Abstract Interpretation Based Program Testing

Patrick CousoT

Département d’informatique
Ecole normale supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

http://www.di.ens.fr/ cousot

Abstract— Every one