ⊆ x)
x ∈ xP program variables

ΣO = 〈xO, f , p, #〉 ⊆̇ Σ observable signature (xO ⊆ x)
x ∈ xO observable identifiers

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Patrick Cousot et al.

Program properties are sets of environments relative to interpretations I ∈ I(Σ).

v ∈ IV values (for interpretation I ∈ I(Σ))
η ∈ RΣP

I , xP→ IV program variable environments
I ∈ ℘(I(Σ)) multiple interpretations

R
ΣP
I
,

{
〈I, η〉

∣∣∣∣∣ I ∈ I ∧ η ∈ RΣP
I

}
multi-interpreted program environment

P
ΣP
I
, ℘(RΣP

I
) multi-interpreted program properties

Observables are functions from values of program variables to values that are named by observable
identifiers.

ωI ∈ O
ΣP
I , R

ΣP
I → IV observables (for I ∈ I)

ΩI ∈ xO→O
ΣP
I observable naming.

The same way that the semantics keeps tracks of values of variables in program variable environ-
ments, the semantics keeps tracks of values of observables in program observable environments.

ζ ∈ RΣO
I , xO→ IV program observable environments

R
ΣO
I
,

{
〈I, ζ〉

∣∣∣∣∣ I ∈ I ∧ ζ ∈ RΣO
I

}
multi-interpreted environments

P
ΣO
I
, ℘(RΣO

I
) multi-interpreted observable properties

Whereas a concrete program semantics is relative to PΣP
I

, the observational semantics is relative
to PΣO

I
and both can be specified in fixpoint or in post-fixpoint form. The difference is that the value

η(x) of a program variable x ∈ xP in a variable environment η ∈ RΣP
I is modified when this variable

x is modified whereas the value ζ(x) of an observable variable x ∈ xO in an observable environment
ζ ∈ RΣO

I is modified whenever the value ΩI(x)η of the function ΩI(x) observed under the observable
name x is modified due to the modification of the variable environment η ∈ RΣP

I following the
modification of the value of some program variable(s).

Example 8.1 (Variable multiple observations). We may want to observe variable values at dif-
ferent time instants, as abstracted to program points; this leads to SSA [Cytron et al. 1991] renaming
variables such that the property of static single assignment holds.

Example 8.2 (Term observation). We may want to observe values of a term t of the program for
a particular interpretation I stored in an auxiliary variable x ∈ xO \ xP so that ΩI(x) , JtKI . For
example, quaternions are analyzed in [Bertrane et al. 2010] by observing the value of their norm
t =
√
a2 + b2 + c2 + d2 (where a, b, c, d ∈ xP ∪xO are variables) for several rounding semantics of

floats.

Example 8.3 (Combining symbolic and numerical analyzes). One can observe the length of a
list, the height of a stack, etc. and reuse classical numerical abstractions on that observation e.g.
[Deutsch 1990].

Example 8.4 (Memory model). In the memory model of [Miné 2006a], a 32 bits unsigned/pos-
itive integer variable x can be encoded by its constituent bytes 〈x3, x2, x1, x0〉 so that, for little
endianness, η(x) = ΩI(x3)η × 224 + ΩI(x2)η × 216 + ΩI(x1)η × 28 + ΩI(x0)η.

Given a program property P ∈ PΣP
I

, the corresponding observable property is

αΩ
I

(P) ,
{
〈I, λ x . ΩI(x)η〉 ∈ RΣO

I

∣∣∣∣∣ 〈I, η〉 ∈ P
}
.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:25

The value of the observable named x is therefore ΩI(x)η where the values of program variables are
given by η. Conversely, given an observable property Q ∈ PΣO

I
, the corresponding program property

is

γΩ
I

(Q) ,
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ Q
}
.

Example 8.5 (Variable observation). If we limit our observations to values of program variables
then xO = xP and ∀x ∈ xO : ∀η ∈ RΣP

I : ΩI(x)η , η(x) so that λx.ΩI(x)η = η pointwise hence
λ x . ΩI(x), αΩ

I
and γΩ

I
are the identity. If we do not want to analyze the values of all program

variables then xO (xP.

The observation of the value of functions of the variables is less precise that the direct observation
of these variables so we have a Galois connection between the program and observable properties.

Theorem 8.6. 〈PΣP
I
, ⊆〉 −−−−→←−−−−

αΩ
I

γΩ
I

〈P
ΣO
I
, ⊆〉 .

Proof.

αΩ
I

(P) ⊆ Q

⇔

{
〈I, λ x . ΩI(x)η〉 ∈ RΣO

I

∣∣∣∣∣ 〈I, η〉 ∈ P
}
⊆ Q Hdef. αΩ

I
I

⇔ ∀〈I, η〉 ∈ P : 〈I, λ x . ΩI(x)η〉 ∈ Q Hdef. ⊆ and Q ∈ PΣO
I

= ℘(RΣO
I

)I

⇔ P ⊆
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ Q
}

Hdef. ⊆ and P ⊆ RΣP
I

I

P ⊆ γΩ
I

(Q) Hdef. γΩ
I

.I

Nevertheless, there is no loss of precision whenever the observables include all program variables.
In this case, there is also no gain of precision in the concrete. However the gain of precision may be
quite significative in the abstract whenever the abstraction is tailored to the observation functions.

8.2. Soundness of the Abstraction of Observable Properties

The observational abstraction is an abstraction of observable properties in PΣO
I

so with concretiza-
tion γΣO

I
∈ AΣO

I
→P

ΣO
I

where AΣO
I

is the abstract domain. The classical direct abstraction of program
properties in PΣP

I
is the case where xO = xP and λ x . ΩI(x) is identity. The program properties

corresponding to observable ΩI are given by γΩ,P
I
∈ AΣO

I
7→ P

ΣP
I

such that

γΩ,P
I
, γΩ

I
◦ γΣO
I

= λ P .
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(P)
}
.

Under the observational semantics, soundness conditions remain unchanged, but they must be
proved with respect to γΩ,P

I
, not γΣO

I
. So the soundness conditions on transformers become slightly

different.

Example 8.7. The soundness condition of the assignment abstract postcondition f̄Jx := eK be-
comes:

Lemma 8.8. γΩ,P
I

(f̄ Jx := eKP) ⊇ fI Jx := eK(γΩ,P
I

(P)) and similarly for the other transformers.

Proof.

γΩ,P
I

(f̄Jx := eKP) ⊇ fI Jx := eK(γΩ,P
I

(P))

⇔

{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(f̄Jx := eKP)
}
⊇

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Patrick Cousot et al.

{
〈I, η[x← JeKIη]〉

∣∣∣∣∣ 〈I, η〉 ∈ RΣP
I
∧ 〈I, λ x . ΩI(x)η〉 ∈ γΣO

I
(P)

}
Hdef. γΩ,P

I
, fI Jx := eK, and γΩ,P

I
I

⇔ ∀〈I, η〉 ∈ RΣP
I

: ∀〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(P) :
〈I, λ x . ΩI(x)(η[x← JeKIη])〉 ∈ γΣO

I

(
f̄Jx := eKP

)
Hdef. ⊆I

⇔ γΣO
I

(
f̄Jx := eKP

)
⊇

{
〈I, λ x . ΩI(x)(η[x← JeKIη])〉

∣∣∣ 〈I, η〉 ∈ R
ΣP
I
∧ 〈I, λ x . ΩI(x)η〉 ∈

γΣO
I

(P)
}

Hdef. ⊆ .I

8.3. Observational Extension

It can sometimes be useful to extend an abstract property P for observables Ω with a new observ-
able ω named x. For example, this was useful for intervals in [Elder et al. 2010]. We will write
extend(x,ω)

(
P
)

for the extension of P with the observable ω for the observable identifier x.

Example 8.9. Let AxO be the abstract domain mapping observable identifiers x ∈ xO to an inter-
val of values [Cousot and Cousot 1977]. Assume that intervals of program variables are observable,
that is xP ⊆ xO, and let x ∈ xP be a program variables for which we want to observe the square
x2 so ωI , Jx2KI . Let x2 < xO be a fresh name for this observable. This extension of observable
properties with a new observable extend(x2,Jx2K) ∈ AxO→AxO∪{x2} can be defined as

extend(x2,Jx2K) ∈ AxO→AxO∪{x2}

extend(x2,Jx2K)

(
P
)
, λ x ∈ xO ∪ {x2} . (x , x2 ? P(x) : P(x2) ⊗ P(x2))

(where ⊗ is the product of intervals).

The semantics of this extension operation must satisfy the following soundness condition

γ
λ I . λ y . y = x ?ωI : ΩI(y), P
I

(
extend(x,ω)

(
P
))
⊇ γΩ,P

I

(
P
)
.

The introduction of auxiliary variables to name alien terms in logical abstract domains is an obser-
vational extension of the domains.

Lemma 8.10. For the logical abstract domain A , F(Σ) with γΣO
I

(Ψ) ,{
〈I, η〉

∣∣∣∣ I ∈I ∧ I |=ηΨ
}
,

extend(x,JeK) (Ψ[x← e]) , ∃ x : (x = e ∧ Ψ) is sound.

Proof.

γ
λ I . λ y . y=x ? JeKI : ΩI (y),P
I

(
extend(x,JeK) (Ψ[x← e])

)
= γ

λ I . λ y . y=x ? JeKI : ΩI (y),P
I

(∃ x : (x = e ∧ Ψ)) Hdef. extend(x,JeK) (Ψ[x← e]) , ∃ x : (x = e ∧ Ψ)I
=

{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . (
λ y . y = x ? JeKI : ΩI(y)

)
(x′)η〉 ∈ γΣO

I
(∃ x : (x = e ∧ Ψ))

}
Hdef. γΩ,P

I
I

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . (
x′ = x ? JeKI (η) : ΩI(x′)η

)
〉 ∈ γΣO

I
(∃ x : (x = e ∧ Ψ))

}
Hdef. applicationI

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ I ∈ I ∧ I |=λ x′ . (x′=x ? JeKI (η) : ΩI (x′)η) ∃ x : (x = e ∧ Ψ)
}

Hdef. γΣO
I

(Ψ) ,
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ I |=η Ψ)
}
I

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ I ∈ I ∧ I |=λ x′ .ΩI (x′)η Ψ[x← e]
}

Hdef. substitutionI
=

{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . ΩI(x′)η〉 ∈ γΣO
I

(Ψ[x← e])
}

Hdef. γΣO
I

I
= γΩ,P

I
(Ψ[x← e]) Hdef. γΩ,P

I
I

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:27

This extension operation can also be used for vectors of fresh variables and vectors of observables
in the natural way.

Definition 8.11 (Extension of observable properties with new observables). Let AΣO
I

be an ab-
stract domain with partial ordering v abstracting multi-interpreted properties in PΣO

I
for signature

ΣO with observable identifiers xO ⊆ x, the set of interpretations I , and observables named by Ω

such that ∀I ∈ I : ΩI ∈ xO→O
ΣP
I .

Consider the new observables Ω′ such that ∀I ∈ I : Ω′I ∈ (xO′ \ xO) → OΣP
I where xO′ are

the new observable names such that xO ⊆ xO′ . The abstraction now uses the abstract domain
AΣO′

I
with partial ordering v′ abstracting multi-interpreted properties in PΣO′

I
for signature ΣO′ with

observable identifiers xO′ ⊆ x . A sound extension extendΩ′ ∈ AΣO
I
→ AΣO′

I
satisfies the soundness

condition

γ
λ I . λ y . y ∈ xO′ \ xO ? Ω′I(y) : ΩI(y), P
I

(
extendΩ′

(
P
))
⊇ γΩ,P

I

(
P
)
.

Given A ⊆ AΣO
I

, we write extendΩ′ (A) ,
{

extendΩ′

(
P
) ∣∣∣∣∣∣ P ∈ A

}
.

9. REDUCED PRODUCT

9.1. Cartesian and Reduced Product

The Cartesian product can be used for the conjunction of static analyzes [Cousot and Cousot 1979c].

Definition 9.1 (Cartesian product). Let 〈Ai, vi〉, i ∈ ∆, ∆ finite, be abstract domains with in-
creasing concretization γi ∈ Ai

1
→ P

ΣO
I

. Their Cartesian product is 〈~A, ~v〉 where ~A ,
�

i∈∆ Ai,
(~P ~v ~Q) ,

∧
i∈∆(~Pi vi ~Qi) and ~γ ∈ ~A→PΣO

I
is ~γ(~P) ,

⋂
i∈∆ γi(~Pi).

In particular the product 〈Ai × A j, vi j〉 is such that 〈x, y〉 vi j 〈x′, y′〉 , (x vi x′) ∧ (y v j y′) and
γi j(〈x, y〉) , γi(x) ∩ γ j(y). Notice that instead of 〈PΣO

I
, ⊆, ∅, RΣO

I
, ∪, ∩〉 where PΣO

I
, ℘(RΣO

I
), the

concrete domain could also be chosen as an arbitrary poset 〈L, 6〉, meet semi-lattice 〈L, 6, ∧〉, cpo
〈L, 6, 0, ∨〉, or complete lattice 〈L, 6, 0, 1, ∨, ∧〉.

If abstract transformers are applied component-wise, then the Cartesian product of static analyzes
yields exactly the same result as running analyses with each abstract domain independently and
performing the conjunction of their respective results. To improve this result, the reduced product
was defined [Cousot and Cousot 1979c] so that each analysis benefits from the information brought
by the other analyses.

Definition 9.2 (Reduced product (I)). Let 〈Ai, vi〉, i ∈ ∆, ∆ finite, be abstract domains with
increasing concretization γi ∈ Ai

1
→ P

ΣO
I

where ~A ,
�

i∈∆ Ai is their Cartesian product. Their
reduced product is 〈~A/~≡, ~v〉 where (~P ~≡ ~Q) , (~γ(~P) = ~γ(~Q)) and ~γ as well as ~v are naturally
extended to the equivalence classes [~P]/~≡, ~P ∈ ~A, of ~≡ by ~γ([~P]/~≡) = ~γ(~P) and [~P]/~≡ ~v [~Q]/~≡ ,
∃~P′ ∈ [~P]/~≡ : ∃ ~Q′ ∈ [~Q]/~≡ : ~P′ ~v ~Q′.

The reduced product can yield much more precise results than the Cartesian product by computing
more precise abstract values for each abstract domain, while staying in the same class of the reduced
product. Computing such abstract values is naturally a reduction (see section 9.3) where information
from one abstract domain is transferred to other abstract domains to increase their precision.

Example 9.3. A classical example [Cousot and Cousot 1979c] is the product of a sign and a
parity analysis where the discovery that x = 0 by the sign analysis and that x mod 2 = 1 by the
parity analysis in a test/guard yields ⊥ (non-reachability) for both abstract domains, a fact that
neither abstraction could infer by itself thus missing unreachability of subsequent code (which may

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Patrick Cousot et al.

also be the case of their conjunction for this subsequent code). Sign and parity reduction [Cousot
and Cousot 1979c] was generalized to intervals and simple congruences in [Granger 1989].

9.2. The Reduced Product is the Greatest Lower Bound in the Poset of Abstract Domains

We can compare the expressiveness of abstract domains by defining an abstract domain A1 to be
more precise than A2 whenever any property exactly expressible by A2 is also expressible by A1.
Two abstract domains are equivalent when they are equally expressive.

Definition 9.4 (Precision of abstractions). Let 〈Ai, vi〉, i ∈ {1, 2}, be abstract domains with
concretization γi ∈ Ai → L into the concrete domain 〈L, 6〉. We say that A2 is less precise (also
expressive, refined, etc...) than A1 (written A1 P A2) whenever γ2(A2) ⊆ γ1(A1). They are equivalent
whenever γ1(A1) = γ2(A2) (written A1 PQ A2).

So 〈℘(L), ⊇〉 is isomorphic to the complete lattice of all abstract domains quotiented by PQ and
ordered by precision P. Each abstract domain 〈A, v〉 is PQ-equivalent to an element of this lattice
℘(L) of all abstract domains [Cousot and Cousot 1979c]. In case of abstractions A1 , ρ1(L) and
A2 , ρ2(L) defined by upper closures ρ1 and ρ2 on 〈L, 6〉, we have A1 P A2 ⇔ ρ2(L) ⊆ ρ1(L)
⇔ ρ1 6̇ ρ2 [Cousot and Cousot 1979c]. In case of abstractions defined by Galois connections 〈L,
6〉 −−−−→←−−−−α1

γ1
〈A1, v1〉 and 〈L, 6〉 −−−−→←−−−−α2

γ2
〈A2, v2〉, we have A1 P A2 ⇔ γ1 ◦ α1(L) 6̇ γ2 ◦ α2(L) [Cousot

and Cousot 1979c].

Definition 9.5 (Closure by intersection). An abstract domain 〈A, v〉 with concretization γ ∈
A 1
→ L into a meet semi-lattice (resp. complete lattice) 〈L, 6, ∧〉 is closed by finite (resp. infinite)

intersection if and only if ∀P,Q ∈ A : ∃R ∈ A : γ(R) = γ(P) ∧ γ(Q) (resp. ∀P ∈ ℘(A) : ∃R ∈ A :
γ(R) =

∧
γ(P)).

When considering only abstract domains that are closed by finite intersection, the reduced prod-
uct can equivalently be understood as the greatest lower bound in the complete lattice of abstract
domains, up to the equivalence PQ.

Theorem 9.6 (Equivalent definition of the reduced product (II)). Let the meet semi-lattice 〈L,
6, 1, ∧〉 be a concrete domain, 〈Ai, vi, >i〉, i ∈ ∆, ∆ finite, be abstract domains with increasing
concretization γi ∈ Ai

1
→ L and supremum >i such that γi(>i) = 1. The reduced product 〈~A/~≡, ~v,

[~>]/~≡〉 is

more precise than 〈Ai, vi〉, i ∈ ∆,
less precise than any other 〈L, v〉, which is closed by finite intersection and more precise than
〈Ai, vi〉, i ∈ ∆.

If 〈Ai, vi, >i〉, i ∈ ∆ are closed by finite intersection then their reduced product 〈~A/~≡, ~v, [~>]/~≡〉 is
the unique such abstract domain (up to the equivalence PQ).

Proof. For all i ∈ ∆, Pi ∈ Ai, we have ~γ([~>]/~≡[i← Pi]) ,
∧

j∈∆\{i} γi(> j)∧γi(Pi) =
∧

j∈∆\{i} 1∧
γi(Pi) = 1 ∧ γi(Pi) = γi(Pi) proving that γi(Ai) ⊆ ~γ(~A/~≡) so that 〈~A/~≡, ~v〉 is more precise than the
〈Ai, vi〉, i ∈ ∆.

If 〈L, v〉 with γ ∈ L 1
→L is more precise than the 〈Ai, vi〉 then γi(Ai) ⊆ γ(L). Given ~P ∈ ~A/~≡, we

have γi(~Pi) ∈ γ(L) so there exists P ∈ L such that γ(P) =
∧

i∈∆ γi(~Pi) , ~γ(~P) since 〈L, v〉 is closed
by finite intersection and ∆ is finite. It follows that ~γ(~A/~≡) ⊆ γ(L).

The property is characteristic since the 〈Ai, vi, >i〉, i ∈ ∆ are closed by finite intersection so that
their reduced product 〈~A/~≡, ~v, [~>]/~≡〉 is also closed by intersection and therefore any other abstract
domain 〈L, v〉 with the same property would have both ~γ(~A/~≡) ⊆ γ(L) and γ(L) ⊆ ~γ(~A/~≡) hence
would, by antisymmetry, be an equivalent abstract domain.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:29

9.3. Abstract Domain Reduction

Different abstract domains A1 PQ A2 with the same expressive power may yield different abstract
properties which, after iteration, may yield sound but quite different results. In particular, this is
the case when the best transformer is difficult to compute algorithmically, so that a strict over-
approximation FIJPK Ȧ α ◦ F

I
JPK ◦ γ has to be used instead. In such a case, reduction may be

useful.

Example 9.7. Consider the abstraction of 〈℘(Z), ⊆〉 by the complete lattice 〈A, v〉 where A ,
{⊥, 0,+,+1,−,−1,>}, ⊥ @ 0 @ + @ +1 @ > and 0 @ − @ −1 @ > with γ(+) = γ(+1) = {z ∈
Z | z > 0} and γ(−) = γ(−1) = {z ∈ Z | z 6 0}. The positive and negative properties have distinct
but equivalent encodings in the abstract. The two transformers f1(0) = f1(+) = +, f1(+1) = > and
f2(0) = +, f2(+) = +1, f2(+1) = > are equivalent in the concrete in that ∀P ∈ A : γ(f1(P)) =

γ(f2(P)) but their composition is not since γ(f1(f1(f1(0)))) = γ(+) , γ(>) = γ(f2(f2(f2(0)))).

Another example is the reduction of the Cartesian product of abstract domains into their reduced
product.

Example 9.8. Consider the Cartesian product of sign and parity in example 9.3 with a reduction
of the abstract value of x from positive or zero and odd to strictly positive [Cousot and Cousot
1979c]. The transformer for 1/x now yields positive instead of > as required when x can be zero, a
strict improvement of precision.

The reduction of an abstract domain consists in eliminating the redundant abstract properties by
putting them in normal form.

Example 9.9. Continuing example 9.7, let us define the reduction ργ(a) ,d {
a′ ∈ A

∣∣∣ γ(a) 6 γ(a′)
}

such that ργ(+1) = +, ργ(−1) = − and otherwise ργ(a) = a. The
reduced abstract domain is ργ(A) = {⊥, 0,+,−,>} where the redundant abstract properties +1 and
−1 have been eliminated.

Theorem 9.10 (Reduction Operator). Let 〈C, 6〉 −−−→←−−−α
γ
〈A, v〉 where 〈A, v, ⊥, >, t, u〉 is a

complete lattice. Define

ργ(a) ,
l {

a′ ∈ A
∣∣∣ γ(a) 6 γ(a′)

}
then ργ is a lower closure (reductive, increasing and idempotent) and

〈C, 6〉 −−−−−→−→←−−−−−−
ργ◦α

γ
〈ργ(A), v〉 .

Proof. ργ is reductive since a ∈ {a′ ∈ A | γ(a) 6 γ(a′)} by reflexivity and so ργ(a) 6 a by
def. glb u.

If a 6 b then γ(a) 6 γ(b) so γ(b) 6 γ(b′) implies γ(a) 6 γ(b′) hence {b′ | γ(b) 6 γ(b′)} ⊆
{a′ | γ(a) 6 γ(a′)} so ργ(a) =

d
{a′ | γ(a) 6 γ(a′)} 6

d
{b′ | γ(b) 6 γ(b′)} = ργ(b).

For idempotence, we have

ργ(ργ(a))
=

l
{a′ ∈ A | γ(ργ(a)) 6 γ(a′)} Hdef. ργI

=
l
{a′ ∈ A | γ(

l
{a′′ ∈ A | γ(a) 6 γ(a′′)}) 6 γ(a′)} Hdef. ργI

=
l
{a′ ∈ A |

∧
{γ(a′′) ∈ A | γ(a) 6 γ(a′′)} 6 γ(a′)} HIn a Galois connection, γ preserves meetsI

=
l
{a′ ∈ A | γ(a) 6 γ(a′)} Hsince γ(a) =

∧
{γ(a′′) ∈ A | γ(a) 6 γ(a′′)} by reflexivity and def. glbI

= ργ(a) Hdef. ργI

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Patrick Cousot et al.

We conclude that ργ is a lower closure (reductive, increasing and idempotent) on A.

By the Galois connection, x 6 γ(y) implies α(x) 6 y implies ργ ◦ α(x) 6 y since ργ is a lower
closure hence reductive and y = ργ(y) is closed.

Inversely, if x ∈ C and y ∈ ργ(A) then

ργ ◦ α(x) 6 y
⇒

l
{a′ ∈ A | γ(α(x)) 6 γ(a′)} 6 y Hdef. ◦ and ργI

⇒ γ(
l
{a′ ∈ A | γ(α(x)) 6 γ(a′)}) 6 γ(y) HIn a Galois connection, γ increasingI

⇒ (
∧
{γ(a′) ∈ A | γ(α(x)) 6 γ(a′)}) 6 γ(y) HIn a Galois connection, γ preserves existing glbsI

⇒ γ ◦ α(x) 6 γ(y) Hreflexivity for a′ = α(x) and def. glbI
⇒ x 6 γ(y) HIn a Galois connection, γ ◦ α is extensive and transitivityI

The following theorem shows that the reduction does not change the meaning of reduced abstract
properties.

Theorem 9.11. γ = γ ◦ ργ

Proof. For all x ∈ C:

γ ◦ ργ ◦ α(x)

= γ(
l̇
{a | γ(α(x)) 6 γ(a)}) Hdef. ργI

=
∧
{γ(a) | γ(α(x)) 6 γ(a)}) HIn a Galois connection, γ preserves meetsI

= γ(α(x)) Hchoosing a = α(x) and def. glbI

and so

γ

= γ ◦ α ◦ γ HGalois connectionI
= γ ◦ ργ ◦ α ◦ γ Hsince γ ◦ α = γ ◦ ργ ◦ αI
6 γ ◦ ργ Hα ◦ γ is reductive and γ and ργ are increasingI

Moreover ργ is a lower closure on 〈
�

i∈∆ Ai, 6∆〉 so ργ is reductive (ργ v̇∆ 1) hence γ ◦ ργ v̇ γ since
γ is increasing. By antisymmetry, γ ◦ ργ = γ.

As shown by example 9.7, although abstract domains and transformers may have equivalent con-
cretizations, the equivalent but more precise abstract properties propagate through several trans-
formers and the resulting transformed properties and fixpoint computations may be ultimately more
precise in the concrete.

Notice also that an implementation of the reduction of an abstract domain A does not need consid-
erable modifications of the implementation of A. The reduction operator ργ may simply be applied
before and after the operations of abstract domain A (although maybe not after a widening/narrow-
ing since the reduction might introduce divergences).

9.4. The Reduced Product is the Meaning-Preserving Reduction of the Cartesian Product

The reduced product of abstract domains Ai, i ∈ ∆ can be encoded by a reduction of the Carte-
sian product

�
i∈∆ Ai using a meaning-preserving reduction operator ~ρ mapping any element of the

Cartesian product to the smallest representative of its equivalence class. This yields a more construc-
tive definition of reduction and later leads to algorithms to perform or approximate this reduction.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:31

Definition 9.12 (Meaning-preserving Map/Reduction). Let 〈A, v〉 be a poset that is an abstract
domain with concretization γ ∈ A 1

→C where 〈C, 6〉 is the concrete domain. A meaning-preserving
map is ρ ∈ A → A such that ∀P ∈ A : γ(ρ(P)) = γ(P). The map is a reduction if and only if
∀P ∈ A : ρ(P) v P.

Theorem 9.13 (Equivalent definition of the reduced product (III)). Assume that 〈L, 6〉 is a
poset and ∀i ∈ ∆, each 〈Ai, vi, 0i, 1i, ti, ui〉 is a complete lattice such that 〈L, 6〉 −−−−→←−−−−αi

γi
〈Ai, vi〉.

Let 〈~A, ~v〉 be the Cartesian product of the 〈Ai, vi〉, i ∈ ∆ with concretization ~γ as in definition 9.1.

Define ~α , λ x . �i∈∆ αi(x) such that 〈L, 6〉 −−−→←−−−
~α

~γ
〈~A, ~v〉. Let ~ρ , λ ~P . ∧

{~P′ | ~γ(~P) 6 ~γ(~P′)} such

that 〈L, 6〉 −−−−−→−→←−−−−−−−
~ρ ◦ ~α

~γ
〈~ρ(~A), ~v〉.

Then ~ρ is meaning-preserving and 〈~ρ(~A), ~v〉 is the reduced product of the 〈Ai, vi〉, i ∈ ∆.

Proof. 〈L, 6〉 −−−→←−−−
~α

~γ
〈~A, ~v〉 and 〈L, 6〉 −−−−−→−→←−−−−−−−

~ρ ◦ ~α

~γ
〈~ρ(~A), ~v〉 follow directly from the hypoth-

esis ∀i ∈ ∆ : 〈L, 6〉 −−−−→←−−−−αi

γi
〈Ai, vi〉.

Let us show that ~ρ is meaning-preserving.

~γ ◦ ~ρ(~P)
= ~γ(

∧
{~P′ | ~γ(~P) 6 ~γ(~P′)}) Hdef. ~ρI

=
∧
{~γ(~P′) | ~γ(~P) 6 ~γ(~P′)} H〈L, 6〉 −−−→←−−−

~α

~γ
〈~A, ~v〉 so ~γ preserves existing glbI

= ~γ(~P) Hchoosing ~P′ = ~P and def. glbI

It follows that 〈~ρ(~A), ~v〉 is more precise that the 〈Ai, vi〉 in that ~γ ◦ ~ρ ◦ ~α 6̇ γi ◦ αi as follows.

~γ ◦ ~ρ ◦ ~α(x)
= ~γ ◦ ~α(x) H~ρ is meaning-preservingI
=

∧
k∈∆

γk((
�
i∈∆

αi(x))k) Hdef. ~γ and ~αI

=
∧
k∈∆

γk(αk(x)) Hdef. index selectionI

~v γi ◦ αi(x) Hfor any i ∈ ∆, by def. glbI

Let M be an abstraction 〈L, 6〉 −−−−→←−−−−
~α′

~γ′

〈M, ~v〉 that is more precise than the 〈Ai, vi〉, i ∈ ∆ in

that ∀i ∈ ∆ : ~γ′ ◦ ~α′ v̇ γi ◦ αi. So ~γ′ ◦ ~α′ v̇
∧̇

i∈∆ γi ◦ αi = ~γ ◦ (~ρ ◦ ~α) as just shown above, so 〈~ρ(~A), ~v〉
is less precise than 〈M, ~v〉.

In conclusion, for all i ∈ ∆, 〈~ρ(~A), ~v〉 P 〈Ai, vi〉 and if ∀i ∈ ∆ : 〈M, ~v〉 P 〈Ai, vi〉 then 〈M,
~v〉 P 〈~ρ(~A), ~v〉 proving, by theorem 9.6, that 〈~ρ(~A), ~v〉 is the reduced product of 〈Ai, vi〉, i ∈ ∆.

10. ITERATED REDUCED PRODUCT

The strong reduction operators ργ and ~ρ of sections 9.3 and 9.4 may be difficult to compute algo-
rithmically. In that case one may use a weaker reduction, which makes a property more precise in
the abstract without changing its concrete meaning. The precision of such a weak reduction can be
improved in the abstract by iteration. This yields a weaker form of reduced product by iteration of
pairwise weak reductions.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Patrick Cousot et al.

10.1. Iterated Weak Reduction

By iterating a weak reduction, one can improve even more the precision of a static analysis without
altering its soundness. A particular case of iterated reduction was proposed by [Granger 1992]
following [Cousot and Cousot 1979c].

Definition 10.1 (Iterated Reduction). Let 〈A, v〉 be a poset that is an abstract domain with
concretization γ ∈ A 1

→ C where 〈C, ⊆〉 is the concrete domain and ρ ∈ A → A be a meaning-
preserving reduction.

The iterates of the reduction are ρ0 , λ P . P, ρλ+1 = ρ(ρλ) for successor ordinals and ρλ =d
β<λ ρ

β for limit ordinals.

The iterates are well-defined when the greatest lower bounds
d

(glb) do exist in the poset 〈A,
v〉.

Theorem 10.2 (Finite iterated reduction). The finite iterates ρn, n ∈ N of a meaning-
preserving reduction ρ on 〈A, v〉 are meaning-preserving and more precise in the abstract.

Proof. Let 〈ρn, n ∈ N〉 be the iterates of a meaning-preserving reduction ρ. Observe, by recur-
rence, that the iterates form a descending chain since ρ is reductive so ∀n < m : ρn(P) v ρn(P) v P.
Meaning-preservation follows by recurrence. For the basis, γ(ρ0(P)) = γ(P) by def. of ρ0. For induc-
tion, γ(ρn+1(P)) , γ(ρ(ρn(P))) = γ(ρn(P)) = γ(P), since ρ is meaning-preserving and by induction
hypothesis.

Notice, however, that the limit of the iterates of a meaning-preserving reduction may not be
meaning-preserving.

Theorem 10.3 (Limit of an iterated reduction). Let ρ be a meaning-preserving reduction that
iterates from P are well-defined. Then their limit ρ∗(P) exists. We have ∀β < λ : ρ∗(P) v ρλ(P) v
ρβ(P) v P, but the limit is in general not meaning-preserving.

Proof. Assuming the iterates of ρ from P ∈ A are well-defined, we observe, by transfinite induc-
tion, that the iterates form a descending chain since ρ is reductive and by definition of the glb

d
. By

the antisymmetry of v in the poset 〈A, v〉, a fixpoint must be reached at rank ε of the iterates when
the ordinal ε has a cardinality greater than that of A since, otherwise, the iterates all contained in A
would have a cardinality strictly greater than that of A. The iterates must be stationary beyond ε so
that the limit ρ∗(P) , ρε(P) is well-defined. It follows that ∀β < λ : ρ∗(P) v ρλ(P) v ρβ(P) v P
since the iterates are v-decreasing.

To prove that the limit is in general unsound, consider the following example.

C A

0

0

1

2

3

ωω
γ

γ

...

ρ
ρ
ρ
ρ
...

ρ

The finite iterates of the reduction ρ from 0 form a decreasing chain whose elements are all meaning-
preserving since γ(ρn(0)) = γ(0). These iterates have a well-defined limit ρ∗(0) =

d
n∈N ρn(0) = ω

which is a reduction, but not meaning-preserving, since γ(ω) , γ(0).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:33

We now study sufficient conditions for the limit of a meaning-preserving reduction to itself be
meaning-preserving. To do so we study how to improve a meaning-preserving map or to combine
several sound meaning-preserving maps on the abstract domain into a more precise one, to get a
meaning-preserving lower closure operator.

Definition 10.4. Let 〈L, v, ⊥, >, t, u〉 be a complete lattice and f ∈ L→L. Define

I(f) , λ x . l {
f (y)

∣∣∣ x v y
}
.

I(f) is the greatest increasing operator on L less than or equal to f (dual of [Cousot 1978, Th.
2.4.0.2]) and so I is a lower closure operator on L 7→ L such that I(L 7→ L) = L 1

→L is the complete
lattice of increasing operators on L ordered pointwise. We observe that, if f is a meaning-preserving
map, then so is I(f). Because I(f) v̇ f , it is a more precise meaning-preserving map in the abstract.

Lemma 10.5. If γ preserves existing greatest lower bounds 19 and f is a meaning-preserving
map (i.e. γ(f (x)) = γ(x)) then I(f) is a meaning-preserving map (i.e. γ(I(f)(x)) = γ(x)).

Proof.

γ(I(f)(x))
= γ(

l {
f (y)

∣∣∣ x v y
}
) Hdef. II

=
l {

γ(f (y))
∣∣∣ x v y

}
Hγ preserves glbsI

=
l {

γ(y)
∣∣∣ x v y

}
H f is a meaning-preserving map so γ(f (x)) = γ(x)I

= γ(
l {

y
∣∣∣ x v y

}
) Hγ preserves glbsI

= γ(x) Hdef. glbI

Definition 10.6. Let 〈L, v, ⊥, >, t, u〉 be a complete lattice and f ∈ L→L. Define
R(f) , λ x . x u f (x).

By the dual of [Cousot 1978, Th. 4.2.3.0.3], R(f) is the greatest reductive operator on L less than
or equal to f and so R is a lower closure operator on L 7→ L such that R(L 7→ L) = L ↓

→ L is the
complete lattice of reductive operators on L ordered pointwise. We observe that if f is a meaning-
preserving map then so is R(f). Because R(f) v̇ f , it is a more precise meaning-preserving map in
the abstract.

Lemma 10.7. If γ preserves existing greatest lower bounds and f is a meaning-preserving map
(i.e. γ(f (x)) = γ(x)) then R(f) is a meaning-preserving map (i.e. γ(R(f)(x)) = γ(x)).

Proof.

γ(R(f)(x))
= γ(x u f (x) Hdef. RI
= γ(x) u γ(f (x)) Hγ preserves greatest lower boundsI
= γ(x) u γ(x) H f is a meaning-preserving mapI
= γ(x) Hdef. glbI

Given a meaning-preserving map f , it can be improved as I ◦ R(f) = R ◦ I(f). However to
get a normal form of abstract properties, we need a meaning-preserving map that is idempotent
(since the normal form of a normal form is itself). The normal form can be obtained by iterating the

19 Equivalently, γ is the upper adjoint of a Galois connection.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Patrick Cousot et al.

meaning-preserving map f or better I ◦ R(f) = R ◦ I(f). Because theorem 10.3 shows that the limit
may not be meaning-preserving, we study sufficient conditions for the limit of a meaning-preserving
increasing reduction to be meaning-preserving. We also consider in corollary 10.13 the more general
case of combining multiple meaning-preserving maps into a single meaning-preserving map.

Lemma 10.8. If 〈L, 6, ⊥, >, u, t〉 is a complete lattice 20 and f ∈ L 1
→ L is increasing then

C(f) , λ x ∈ L . gfp6> λ y . x u f (y) is the 6̇-greatest lower closure on L less than or equal to f .

Proof. f ∈ L 1
→L is increasing and 〈L, 6〉 is a complete lattice so C(f)x , gfp6> λ y . x u

f (y) =
⊔
{y | y 6 x u f (y)} =

⊔
{y | y 6 x ∧ y 6 f (y)} is well-defined by Tarski fixpoint theorem

[Tarski 1955].

Let us first prove that C(f) is a lower closure on the complete lattice 〈L, 6〉 that is reductive,
increasing and idempotent.

We have C(f)x = x u f (C(f)x) 6 x proving C(f) to be reductive.
If x 6 y then λ z . x u f (z) 6̇ λ z . y u f (z) so z 6 x u f (z) implies z 6 y u f (z) proving

C(f)x = gfp6> λ z . xu f (z) =
⊔
{z | z 6 xu f (z)} 6

⊔
{z | z 6 yu f (z)} = gfp6> λ z . yu f (z) = C(f)y

so C(f) is increasing.
To prove that C(f) is idempotent, we observe that C(f) is reductive and increasing so

C(f)(C(f)(x)) 6 C(f)(x). Since C(f) is reductive, C(f)x 6 x and C(f)x = x u f (C(f)x) 6 f (C(f)x)
so C(f)x ∈ {y | y 6 x ∧ y 6 f (y)} proving C(f)x 6

⊔
{y | y 6 C(f)x ∧ y 6 f (y)} = C(f)(C(f)x) that

is C(f)(C(f)(x)) 6 C(f)(x) by antisymmetry.
If f 6̇ g then λ y . x u f (y) 6̇ λ y . x u g(y) so C(f) , λ x ∈ L . gfp6> λ y . x u f (y) 6̇

λ x ∈ L . gfp6> λ y . x u g(y) , C(g) proving C to be 6̇-increasing.
Let us prove that if ρ is a lower closure on 〈L, 6〉 then C(ρ) = ρ. We have

C(ρ)x
=

⊔
{y | y 6 x ∧ y 6 ρ(y)} Hdef. C(ρ) and [Tarski 1955]I

=
⊔
{y | y 6 x ∧ y = ρ(y)} Hρ reductive and antisymmetry, reflexivity for the reciprocalI

= ρ(x) Hsince ρ(x) ∈ {y | y 6 x ∧ y = ρ(y)} since ρ is reductive and idempotent, y 6 x ∧ y = ρ(y)
implies y 6 ρ(x) since ρ is increasing, and def. lub

⊔
I

Finally, if ρ is a lower closure on 〈L, 6〉 such that ρ 6̇ f then ρ = C(ρ) 6̇ C(f) since C is the
identity for lower closures and is increasing proving that C(f) is the 6̇-greatest lower closure on L
less than or equal to f .

Here are two additional characterizations of the 6̇-greatest lower closure C(f) on L less than or
equal to f when f ∈ L ↓

→L is increasing and reductive. Given posets 〈L, v〉 and 〈P, 6〉, we let L ↓
→P

be the set of increasing and reductive maps of L into P.

Lemma 10.9. If 〈L, 6, 0, ∧〉 is a complete lattice 21 and f ∈ L ↓
→ L is increasing and reductive

then C(f) = gfp6̇f λ g ∈ L ↓
→L . g ◦ g.

Proof. Because 〈L, 6, 1, ∨〉 is a complete lattice, 〈L ↓
→ L, 6̇, λ x . 1, ∧̇〉 is a complete

lattice pointwise.
g ◦ g ∈ (L ↓

→L) since the composition of increasing and reductive functions is increasing and
reductive.

Let us prove that λ g . g ◦ g ∈ (L ↓
→L) 7→ (L ↓

→L) is increasing. Indeed if g1 6̇ g2 then by def.
of a pointwise ordering g1 ◦ g2 6̇ g2 ◦ g2 and g1 ◦ g1 6̇ g1 ◦ g2 since g1 is increasing, so by transitivity
g1 ◦ g1 6̇ g2 ◦ g2 proving that λ g . g ◦ g ∈ (L ↓

→L) 1
→ (L ↓

→L)

20 The theorem also holds in a dual cpo.
21 The theorem also holds in a dual cpo.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:35

If f ∈ L ↓
→ L is increasing and reductive then f ◦ f 6̇ f so f is a post-fixpoint of λ g . g ◦ g

when considered as a function of (L ↓
→L) 1

→ (L ↓
→L)

It follows that gfp6̇f λ g ∈ L ↓
→L . g ◦ g exists and is pointwise less than or equal to f by Tarski

fixpoint theorem on complete lattices [Tarski 1955].
Because f ∈ L ↓

→ L, λ g ∈ L ↓
→L . g ◦ g ∈ (L ↓

→ L) 1
→ (L ↓

→ L), and 〈L ↓
→ L, 6̇, λ x . 1, ∧̇〉 is a

complete lattice, we have (gfp6̇f λ g ∈ L ↓
→L . g ◦ g) ∈ L ↓

→L, which is increasing and reductive.

Moreover, ρ , gfp6̇f λ g ∈ L ↓
→L . g ◦ g satisfies ρ = ρ ◦ ρ by the fixpoint property proving

ρ , gfp6̇f λ g ∈ L ↓
→L . g ◦ g to be idempotent hence an lower closure.

If ρ′ is another lower closure on L less than of equal to f we have ρ′ 6̇ f and ρ′ = ρ′ ◦ ρ′ so,
by [Tarski 1955] fixpoint theorem, gfp6̇f λ g ∈ L ↓

→L . g ◦ g =
∨̇
{g ∈ L ↓

→L | g 6̇ f ∧ g = g ◦ g} >̇ ρ′

by def. lub
∨̇

.

Lemma 10.10. If 〈L, 6, 1, ∧〉 is a complete lattice 22 and f ∈ L ↓
→L is increasing and reductive

then C(f) = λ x . gfp6x f .

Proof. Define g , gfp6̇f λ g′ ∈ L ↓
→L . g′ ◦g′. We just showed in lemma 10.9 that g = C(f)

is the 6̇-least closure that is greater than or equal to f .

Given any x ∈ L, x is a post-fixpoint of f ∈ L ↓
→ L by reductivity. Since 〈L, 6, 1, ∧〉 is a

complete lattice and f is increasing, gfp6x f exists, hence λ x . gfp6x f is well-defined.

Define h(x) , gfp6x f . Let us prove that h is a lower closure.
We have h(x) = gfp6x f 6 x so h is reductive.
If x 6 y then z 6 x implies z 6 y by transitivity so {z | z 6 x ∧ f (z) = z} ⊇ {z | z 6 y ∧ f (z) = z}

proving h(x) = gfp6x f =
∨
{z | z 6 x ∧ f (z) = z} 6

∨
{z | z 6 y ∧ f (z) = z} = gfp6y f = h(y) by the

Tarski fixpoint theorem [Tarski 1955] and the definition lub
∨

.
h(h(x)) = gfp6h(x) f = h(x) since f (h(x)) = h(x) and h(x) 6 h(x) by reflexivity, proving h to be

idempotent.

∀x ∈ L, we have h(x) = gfp6x f 6 x so h(x) = f (h(x)) 6 f (x) since f is increasing and by
fixpoint property, so h 6̇ f . It follows that h is a lower closure on L that is less than or equal to f , so
h 6̇ g by lemma 10.9.

∀x ∈ L, we have g(x) 6 x since g is reductive. g , gfp6̇f λ g′ ∈ L ↓
→L . g′ ◦ g′ so g 6̇ g. In

particular, g(x) = g(g(x)) 6̇ f (g(x)) by idempotence. It follows that g(x) 6 gfp6x f , h(x) by def.
gfp . We conclude that g 6̇ h pointwise.

By antisymmetry, we have shown that h = g.

From lemmas 10.8, 10.9, and 10.10 we obtain a means for transforming a meaning-preserving map
into a stronger one, which is a meaning-preserving lower closure.

Theorem 10.11. If 〈L, v, ⊥, >, u, t〉 is a complete lattice, γ preserves existing glbs, f ∈ L→L
is meaning-preserving (i.e. γ ◦ f = γ) then the v̇-least lower closure C ◦ R ◦ I(f) on L greater than
or equal to f is also meaning-preserving i.e. (γ ◦ C ◦ R ◦ I(f) = γ).

Proof. By lemmas 10.5 and 10.7, R ◦ I(f) is increasing and reductive and meaning preserving
γ ◦ R ◦ I(f) = γ ◦ f . By lemma 10.10 applied to R ◦ I(f) and [Cousot and Cousot 1979b], for
all x ∈ L, C ◦ R ◦ I(f)x is the limit of the decreasing iterates Xδ, δ ∈ O of R ◦ I(f) from x.
By definition of the iterates, we have γ(X0) = γ(x). For a successor ordinal, we have γ(Xδ+1) =
γ(R ◦ I(f)(Xδ)) = γ(Xδ) = γ(x) since R ◦ I is meaning preserving and by the induction hypothesis.

22 The lemma also holds for a dual cpo.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Patrick Cousot et al.

For a limit ordinal, γ(Xλ) = γ(
d
δ<λ Xδ) =

d
δ<λ γ(Xδ) =

d
δ<λ γ(x) = γ(x) given the fact that

γ is glb-preserving, the induction hypothesis, and the definition of glb. By transfinite induction,
∀δ ∈ O : γ(Xδ) = γ(x). For the limit Xε , this implies C ◦ R ◦ I(f)(x) = gfp6x R ◦ I(f) = Xε proving
γ(C ◦ R ◦ I(f)(x)) = γ(x).

10.2. Reduced Product of Abstractions Defined by Upper Closures

As another immediate consequence of lemmas 10.8, 10.9, and 10.10, we get the dual of [Ward 1942,
Th. 4.2], [Cousot and Cousot 1979a, Th. 4.3] as well as a characterization of the lub in this lattice,
extending [Cousot and Cousot 1979a, Th. 4.3].

Corollary 10.12. C is a lower closure on the complete lattice 〈L 1
→L, 6̇〉 ordered pointwise so

that the set 〈C(L 1
→L), 6̇〉 of lower closures in L is a complete lattice.

Proof. By the dual of [Monteiro and Ribeiro 1942], if R is a subset of a poset 〈L, v〉 such that
for any x ∈ L, the set

{
y ∈ R

∣∣∣ y v x
}

contains a greatest element ρ(x), then ρ is a lower closure
operator and R = ρ(L). So, by lemma 10.8, the subset of lower closures of 〈L 1

→L, 6̇〉 is C(L 1
→L).

Moreover by the dual of [Ward 1942, Th. 4.1], [Monteiro and Ribeiro 1942, Th. 8.2], it is a complete
lattice.

Corollary 10.13. Let 〈L, 6, 0, 1, ∨, ∧〉 be a complete lattice. The glb of a set F of lower
closures in the complete lattice of lower closures on L is

C(
∧̇

F) , λ x ∈ L . gfp61 λ y . x ∨
∧
f∈F

f (y) (a)

= gfp6̇∧̇
F
λ g ∈ L ↓

→L . g ◦ g (b)

= λ x . gfp6x
∧̇

F (c) ut

Proof. Let F be a set of lower closures on L.
∧̇

F ∈ L ↓
→L is reductive and increasing (but may be

not idempotent) so, by lemma 10.8, C(
∧̇

F) , λ x ∈ L . gfp6> λ y . xu(
∧̇

F)(y) is the 6̇-greatest lower
closure on L less than or equal to

∧̇
F, hence to each f ∈ F by def. of

∧̇
. It follows that λ F .C(

∧̇
F)

is the greatest lower bound in the poset of lower closures ordered pointwise, which is therefore a
complete lattice [Ward 1942, Th. 4.2], [Cousot and Cousot 1979a, Th. 4.3]. By lemma 10.9, so is
gfp6̇∧̇

F
λ g ∈ L ↓

→L . g ◦ g proving that C(
∧̇

F) = gfp6̇∧̇
F
λ g ∈ L ↓

→L . g ◦ g by unicity of the greatest

lower bound. By lemma 10.8, this is equal to λ x ∈ L . gfp61 λ y . x∧
∧

f∈F f (y) and, by lemma 10.10,
equal to λ x . gfp6x

∧
F.

In case F is finite in corollary 10.13, we can replace
∧̇

F by ©
ρ∈F

ρ where
n
©
i=1

fi , fπ1
◦ . . . ◦ fπn is the

function composition for some arbitrary permutation π of [1, n].

Corollary 10.14. Let 〈L, 6, 0, 1, ∨, ∧〉 be a complete lattice and F be a finite set of lower
closures on L. Then C(

∧̇
F) = C(© F).

Proof. If ρ1 and ρ2 are lower closures on L then, by the dual of [Cousot 1978, proposition
4.2.4.0.1], C(ρ1 ∧̇ ρ2) = C(ρ1 ◦ ρ2) = C(ρ2 ◦ ρ1). Indeed, by corollary 10.12, C is reductive so
C(ρ1 ∧̇ ρ2) 6̇ ρ1 ∧̇ ρ2 6̇ ρ1 and C(ρ1 ∧̇ ρ2) 6̇ ρ2 so that, by idempotence of C(ρ1 ∧̇ ρ2) in lemma 10.8
and composition of increasing functions, C(ρ1 ∧̇ ρ2) = C(ρ1 ∧̇ ρ2) ◦ C(ρ1 ∧̇ ρ2) 6̇ ρ1 ◦ ρ2. Since ρ2
is reductive and ρ1 is increasing, we have ρ1 ◦ ρ2 6̇ ρ1. Since ρ1 is reductive, we have ρ1 ◦ ρ2 6̇ ρ2
proving ρ1 ◦ ρ2 6̇ ρ1 ∧̇ ρ2 by def. glb. By corollary 10.12, C is increasing and idempotent so
C(ρ1 ∧̇ ρ2) = C(C(ρ1 ◦ ρ2)) 6̇ C(ρ1 ◦ ρ2) 6̇ C(ρ1 ∧̇ ρ2) proving C(ρ1 ∧̇ ρ2) = C(ρ1 ◦ ρ2) by
antisymmetry and so C(ρ1 ∧̇ ρ2) = C(ρ2 ◦ ρ1) since the glb ∧̇ is commutative.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:37

It follows, by recurrence on the cardinality n of F = {ρ1, . . . , ρn}, which is finite, that C(© F) =

C(©
ρ∈F

ρ) = C(
n
©
i=1
ρi) , C(ρπ1

◦ . . . ◦ ρπn) = C(
∧̇
{ρπ1 , . . . , ρπn }) = C(

∧̇
{ρ1, . . . , ρn}) = C(

∧̇
F) is

uniquely and well defined for all permutations π of [1, n].

Observe that an abstraction 〈L, 6, 0, 1, ∨, ∧〉 −−−→←−−−α
γ
〈A, v〉 is equivalent to the abstract domain

〈γ ◦ α(L), 6〉 since A PQ γ ◦ α(L) where γ ◦ α is an upper closure so that abstract domains can
be defined by upper closure [Cousot and Cousot 1979c]. In this case, the dual of corollary 10.13
provides the lub of such upper closures, that is the reduced product of abstractions understood as
upper closures.

10.3. Iterated Pairwise Reduction of the Cartesian Product

The present definition of the most precise meaning-preserving reduction ~ρ in theorem 9.13 simulta-
neously involves all abstract domains of the product. Implementations of the most precise reduction
~ρ (if it exists) can hardly be modular since in general adding a new abstract domain to increase pre-
cision implies that the global reduction operator ~ρ, hence the static analyzer/verifier, must be com-
pletely redesigned. On the contrary, the pairwise iterated product reduction below reduces abstract
domains two by two, and so is more modular, in that the introduction of a new abstract domain only
requires defining the reduction with the other, already existing, abstract domains. This provides a
general algorithm for constructing/approximating reduced products by iterated pairwise reductions,
which can be implemented once for all in the static analyzer/verifier.

Definition 10.15 (Iterated pairwise reduction). Let 〈Ai, vi〉 be abstract domains with increas-
ing concretization γi ∈ Ai

1
→L into the concrete domain 〈L, 6, ∧〉. Define ~γ(~P) ,

∧
i∈∆ γi(~Pi) (as in

definition 9.1).
For i, j ∈ ∆, i , j, let ρi j ∈ 〈Ai × A j, vi j〉 7→ 〈Ai × A j, vi j〉 be pairwise meaning-preserving

reductions (so that ∀〈x, y〉 ∈ Ai × A j : ρi j(〈x, y〉) vi j 〈x, y〉 and (γi × γ j) ◦ ρi j = (γi × γ j) 23).
Define the pairwise reductions ~ρi j ∈ 〈~A, ~v〉 7→ 〈~A, ~v〉 of the Cartesian product as

~ρi j(~P) , let 〈~P′i , ~P
′
j〉 , ρi j(〈~Pi, ~P j〉) in ~P[i← ~P′i][j← ~P′j]

where ~P[i← x]i = x and ~P[i← x] j = ~P j when i , j.
Following definition 10.1 and theorem 10.3, define the iterated pairwise reductions ~ρ n, ~ρ λ, ~ρ ∗ ∈

〈~A, ~v〉 7→ 〈~A, ~v〉, n > 0 of the Cartesian product for

~ρ , © i, j ∈ ∆,
i, j

~ρi j (17)

where
n
©
i=1

fi , fπ1
◦ . . . ◦ fπn is the function composition for some arbitrary permutation π of [1, n].

Observe that ~ρ is the composition of meaning-preserving reductions. Thus, it is a meaning-
preserving reduction, so theorems 10.2, 10.3, and 10.11 apply and produce over-approximations
of the reduced product.

Theorem 10.16. Assume in definition 10.15 that the limit ~ρ ∗ of the iterated reductions is well
defined (in the sense of definition 10.1). Then the reductions are such that ∀~P ∈ ~A : ∀n ∈ N+ :
~ρ
?(~P) ~v ~ρ n(~P) ~v ~ρi j(~P) ~v ~P, i, j ∈ ∆, i , j and meaning-preserving since ~ρ λ(~P), ~ρi j(~P), ~P ∈ [~P]/~≡.
If, moreover, γ preserves greatest lower bounds then ~ρ ?(~P) ∈ [~P]/~≡.

23 We define (f × g)(〈x, y〉) , 〈 f (x), g(y)〉.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Patrick Cousot et al.

Proof. ~ρ is the composition of finitely many meaning-preserving reductions so it is itself a
meaning-preserving reduction. The theorem follows immediately from theorem 10.2 for finite it-
erations and theorem 10.3 and lemma 10.5 for transfinite iterations when is ~γ preserves existing
greatest lower bounds.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.17. In general ~ρ ?(~P) may not be a minimal element of the reduced product class
[~P]/~≡ (in which case ∃ ~Q ∈ [~P]/~≡ : ~Q ~@ ~ρ ?(~P)).

Proof. Let L = ℘({a, b, c}), A1 = {∅, {a},>}, A2 = {∅, {a, b},>}, A3 = {∅, {a, c},>}, and ~P = 〈>,
{a, b}, {a, c}〉 where > = {a, b, c}. We have 〈>, {a, b}, {a, c}〉/~≡ = 〈{a}, {a, b}, {a, c}〉. However ~ρ~i j(〈>,
{a, b}, {a, c}〉) = 〈>, {a, b}, {a, c}〉 for ∆ = {1, 2, 3}, i, j ∈ ∆, i , j and so ~ρ ∗(〈>, {a, b}, {a, c}〉) = 〈>,

{a, b}, {a, c}〉 proving, for that example, that ~ρ ?(〈>, {a, b}, {a, c}〉) is not a minimal element of [〈>,
{a, b}, {a, c}〉]/~≡.

Sufficient conditions exist for the iterated pairwise reduction to be a total reduction to the reduced
product.

Theorem 10.18. If, in definition 10.15, the 〈Ai, vi, ti〉, i ∈ ∆ are complete lattices, the ~ρi j,

i, j ∈ ∆, i , j, are lower closure operators, ~γ is glb-preserving, and ∀~P, ~Q :
(
~γ
(
~P
)
⊆ ~γ

(
~Q
))
⇒(

∃ n > 0 :
(
~̇d

i, j ∈ ∆,
i, j

~ρi j

)n
(~P) ~v ~Q

)
then ∀~P : ~ρ ?(~P) is the minimum of the class [~P]/~≡.

Proof. By theorem 10.16, we have ∀~P : ~ρ ?(~P) ∈ [~P]/~≡. Let ~Q ∈ [~P]/~≡ be any other element in
the same class so that ~γ(~ρ ?(~P)) = ~γ(~P) = ~γ(~Q). We have

~γ(~P) ⊆ ~γ(~Q) HreflexivityI

⇒ ∃ n > 0 :
(
~̇l

i, j ∈ ∆,
i, j

~ρi j

)n
(~P) ~v ~Q Hby hypothesisI

⇒

(
~̇l

i, j ∈ ∆,
i, j

~ρi j

)?
(~P) ~v ~Q

Hby definition 10.1 of the iterates of the reduction, which are well-defined in a complete
lattice and theorem 10.3 I

⇒ gfp6
~P

(
~̇l

i, j ∈ ∆,
i, j

~ρi j

)
~v ~Q

Hby definition 10.1 of the iterates and the constructive version [Cousot and Cousot 1979b] of
Tarski’s theoremI

⇒ C

(
~̇l

i, j ∈ ∆,
i, j

~ρi j

)
(~P) ~v ~Q Hby corollary 10.13-(c)I

⇒ C

(
~̇© i, j ∈ ∆,

i, j

~ρi j

)
(~P) ~v ~Q Hby corollary 10.13I

⇒ gfp6
~P

(
~̇© i, j ∈ ∆,

i, j

~ρi j

)
~v ~Q Hby corollary 10.13-(c)I

⇒

(
~̇© i, j ∈ ∆,

i, j

~ρi j

)?
(~P) ~v ~Q

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:39

Hby definition 10.1 of the iterates of the reduction, which are well-defined in a complete
lattice and theorem 10.3 I

⇒ ~ρ
?(~P) ~v ~Q Hby def. (17) of ~ρ, proving ~ρ ?(~P) to be the minimum of the class [~P]/~≡.I

10.4. (Reduced) Product Transformers

The transformers fI Jx := eK, bI Jx := eK, and pI JϕK for the (pairwise iterated) reduced product
proceed componentwise and reduce the result. This can be improved in the abstract, as follows.

Lemma 10.19. Let us consider a reduced product 〈
(�

i∈∆ Ai
)
/~≡, ~v〉 of abstract domains 〈Ai, vi〉,

i ∈ ∆ with concretizations γi ∈ Ai
1
→C and sound transformers f̄iJx := tK such that fJx := tKγi(P) ⊆

γi(f̄iJx := tKP) where fJx := tK ∈ C 1
→C is the increasing concrete transformer. The corresponding

transformer of a property ~P ∈
�

i∈∆ Ai in the product is the reduction
(�

i∈∆ f̄iJx := tK(~Pi)
)
/~≡ of the

componentwise transformation. This is sound since ~γ
((�

i∈∆ f̄iJx := tK(~Pi)
)
/~≡

)
= fJx := tK(~γ(~P))

and similarly for other transformers.

Proof.

~γ

�
i∈∆

f̄iJx := tK(~Pi)


/~≡


= ~γ

�
i∈∆

f̄iJx := tK(~Pi)

 Hdef. reduced productI

=
⋂
i∈∆

γi(f̄iJx := tK(~Pi)) Hdef. ~γI

⊇
⋂
i∈∆

fJx := tK(γi(~Pi)) Hsoundness of the f̄iJx := tKI

⊇ fJx := tK

⋂
i∈∆

γi(~Pi)

 HfJx := tK increasingI

= fJx := tK(~γ(~P)) Hdef. ~γ .I

Unfortunately, this definition of the product transformer is not modular since it must be entirely
redesigned when adding a new abstract domain to the product. Notice however, that abstract trans-
formers themselves are elements of a reduced product, by defining their concretization as

Lemma 10.20. ~γ
(�

i∈∆ f̄iJx := tK(~Pi)
)

= ~̇γ
(�

i∈∆ f̄iJx := tK
)

(~P).

Proof.

~γ

�
i∈∆

f̄iJx := tK(~Pi)


=

⋂
i∈∆

γi(f̄iJx := tK(~Pi)) Hdef. ~γI

=
⋂
i∈∆

γ̇i(f̄iJx := tK)(~P) Hpointwise definition γ̇i(f)(~x) , γi(f (~xi))I

=

⋂̇
i∈∆

γ̇i(f̄iJx := tK)

 (~P) Hpointwise def.

⋂̇
i∈∆

fi

 (x) ,
⋂
i∈∆

fi(x)I

= ~̇γ

�
i∈∆

f̄iJx := tK

 (~P) Hdef. ~γ(
�

i xi) ,
�

i γi(xi)) for products.I

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Patrick Cousot et al.

A direct consequence is that we can approximate the product transformer by iterated reduction of
the componentwise transformers. Observe that we have the following Galois connection

Lemma 10.21. fI Jx := eKP ⊆ Q⇔ P ⊆ bI Jx := eKQ.

Proof.

fI Jx := eKP ⊆ Q
⇔ {〈I, η[x← JeKIη]〉 | I ∈ I ∧ 〈I, η〉 ∈ P)} ⊆ Q Hdef. fI Jx := eKI
⇔ ∀I ∈ I : ∀〈I, η〉 ∈ P : 〈I, η[x← JeKIη]〉 ∈ Q Hdef. ⊆I
⇔ ∀〈I, η〉 ∈ P : I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ Q Hsince 〈I, η〉 ∈ P implies I ∈ II
⇔ P ⊆

{
〈I, η〉

∣∣∣ I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ Q
}

Hdef. ⊆I
⇔ P ⊆ bI Jx := eKQ Hdef. bI Jx := eK .I

It follows that if fI Jx := eKP ⊆ Q then fI Jx := eK(bI Jx := eK(Q)) is a more precise, sound
over approximation of fI Jx := eKP than Q, which suggests the following pairwise reduction ρ̇i j of
transformers (based on the pairwise reduction ρi j of abstract properties)

ρ̇i j(〈fiJx := tK, f jJx := tK〉) ,
λ 〈x, y〉 . let 〈x′, y′〉 , ρi j(〈fiJx := tK(x), f jJx := tK(y)〉) in

let 〈 x̀, ỳ〉 , ρi j(〈x′ ui biJx := tK(x), y′ u j b jJx := tK(y)〉) in

ρi j(〈fiJx := tK(x̀), f jJx := tK(ỳ)〉)

which defines a reduction ~̇ρ of transformers by (17) lifting the reduction ~ρ to the product of higher-
order abstract properties.

Example 10.22. Consider the product of equality and sign analysis. The componentwise for-
ward propagation of 〈a = b, >〉 through the assignment a :=

√
b + a is 〈>, b > 0〉 (with runtime

error when b < 0 in which case execution is assumed to stop). The backward propagation yields
the precondition 〈a = b, b > 0〉 reduced to 〈a = b, b > 0 ∧ a > 0〉 whose forward propagation is
now reduced to 〈>, a > 0 ∧ b > 0〉. So the reduced componentwise forward propagation of 〈a = b,

>〉 through the assignment a :=
√
b + a is 〈>, a > 0 ∧ b > 0〉, which is more precise than 〈>,

b > 0〉.

The backward assignments bJx := tK and tests pJϕK can be similarly reduced, thus generalizing
[Granger 1992]).

Example 10.23. An iterated reduction of the product of linear equalities and sign analyses of
pJ(x = y) ∧ ((z + 1) = x) ∧ (y = z)K with precondition x = 0 yields the postcondition x = 0 ∧ y =
0 ∧ z < 0 (See [Cousot 1999, Sect. 13.9]).

10.5. Widening

The widening/narrowing [Cousot and Cousot 1977] of a reduced product is often defined compo-
nentwise using widenings/narrowings of the component abstract domains. This ensures convergence
for the product. However, it must be proved that the reduction does not break down the termination
of the product widening, in which case reduction must be weakened or the widening strengthened.

Example 10.24. The closure operation in the octagon abstract domain can be considered a re-
duction between separate domains, each considering only a pair of variables: if one applies the
classical widening operation on octagons followed by closure (reduction), then termination is no
longer ensured (e.g. see [Miné 2006b, Fig. 25–26]).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:41

10.6. Observational Reduced Product

The observational reduced product of abstract domains 〈Ai, vi〉, i ∈ ∆ consists in introducing ob-
servables to increase the precision of the Cartesian product. We write Ω

�
i∈∆ Ai for the observational

Cartesian product with observables named by Ω. It can be seen as the application of the extension
operator of section 8, followed by a Cartesian product

�
i∈∆ Ai. This operation is not very fruitful,

as the shared observables will not bring much information. But used in conjunction with an iterated
reduction, it can give very precise results since information about the observables can engender
additional reductions.

Definition 10.25 (Observational reduced product). For all i ∈ ∆, let 〈iAΣO
I
, iv〉, 〈iAΣO′

I
, iv′〉 be

abstract domains, Ω′ be the new observables, and iextendΩ′ ∈
iAΣO
I
→ iAΣO′

I
be the sound extensions

satisfying the conditions of definition 8.11.
The observational Cartesian product is
Ω′
�
i∈∆

iAΣO
I
,
�
i∈∆

iextendΩ′

(
iAΣO
I

)
and the observational reduced product is 〈

(
Ω
�

i∈∆ Ai

)
/~≡, ~v〉.

11. THE NELSON-OPPEN COMBINATION PROCEDURE AS AN OBSERVATIONAL REDUCED
PRODUCT

The Nelson-Oppen procedure decides satisfiability in a combination of logical theories by exchang-
ing equalities and disequalities. Here, we show that it to computes a reduced product after the state
is enhanced with some new “observations” corresponding to alien terms.

11.1. Formula Purification

11.1.1. First Phase of the Nelson-Oppen Theory Combination Procedure. Given disjoint deductive
theories Ti in F(Σi), Σi ⊆̇ Σ with equality and decision procedures sati for satisfiability of quantifier-
free conjunctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combination procedure [Nelson
and Oppen 1979] decides the satisfiability of a quantifier-free conjunctive formula ϕ ∈ C(

⋃n
i=1 Σi)

in theory T =
⋃n

i=1 Ti such thatM(T) =
⋂n

i=1M(Ti).
The first, “purification” phase [Tinelli and Harandi 1996, Sect. 2] of the Nelson-Oppen combina-

tion procedure repeatedly replaces (all occurrences of) an alien subterm t ∈ T(Σi)\x of a subformula
ψ[t] < C(Σi) of ϕ with the fresh variable x ∈ x. Note that the subformula ψ[t] includes equality or
inequality predicates ψ[t] = (t = t′) or (t′ = t). The Nelson-Oppen procedure then introduces the
equation x = t (i.e. ϕ[ψ[t]] is replaced by ϕ[ψ[x]]∧ x = t and recursively applies the replacement to
ϕ[ψ[x]] and x = t). Upon termination, the quantifier-free conjunctive formula ϕ is transformed into
a formula ϕ′ of the form

ϕ′ = ∃ ~x1, . . . , ~xn :
n∧

i=1

ϕi where ϕi = ϕ′i ∧
∧
xi∈~xi

xi = txi ,

~x ,
⋃n

i=1 ~xi is the set of auxiliary variables xi ∈ ~xi introduced by the purification, each txi ∈ T(Σi) is
an alien subterm of ϕ renamed to xi ∈ x, and each ϕ′i (hence each ϕi) is a quantifier-free conjunctive
formula in C(Σi

O
). We have ϕ⇔

∧n
i=1 ϕ

′
i[xi ← txi]xi∈~xi

so ϕ and ϕ′ are equisatisfiable.

Example 11.1 (Formula purification). Assume f ∈ f1 and g ∈ f2. ϕ = (g(x) = f (g(g(x)))) →
(∃ y : y = f (g(y)) ∧ y = g(x))→ (∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ′ where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)).

In case of non-disjoint theories Ti, i = 1, ..., n, purification is still possible, by considering the
worst case (so as to purify any subterm of theories Ti or T j occurring in a term of theories Ti or
T j). The reason why the Nelson-Oppen purification requires theory signatures to be disjoint is that

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Patrick Cousot et al.

otherwise they can share more than equalities and cardinality, a sufficient reason for the procedure
to be incomplete. Nevertheless, the purification procedure remains sound for non-disjoint theories,
which can be exploited for static analysis, as shown in section 12.

11.1.2. The Nelson-Oppen Purification as an Observational Cartesian Product. Let the observable
identifiers be the free variables of ϕ ∈ C(Σ), xP = ~xϕ plus the fresh auxiliary variables ~x introduced
by the purification xO = xP ∪ ~x. Let ΣP and ΣO be the corresponding signatures of Σ. Given an
interpretation I ∈ I , with values IV, the observable naming

Ω
ϕ
I ∈ xO→R

ΣP
I → IV

Ω
ϕ
I (x)η , η(x) when x ∈ xP,

, JtxKη when x ∈ ~x .

From a model-theoretic point of view, the purification of ϕ ∈ A into 〈ϕ1, . . . , ϕn〉 can be considered
an abstraction of the program properties in PΣO

I
abstracted by ϕ to observable properties in RΣO

I
,

themselves abstracted to the observational Cartesian product Ωϕ�
i∈∆

iAΣO
I

where the component
abstract domains are 〈iAΣO

I
, vi〉 , 〈C(Σi

O
), ⇒〉 with concretizations iγΣO

I
∈ C(Σi

O
) → iP

ΣO
I

and
iγΣO
I

(ϕ) ,
{
〈I, η〉 ∈ RΣO

I

∣∣∣∣ I ∈ M(Ti) ∧ I |=η ϕ
}
, i = 1, . . . , n. This follows from the fact that the

concretization is the same.

Theorem 11.2. γP
I

(ϕ′) = γΩϕ,P
I

(
Ωϕ�n

i=1 ϕ
′
i

)
.

Proof.

γΩϕ,P
I

Ωϕ
n�

i=1

ϕ′i


=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

Ωϕ
n�

i=1

ϕ′i


 Hdef. γΩϕ,P

I
, γΩϕ

I
◦ γΣO
I

I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . Ω
ϕ
x (η)〉 ∈

n⋂
i=1

iγΣO
I

(ϕ′i)


Hdef. γΣO

I
for the observational Cartesian productI

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . Ω
ϕ
x (η)〉 ∈ γΣO

I

 n∧
i=1

ϕ′i



Hdef. γΣO

I
(Ψ) ,

{
〈I, η〉

∣∣∣∣ I ∈ I ∧ I |=η Ψ
}

and |=I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x ∈ xP . η(x) ∪̇ λ x ∈ ~x . JtxKη〉 ∈ γΣO
I

 n∧
i=1

ϕ′i




Hdef. Ω
ϕ
x , x = xP ∪ ~x, and xP ∩ ~x = ∅I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γΣO
I

∃ ~x :
n∧

i=1

ϕ′i ∧
∧
x∈~x

x = tx


 Hdef. γΣO

I
and |=I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γPI
∃ ~x :

n∧
i=1

ϕ′i ∧
∧
x∈~x

x = tx




HSince ΣP ⊆ ΣO and ∃ ~x :
∧n

i=1 ϕ
′
i ∧

∧
x∈~x x = tx has no free auxiliary variable in ΣO \ ΣPI

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:43

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γPI
∃ ~x1, . . . , ~xn :

n∧
i=1

(
ϕ′i ∧

∧
xi∈~xi

xi = txi

)
 Hdef. ~x ,

⋃n
i=1 ~xiI

= γP
I

∃ ~x1, . . . , ~xn :
n∧

i=1

(
ϕ′i ∧

∧
xi∈~xi

xi = txi

) Hdef. { x | P(x) }I

= γP
I

∃ ~x1, . . . , ~xn :
n∧

i=1

ϕi

 Hdef. ϕi = ϕ′i ∧
∧
xi∈~xi

xi = txiI

= γP
I

(
ϕ′

)
Hdef. ϕ′ = ∃ ~x1, . . . , ~xn :

n∧
i=1

ϕi .I

After purification, the components of the observational Cartesian product are not yet the most
precise ones.

11.2. Formula Reduction

11.2.1. Second Phase of the Nelson-Oppen Theory Combination Procedure. After purification, the
Nelson-Oppen combination procedure [Nelson and Oppen 1979] includes a ”reduction” phase that
propagates all variable equalities x = y and inequalities x , y deducible from one component ϕi in
its theory Ti to all components ϕ j (in practice only to those components ϕ j where the information is
useful, that is those ϕ j, including ϕi, sharing free variables x and y with ϕi). The decision procedure
for Ti determines all possible disjunctions of conjunctions of (in)equalities that are implied by ϕi.
These are determined by exhaustively trying all possibilities in the nondeterministic version of the
procedure or by an incremental construction in the deterministic version, which is more efficient for
convex theories [Tinelli and Harandi 1996], and even more efficient for Shostak theories [Shostak
1984; McIlraith and Amir 2001]. The reduction is iterated until no new disjunction of (in)equalities
is found.

11.2.2. The Nelson-Oppen Reduction as an Iterated Fixpoint Reduction of the Product. Let 1S ,{
〈s, s〉

∣∣∣ s ∈ S
}

be the identity relation on a set S and E(S) be the set of all equivalence relations on
S , or E(S) ,

{
r ∈ ℘(S × S)

∣∣∣ 1S ⊆ r ∧ r = r−1 ∧ r = r ◦ r
}
. Define the pairwise reduction

ρi j(ϕi, ϕ j) , 〈ϕi ∧ Ei j ∧ E ji, ϕ j ∧ E ji ∧ Ei j〉 where

eq(E) ,
∨
≡∈E

∧
x≡y

x = y ∧
∧
x.y

x , y


Ei j ,

∧{
eq(E)

∣∣∣∣ E ⊆ E(~xϕi ∩ ~xϕ j) ∧ ϕi ⇒ eq(E)
}
.

The Nelson-Oppen reduction of ϕ purified into Ωϕ�n
i=1 ϕ

′
i consists in computing the iterated pairwise

reduction ~ρ ∗
(
Ωϕ�n

i=1 ϕ
′
i

)
.

Example 11.3. Let ϕ , (x = a ∨ x = b) ∧ f(x) , f(a) ∧ f(x) , f(b), where a, b and f are in
different theories. The purification yields ϕ , ϕ1 ∧ ϕ2 where ϕ1 , (x = a ∨ x = b) ∧ y = a ∧ z = b
and ϕ2 , f(x) , f(y) ∧ f(x) , f(z). We have E12 , (x = y) ∨ (x = z) and E21 , (x , y) ∧ (x , z),
so that ~ρ ∗ (ϕ) = ff.

Observe that the result of the iterated pairwise reduction may not be as precise as the reduced
product.

Example 11.4. A classical example showing that the Nelson-Oppen reduction may not be as
precise as the reduced product is given by [Tinelli and Harandi 1996, p. 11] where ϕ1 , f(x) ,
f(y) in the theory of Booleans admitting models of cardinality at most 2 and ϕ2 , g(x) , g(z) ∧

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Patrick Cousot et al.

g(y) , g(z) in a disjoint theory admitting models of any cardinality so that ϕ = ϕ1 ∧ ϕ2 is purified.
The reduction yields ϕ ∧ x , y ∧ x , z ∧ y ∧ z and not ff since the cardinality information
is not propagated whereas the reduced product, which is defined at the interpretation level, would
propagate it. Therefore, the pairwise reduction ought to be refined to include cardinality information,
as proposed by [Tinelli and Zarba 2005].

11.2.3. Formula Reduction and the Reduced Product. A formula over a set of theories is equivalent
to its purification, so that to find an invariant or to check that a formula is invariant, we could first
purify it and then proceed with the computation of the transformer of the program. This would
lead to the same result as simply using one mixed formula if the reduction is total at each step of
the computation. Such a process would be unnecessarily expensive if decision procedures could
handle arbitrary formulæ. But this is not the case actually: most of the time, they cannot deal with
quantifiers, and assignments introduce existential quantifiers, which have to be approximated. Such
approximations have to be redesigned for each set of formulæ. Using a reduced product of formulæ
on base theories allows reusing the approximations on each theory (as in [Gulwani and Tiwari 2006],
even if the authors didn’t recognize the reduced product). In that way, a reduced product of logical
abstract domains will provide a modular approach to invariant proofs.

11.3. Formula Satisfiability

After purification and reduction, the Nelson-Oppen combination procedure [Nelson and Oppen
1979] includes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static analysis
since an unsatisfiability result means unreachability encoded by ff. The satisfiability decision can
also be used as an approximation to check for a post-fixpoint and whether the specification is satis-
fied, see section 7.5.

12. REDUCED PRODUCT OF LOGICAL AND ALGEBRAIC ABSTRACT DOMAINS

12.1. Combining Logical and Algebraic Abstract Domains

Static analyzers such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] and Clousot [Ferrara
et al. 2008] are based on an iterated pairwise reduction of a product of abstract domains over-
approximating their reduced product [Cousot et al. 2008]. Since logical abstract domains under
the Nelson-Oppen combination procedure are indeed an iterated pairwise reduction of a product of
abstract domains over-approximating their reduced product, as shown in section 11.2, the design
of abstract interpreters based on an approximation of the reduced product can use both logical and
algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that the reduction
mechanism can be implemented once, for all domains, while the addition of a new abstract domain
to improve precision essentially requires the addition of a reduction with the other existing abstract
domains when necessary [Cousot et al. 2008].

Notice that the Nelson-Oppen procedure and its followers aim at so-called ”soundness” and refu-
tation completeness (for the reduction to ff). In the theorem prover community, ”soundness” here
means that if the procedure answers no, then the formula is not satisfiable. In program analysis there
is a slightly different notion, where soundness means that whatever the answer, it is correct, and that
would mean that if the procedure here answers yes, then the formula is satisfiable. This notion of
soundness, when the only answers are yes it is satisfiable or no it is not, is equivalent to the old
”soundness” plus completeness. This is obtained by restricting the applicability of the procedure
e.g. to stably-infinite theories [Tinelli and Harandi 1996] or other similar hypotheses on interpre-
tations [Tinelli and Zarba 2005] to ensure that models of the various theories all have the same
cardinalities, and additionally by requiring that the theories are disjoint to avoid having to reduce on
properties other than [dis]equality, such as inequalities. In absence of such applicability restrictions,
one can retain unsatisfiability if one component formula is unsatisfiable and abandon satisfiability

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:45

if all component formulae are satisfiable in favor of “unknown”, which yields reductions that are
sound (as seen in section 7.5), although potentially not optimal.

So the classical restrictions on the Nelson-Oppen procedure unnecessarily restrict its applicability
to static analysis. Lifting them yields reductions that may not be optimal but preserves the soundness
of the analyses, which are imprecise anyway because the underlying problem is undecidable. Hence,
abandoning refutation completeness hypotheses, broadens the applicability of SMT solvers to static
analysis. Many SMT solvers already contain lots of sound, but incomplete, heuristics and therefore,
in practice, no longer insist on refutation completeness.

Example 12.1. As a simple example, consider the combination of the logical domain of Pres-
burger arithmetic (where the multiplication is inexpressible) and the domain of sign analysis (which
is complete for multiplication). The abstraction of a first-order formula to a formula in Presburger
arithmetic eliminates all terms of the signature not in the subsignature:

αΣ(x) , x
αΣ(f(t1, . . . , tn)) , ?, f < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?

, f(t1, . . . , tn), otherwise
αΣ(ff) , ff

αΣ(p(t1, . . . , tn)) , tt, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in
positive position

, ff, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in
negative position

, p(t1, . . . , tn), otherwise
αΣ(¬Ψ) , ¬αΣ(Ψ)

αΣ(Ψ ∧ Ψ′) , αΣ(Ψ) ∧ αΣ(Ψ′))
αΣ(∃ x : Ψ) , ∃ x : αΣ(Ψ) .

The abstract transformers for Presburger arithmetic become simply fPJx := eKP , αΣP (∃ x′ :
P[x← x′] ∧ x = e[x← x′]), pPJϕKP , αΣP (P ∧ ϕ), etc, where ΣP is the signature of Presburger
arithmetic.

The reduction of the Presburger arithmetic logical abstract domain by the sign algebraic abstract
domain is given by the concretization function for signs.

Ei j(η) ,
∧

x∈dom(η)

γ(x, η(x)) γ(x, pos0) , (x > 0)

γ(x, pos) , (x > 0) etc.

Assume the precondition 〈P(x), x : >〉 holds, then after the assignment x := x × x, the post
condition 〈∃ x′ : P(x′) ∧ x = x′ × x′, x : pos0〉 holds, which must be abstracted by αΣP to the
Presburger arithmetic logical abstract domain that is 〈∃ x′ : P(x′), x : pos0〉. The reduction reduces
the postcondition to 〈∃ x′ : P(x′) ∧ x ≥ 0, x : pos0〉.

Symmetrically, the sign abstract domain may benefit from equality information. For example, if
the sign of x is unknown then it would remain unknown after the code y := x; x := x * y even
though knowing that x = y is enough to conclude that x is positive.

Of course the same result could be achieved by encoding by hand the Presburger arithmetic
transformer for the assignment to cope with this case and other similar ones. Here the same result is
achieved by the reduction without specific programming effort for each possible particular case.

12.2. Reduced Product for Inconsistent Interpretations

One of the issues with the use of logical abstract domains, or even with the use of SMT solvers to
prove invariants, is that the underlying theory is often not sound with respect to the actual imple-
mentations of the program.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Patrick Cousot et al.

Example 12.2. Astrée [Bertrane et al. 2010; Cousot et al. 2005] found runtime errors in pro-
grams that had been “formally proved correct”. The problem was a buffer overrun. Indeed the the-
ory of arrays used in the “formal proof” was not taking buffer overruns into account [Bradley et al.
2006]. In practice, this can have dramatic consequences, as shown by the following example

#include <stdio.h>
int main () {
int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

producing quite different results on different machines:

n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits.

This example also shows that any attempt to define precisely machine semantics can be extremely
complex. In practice, one can consider such cases as errors and stop the analysis when they are
encountered. It is also possible to keep the analysis running after reporting such cases, but the
meaning of the analysis would no longer be a sound approximation of all program behaviors, just
an approximation of the execution traces that do not fall in that case. However, this unsoundness
problem disappears when proving the absence of runtime error which eliminates from consideration
unpredictable behavior after the potential error.

Recovering soundness is possible by introducing reduced products with well-chosen abstract do-
mains. For example, a logical abstract domain for mathematical integers can be combined with an
algebraic abstract domain handling bounded machine integers. The coherence is achieved by a re-
duction of the logical abstract domain limiting the range of variation of program integer variables
to those discovered by the algebraic abstract domain.

Given two interpretations, I1 and I2 for a signature Σ = 〈x, f , p, #〉, we define their common
interpretation I such that (fs signals a runtime error when the two interpretations differ):

IV , (I1
V
∩ I2
V

) ∪ {f} 24

Iγ(c) , I1
γ(c) when I1

γ(c) = I2
γ(c)

, f otherwise
Iγ(f) , I1

γ(f) when ∀v1 ∈ IV, . . . ,∀vn ∈ IV : I1
γ(f)(v1, . . . , vn) = I2

γ(f)(v1, . . . , vn)
, f otherwise

Iγ(p) , I1
γ(p) when ∀v1 ∈ IV, . . . ,∀vn ∈ IV : I1

γ(p)(v1, . . . , vn) = I2
γ(p)(v1, . . . , vn)

, f otherwise

All logical operators ¬, ∧, ∃ are strict in all errors f; the reduction is defined such that ρi j(〈f,
Q〉) = ρi j(〈P, f〉) = ρi j(〈f, f〉) = f; and errors are interpreted as stopping program execution. It
follows that the abstractions for different interpretations can be left unchanged since the reduction
takes errors into account during static analysis.

The main consequence is that, in absence of any error f, the iterated pairwise reduction of the
two interpretations do coincide (more precisely up to the first error during execution, if any), so that
we have a sound approximation of the actual program semantics.

24 This condition could also be considered up to an isomorphism.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:47

12.3. Program Purification

Whereas the reduced product proceeds componentwise, logical abstract domains often combine all
these components into the single formula of their conjunction, which is then globally propagated by
property transformers before being purified again into components by the Nelson-Oppen procedure.
These successive abstractions by purification and concretization by conjunction can be avoided
when implementing the logical abstract domain as an iterated reduction of the product of the com-
ponent and program purification, as defined below. The observational semantics is then naturally
implemented by a program transformation.

Given disjoint signatures 〈fi, pi〉, i = 1, ..., n, the purification of a program P over C(x,
⋃n

i=1 fi,⋃n
i=1 pi) consists in purifying the terms t in its assignments x := e and the clauses in simple con-

junctive normal form ϕ appearing in conditionals. A term t ∈ T(x,
⋃n

i=1 fi) not reduced to a variable
is said “to have type i” when it is of the form c ∈ f0

i or f(t1, . . . , tn) with f ∈ fn
i . As a side note, one

may observe that this could very well be equivalent to using the variable and term types in a typed
language.

The purification of an assignment x := e[t] where term e has type i and the alien subterm t has
type j, j , i consists in replacing this assignment by x = t; x := e[x] where x ∈ x is a fresh variable,
e[x] is obtained from e[t] by replacing all occurrences of the alien subterm t by the fresh variable x
in e, then recursively applying the replacement to x = t and x := e[x] until no alien subterm is left.

An atomic formula a ∈ A(x,
⋃n

i=1 fi,
⋃n

i=1 pi) not reduced to false is said to have type i when
it has the form p(t1, . . . , tn) with p ∈ pn

i or t1 = t2 and t1 has type i or x = t2 and t2 has type i. The
purification of an assignment x := a[t] where atomic formula a has type i and the alien subterm t
has type j, j , i consists in replacing this assignment by x = t; x := a[x] where x ∈ x is a fresh
variable, a[x] is obtained from a[t] by replacing all occurrences of the alien subterm t by the fresh
variable x, then recursively applying the replacement to x = t and x := a[x] until no alien subterm
remains.

The purification of a clause in simple conjunctive normal form ϕ ∈ C(x,
⋃n

i=1 fi,
⋃n

i=1 pi) in a test
consists in replacing all atomic subformulæ a (including equalities and disequalities) by fresh vari-
ables, in introducing assignments x := a to these fresh variables x before the test, then recursively
purifying the assignments x := a.

Example 12.3. Assume that f ∈ f1 and g ∈ f2. The purification is

if (g(w) = f (g(g(w)))) then . . .
→ x := (g(w) = f (g(g(w)))); if x then . . .
→ y := g(w); x := (y = f (g(y))); if x then . . . Hg(w) has type 2 and f (g(g(w))) has type 1I
→ y := g(w); z := g(y); x := (y = f (z)); if x then . . .

H(y = f (g(y))) has type 1 and g(y) has type 2 .I

After purification all program terms are atomic formulæ, and clauses are pure in that no term or
atomic formula of a theory has a subterm in a different theory or a clause containing terms of
different theories. So all term assignments x := e (or atomic formulæ x := a) have t ∈ T(Σi

O
) (resp.

a ∈ A(Σi
O
,pi)) for some i ∈ [1, n] and all clauses in tests are Boolean expressions written using only

variables, ¬ and ∧.
We let the observable identifiers xO = xP ∪ ~x be the program variables xP plus the fresh auxiliary

variables x ∈ ~x introduced by the purification with assignments x := ex. Given an interpretation I,
with values IV, the observable naming ΩI is

Ω ∈ xO 7→ (xP 7→ IV) 7→ IV
ΩI(x)η , η(x) when x ∈ xP

, JexKη when x ∈ ~x .

This program transformation provides a simple implementation of the observational product of de-
finition 10.25. Moreover, the logical abstract domains no longer need to perform purification.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 Patrick Cousot et al.

Theorem 12.4. A static analysis of the transformed program with a (reduced/iteratively re-
duced) product of logical abstract domains only involves purified formulæ hence can be performed
componentwise (with reduction) without changing the observational semantics.

Proof. The proof is by structural induction on programs. For the base cases, first consider the as-
signment x := e. For logical abstract domains that do not have e in their theory Tk, the transformer
is ∃x′ : Ψ[x← x′] ∧ x = e[x← x′], which is purified into ∃y : ∃x′ : Ψ[x← x′] ∧ x = y, which
is equivalent to ∃x : Ψ and therefore does not introduce new variables to observe. For the other
domains, e is pure so no purification is needed. The handling of backward assignment is similar and
tests in a purified program only contain boolean formulæ and do not require purification either.

Purification can also be performed for non-disjoint theories, but this requires using as many vari-
ables as the number of theories that contain the expression e in their language. Here, we use existen-
tials and remain precise by asserting the equality between those variables. The transformer is then
∃ x′i : Pi[x← x′i] ∧ x′′i = e[x← x′i] ∧ ∃ x′j : P j[x← x′j] ∧ x′′j = e[x← x′j] ∧ . . . ∧ x = x′′i = x′′j . . .

12.4. Evolving Reduced Product

Despite constant progress in this area, SMT solvers seem to be too expensive for an extensive use on
programs of realistic size. But on that aspect also, the reduced product approach can help: instead
of a global refinement of a static analyzer, one can also consider local ones, e.g. when precision
must be locally enhanced to prove the invariance of a user-provided assertion or a loop invariant.
In that case, the reduced product can evolve locally to include a new abstract domain when more
precision is required and to exclude the new abstract domain when it is no longer required. In such
an evolving reduced product for local refinement

— the upgrade with a new abstract domain adds a new component in the product initialized by
top/tt, which is then reduced pairwise with the other abstract domains (thus introducing the
known information to new component);

— the downgrade consists in a pairwise reduction of a component of the new abstract domain with
the other components followed by the suppression of this component.

On non-critical parts, less precise but more efficient algebraic abstract domains are used to infer the
necessary properties to use in the next critical part.

This complements the use of variable packs in relational abstract domains [Bertrane et al. 2010;
Cousot et al. 2005], which can be seen as an evolution of one component of the product. In both
cases, this evolution of the abstraction during the static analysis can either be decided before the
analysis (e.g. based on the program syntax and the user-provided assertions to be proved) or during
the iteration of the analysis itself (based on the observation of a lack of precision for an upgrade or
the ineffectiveness of an abstraction for a downgrade).

12.5. On the Design of Static Analyzers by Iterated Reduction between Logical and Algebraic
Domains with Evolving Refinement

The design we propose to combine algebraic and logical abstract domains is the following:

— purify the program (section 12.3) according to the theories of the logical domains (and even to
operators, which are poorly approximated by some algebraic abstract domains),

— use independent formulæ for each theory,
— reduce between each domains after individual computation steps, including checking for con-

sistent interpretations (section 12.2),
— only introduce each domain wherever necessary (section 12.4),
— and finally check if properties hold on each component after purification of the properties.

This design mechanism will give more precise results in cases where formulæ have to be ap-
proximated, and faster sound results. In addition, this design pattern should be used to put together

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:49

independent works on so-far distinct research areas of static analysis by abstract interpretation and
program proofs by theorem provers.

13. RELATED WORK

SMT solvers have been used in abstract interpretation, e.g. to implement specific logical abstract
domains such as uninterpreted functions [Gulwani and Necula 2007] or to automatically design
transformers in presence of a best abstraction [Reps et al. 2004].

Contrary to the logical abstract interpretation framework developed by [Gulwani and Tiwari 2006;
Tiwari and Gulwani 2007; Gulwani et al. 2008] we do not assume that the behavior of the program
is described by formulæ in the same theory as the theory of the logical abstract domain, which
offers no soundness guarantee, but instead we give the semantics of the logical abstract domains
with respect to a set of possible semantics, which includes the possibility of a sound combination
of a mathematical semantics and a machine semantics, which is hard to achieve in SMT solvers
without incurring a prohibitive performance penalty (e.g. by encoding modular arithmetic in integer
arithmetic or encoding floats either bitwise or with reals and rounding). So, our approach allows the
description of the abstraction mechanism, comparisons of logical abstract domains, and proofs of
soundness on a formal basis.

Specific combinations of theories have been proposed for static analysis such as linear arithmetic
and uninterpreted functions [Gulwani and Tiwari 2006], universally quantified formulæ over theo-
ries such as linear arithmetic and uninterpreted functions [Gulwani et al. 2008] or the combination
of a shape analysis with a numerical analysis [Gulwani et al. 2009] 25. We have proposed a frame-
work for combining algebraic and logical abstract domains on which static analyzers can be built
and, incrementally and with minimal efforts, extended to new abstractions to improve precision —
either globally, for the whole program analysis, or locally, e.g. to prove loop invariants provided by
the end user.

14. CONCLUSION

We have proposed a new design method of static analyzers based on the reduced product or its
approximation by the iterated reduction of the product to combine algebraic and logical abstract
domains. This is for invariance inference but is also applicable to invariant verification and, more
generally, safety property verification/inference. The key points were to consider an observational
semantics with multiple interpretations and the understanding of the Nelson-Oppen theory combi-
nation procedure [Nelson and Oppen 1979] and its followers, as well as consequence finding in
structured theories [McIlraith and Amir 2001], as an iterated reduction of the product of theories.
It follows that algebraic and logical abstract domains can be symmetrically combined in a product
either reduced or with iterated reduction. The interest of the (reduced) product in logical abstract
interpretation is that the analysis for each theory can be separated, even when they are not disjoint,
thus allowing for an effective use of dedicated SMT solvers for each of the components.

Logical abstract domains may not be very efficient but can be used for rapid prototyping and then
implemented in algebraic form with efficient algorithms. Despite their high cost, logical abstract
domains can also be very expressive and could therefore be used, at least locally, to enhance the
precision of algebraic abstractions through an evolving product with iterated reduction. Combined
with algebraic abstractions they can sometimes be made sound for the machine semantics.

Finally, having shown the similarity and complementarity of analysis by abstract interpretation
and program proofs by theorem provers and SMT solvers, we hope that our framework will facilitate
reuse of developments in and cooperation between both communities.

Acknowledgments

We thank Dejan Jovanović for help and Andreas Podelski for comments. Supported in part by the
NSF Expeditions in Computing grant CMACS.

25 These approaches can be formalized as observational reduced products.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 Patrick Cousot et al.

REFERENCES

Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., and Rival, X. 2010. Static analysis and verification
of aerospace software by abstract interpretation. In AIAA Infotech@Aerospace 2010. AIAA, Atlanta, Georgia, AIAA
2010–3385.

Bradley, A. and Manna, Z. 2007. The Calculus of Computation, Decision procedures with Applications to Verification.
Springer, Heidelberg.

Bradley, A., Manna, Z., and Sipma, H. 2006. What’s decidable about arrays? In Proc. 7th Int. Conf. on Verification, Model
Checking and Abstract Interpretation (VMCAI 2006), E. Emerson and K. Namjoshi, Eds. LNCS 3855, Springer, Hei-
delberg, Charleston, 427–442.

Chang, C. and Keisler, H. 1990. Model theory. In Studies in logic and the foundation of mathematics Third Ed., J. Barwise,
H. J. Keisler, P. Suppes, and A. S. Troelstra, Eds. Vol. 73. Elsevier Science, New York.

Chen, L., Miné, A., Wang, J., and Cousot, P. 2011. Linear absolute value relation analysis. In 20th European Symposium on
Programming (ESOP 2011), Saarbrücken, Germany, G. Barthe, Ed. Lecture Notes in Computer Science Series, vol.
6602. Springer-Verlag, Heidelberg, 156–175.

Cook, S. 1978. Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7, 1, 70–90.
Cooper, D. 1972. Theorem proving in arithmetic without multiplication. Machine Intelligence 91, 7, 91–99.
Cousot, P. 1978. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treil-

lis, analyse sémantique de programmes (in French). Ph.D. thesis, Thèse d’État ès sciences mathématiques, Université
Joseph Fourier, Grenoble, France.

Cousot, P. 1990. Methods and logics for proving programs. In Formal Models and Semantics, J. van Leeuwen, Ed. Hand-
book of Theoretical Computer Science Series, vol. B. Elsevier Science Publishers B.V., Amsterdam, The Netherlands,
Chapter 15, 843–993.

Cousot, P. 1999. The calculational design of a generic abstract interpreter, invited chapter. In Calculational System Design,
M. Broy and R. Steinbrüggen, Eds. Vol. 173. NATO Science Series, Series F: Computer and Systems Sciences. IOS
Press, Amsterdam, 421–505.

Cousot, P. 2002. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoretical
Computer Science 277, 1—2, 47–103.

Cousot, P. and Cousot, R. 1976. Static determination of dynamic properties of programs. In Proc. 2nd Int. Symp. on Pro-
gramming. Dunod, Paris, Paris, 106–130.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL. ACM Press, Los Angeles, 238–252.

Cousot, P. and Cousot, R. 1979a. A constructive characterization of the lattices of all retractions, pre-closure, quasi-closure
and closure operators on a complete lattice. Portugaliæ Mathematica 38, 2, 185–198.

Cousot, P. and Cousot, R. 1979b. Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Mathemat-
ics 82, 1, 43–57.

Cousot, P. and Cousot, R. 1979c. Systematic design of program analysis frameworks. In 6th POPL. ACM Press, San Antonio,
269–282.

Cousot, P. and Cousot, R. 1992a. Abstract interpretation frameworks. Journal of Logic and Computation 2, 4, 511–547.
Cousot, P. and Cousot, R. 1992b. Comparing the Galois connection and widening/narrowing approaches to abstract inter-

pretation. In Proc. 4th International Symposium on Programming Language Implementation and Logic Programming,
PLILP ’92, M. Bruynooghe and M. Wirsing, Eds. Leuven, 26–28 August 1992, LNCS 631. Springer, Heidelberg,
269–295.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. 2005. The Astrée analyser. In Proc.
14th European Symp. on Programming Languages and Systems, ESOP ’2005, Edinburg, M. Sagiv, Ed. LNCS 3444.
Springer, Heidelberg, 21–30.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. 2008. Combination of abstractions in
the Astrée static analyzer. In Eleventh Annual Asian Computing Science Conference, ASIAN 06, M. Okada and I. Satoh,
Eds. LNCS 4435, Springer, Heidelberg, Tokyo, 6–8 December 2006, 272–300.

Cousot, P., Cousot, R., and Mauborgne, L. 2010. A scalable segmented decision tree abstract domain. In Pnueli Festschrift,
Z. Manna and D. Peled, Eds. Lecture Notes in Computer Science Series, vol. 6200. Springer-Verlag, Heidelberg, 72–95.

Craig, W. 1957. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic
Logic 22, 3, 269–285.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, F. 1991. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming Languages and Systems 13, 4, 451–490.

de Moura, L., Rueß, H., and Sorea, M. 2003. Bounded model checking and induction: From refutation to verification. In
Proc. 15th Computer-Aided Verification conf. (CAV’03), A. Voronkov, Ed. LNCS Series, vol. 2725. Springer, Heidel-
berg, Boulder, CO, USA, 14–26.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:51

Detlefs, D., Nelson, G., and Saxe, J. 2005. Simplify: a theorem prover for program checking. Journal of the ACM
(JACM) 52, 3, 365–473.

Deutsch, A. 1990. On determining lifetime and aliasing of dynamically allocated data in higher-order functional specifica-
tions. In 17th POPL. ACM Press, San Francisco, 157–168.

Elder, M., Gopan, D., and Reps, T. 2010. View-augmented abstractions. ENTCS 267, 1, 43–57.
Ferrante, J. and Geiser, J. 1977. An efficient decision procedure for the theory of rational order. Theoretical Computer

Science 4, 2, 227–233.
Ferrante, J. and Rackoff, C. 1975. A decision procedure for the first order theory of real addition with order. SIAM Journal

of Computation 4, 1, 69–76.
Ferrara, P., Logozzo, F., and Fähndrich, M. 2008. Safer unsafe code in .NET. In Proceedings of the 23rd Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2008, G. E.
Harris, Ed. ACM Press, Nashville, TN, USA, 329–346.

Floyd, R. 1967. Assigning meaning to programs. In Pro. Symp. in Applied Mathematics, J. Schwartz, Ed. Vol. 19. American
Mathematical Society, Providence, RI, 19–32.

Ganzinger, H. 1996. Saturation-based theorem proving (abstract). In Proc. 23rd Int. Col., ICALP ’96, F. Meyer auf der Heide
and B. Monien, Eds. LNCS 1099, Springer, Heidelberg, Paderborn, Germany, 1–3.

Ge, Y., Barrett, C., and Tinelli, C. 2007. Solving quantified verification conditions using satisfiability modulo theories. In
Conf. on Automated Deduction, CADE 21. LNAI Series, vol. 4603. Springer, Bremen, Germany, 167–182.

Ge, Y. and de Moura, L. 2009. Complete instantiation of quantified formulas in satisfiability modulo theories. In Computer
Aided Verification, CAV’2009. LNCS Series, vol. 5643. Springer, Grenoble, France, 306–320.

Goubault, E., Martel, M., and Putot, S. 2002. Asserting the precision of floating-point computations: A simple abstract
interpreter. In Proceedings of the 11th European Symposium on Programming, ESOP 2002, D. Le Métayer, Ed. Lecture
Notes in Computer Science Series, vol. 2305. Springer, Grenoble, France, 209–212.

Granger, P. 1989. Static analysis of arithmetical congruences. Int. J. Comput. Math. 30, 3 & 4, 165–190.
Granger, P. 1992. Improving the results of static analyses of programs by local decreasing iterations. In Proceedings of

the Twelfth Foundations of Software Technology and Theoretical Computer Science Conference, R. Shyamasundar, Ed.
Lecture Notes in Computer Science Series, vol. 652. Springer, Heidelberg, New Delhi, 68–79.

Gulwani, S., Lev-Ami, T., and Sagiv, M. 2009. A combination framework for tracking partition sizes. In 36th POPL. ACM
Press, Savannah, 239–251.

Gulwani, S., McCloskey, B., and Tiwari, A. 2008. Lifting abstract interpreters to quantified logical domains. In 35th POPL.
ACM Press, San Francisco, 235–246.

Gulwani, S. and Necula, G. C. 2007. Path-sensitive analysis for linear arithmetic and uninterpreted functions. In Proceedings
of the 11th International Symposium on Static Analysis, SAS ’04, R. Giacobazzi, Ed. Lecture Notes in Computer Science
Series, vol. 3148. Springer, Verona, Italy, 328–343.

Gulwani, S. and Tiwari, A. 2006. Combining abstract interpreters. In PLDI 2006, M. Schwartzbach and T. Ball, Eds. ACM
Press, Ottawa, Ontario, Canada, 376–386.

Hoare, C. 1974. Monitors: an operating system structuring concept. Comm. ACM 17, 10, 549–557.
Martel, M. 2009. Program transformation for numerical precision. In Proc. 2009 ACM SIGPLAN Symp. on Partial Evalu-

ation and Semantics-based Program Manipulation, PEPM 2009, G. Puebla and G. Vidal, Eds. ACM, Savannah, GA,
101–110.

Mauborgne, L. 1998. Abstract interpretation using typed decision graphs. Science of Computer Programming 31, 1, 91–112.
McIlraith, S. and Amir, E. 2001. Theorem proving with structured theories. In Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence, IJCAI 2001, August 4–10, 2001, B. Nebel, Ed. Morgan Kaufmann, Seattle,
Washington, USA, 624–634.

McMillan, K. 2002. Applying SAT methods in unbounded symbolic model checking. In Computer Aided Verification,
CAV’2002, E. Brinksma and K. Larsen, Eds. LNCS Series, vol. 2404. Springer, Heidelberg, Copenhagen, Denmark,
250–264.

McMillan, K. 2003. Craig interpolation and reachability analysis. In Proc. 10th Int. Symp. on Static Analysis, SAS ’03,
R. Cousot, Ed. LNCS 2694. Springer, Heidelberg, San Diego, CA, USA, 336.

Mendelson, E. 1997. Introduction to mathematical logic 4th Ed. Chapman & Hall, London.
Miné, A. 2006a. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In Proc.

ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, and Tools for Embedded Systems, LCTES ’2006. ACM Press,
Ottawa, Canada, 54–63.

Miné, A. 2006b. The octagon abstract domain. Higher-Order and Symbolic Computation 19, 31–100.
Monk, J. D. 1969. Introduction to Set Theory. McGraw-Hill, New York.
Monteiro, A. and Ribeiro, H. 1942. L’opération de fermeture et ses invariants dans les systèmes partiellement ordonnés.

Portugal. Math. 3, 3, 171–184.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 Patrick Cousot et al.

Nelson, G. and Oppen, D. 1979. Simplification by cooperating decision procedures. ACM Transactions on Programming
Languages and Systems 1, 2, 245–257.

Poizat, B. 2000. A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Springer, Heidelberg.
Pratt, V. 1977. Two easy theories whose combination is hard. Tech. rep., MIT. september 1,. boole.stanford.edu/pub/
sefnp.pdf.

Ranzato, F. 1999. Closures on CPOs form complete lattices. Information and Computation 152, 236–249.
Reps, T., Sagiv, S., and Yorsh, G. 2004. Symbolic implementation of the best transformer. In Proc. 5th Int. Conf. on Verifica-

tion, Model Checking and Abstract Interpretation (VMCAI 2004), B. Steffen and G. Levi, Eds. LNCS 2937, Springer,
Heidelberg, Venice, Italy, 252–266.

Shostak, R. 1984. Deciding combinations of theories. Journal of the ACM 31, 1, 1–12.
Tarski, A. 1955. A lattice theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–310.
Tinelli, C. and Harandi, M. 1996. A new correctness proof of the Nelson–Oppen combination procedure. In Frontiers of

Combining Systems: Proc. 1st Int. Workshop, F. Baader and K. U. Schulz, Eds. Applied Logic. Kluwer Academic
Publishers, Munich, Germany, 103–120.

Tinelli, P. and Zarba, C. 2005. Combining non-stably infinite theories. Journal of Automated Reasoning 34, 3, 209–238.
Tiwari, A. and Gulwani, S. 2007. Logical interpretation: Static program analysis using theorem proving. In Automated

Deduction – CADE-21, F. Pfenning, Ed. LNCS 4603. Springer, Heidelberg, Bremen, Germany, 147–166.
Ward, M. 1942. The closure operators of a lattice. Annals of Mathematics 43, 2, 191–196.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

boole.stanford.edu/pub/sefnp.pdf
boole.stanford.edu/pub/sefnp.pdf

	Introduction
	Terminology for First-Order Logic, Theories, Interpretations and Models
	First-Order Logic
	Theories
	Interpretations
	Models
	Satisfiability and Validity (Modulo Interpretations and Theory)
	Decidable Theories
	Comparison of Theories

	Concrete Semantics
	Programs
	Mono-Interpreted Concrete Semantics
	Multi-Interpreted Concrete Semantics

	Background on Abstract Interpretation
	Abstract Domains
	Abstract Semantics
	Soundness of Abstract Domains
	Soundness of Abstract Semantics
	Iterates with Widening
	Best Abstraction

	Abstraction of Multi-Interpreted Concrete Semantics
	Abstractions Between Multi-Interpretations
	Homogeneous Abstraction of Interpretations
	Abstraction by a Theory
	Algebraic Abstraction of Interpretations
	Comparative Abstraction of Interpretations

	First Order Logical Semantics
	Multi-Interpretation of First-Order Logic Formulæ
	Axiomatic Semantics Modulo a Multi-Interpretation
	Soundness of the Axiomatic Semantics Modulo a Multi-Interpretation

	Logical Abstract Domains
	Definition of Logical Abstract Domains
	Abstraction to Logical Abstract Domains
	Abstract Logical Transformers
	Soundness of the Abstract Logical Semantics
	Approximations of the Abstract Ordering
	Logical Widening and Narrowing
	Enforcing Soundness of Unsound Abstractions

	Observational Semantics
	Observable Properties of Multi-interpreted Programs
	Soundness of the Abstraction of Observable Properties
	Observational Extension

	Reduced Product
	Cartesian and Reduced Product
	The Reduced Product is the Greatest Lower Bound in the Poset of Abstract Domains
	Abstract Domain Reduction
	The Reduced Product is the Meaning-Preserving Reduction of the Cartesian Product

	Iterated Reduced Product
	Iterated Weak Reduction
	Reduced Product of Abstractions Defined by Upper Closures
	Iterated Pairwise Reduction of the Cartesian Product
	(Reduced) Product Transformers
	Widening
	Observational Reduced Product

	The Nelson-Oppen Combination Procedure as an Observational Reduced Product
	Formula Purification
	First Phase of the Nelson-Oppen Theory Combination Procedure
	The Nelson-Oppen Purification as an Observational Cartesian Product

	Formula Reduction
	Second Phase of the Nelson-Oppen Theory Combination Procedure
	The Nelson-Oppen Reduction as an Iterated Fixpoint Reduction of the Product
	Formula Reduction and the Reduced Product

	Formula Satisfiability

	Reduced Product of Logical and Algebraic Abstract Domains
	Combining Logical and Algebraic Abstract Domains
	Reduced Product for Inconsistent Interpretations
	Program Purification
	Evolving Reduced Product
	On the Design of Static Analyzers by Iterated Reduction between Logical and Algebraic Domains with Evolving Refinement

	Related Work
	Conclusion

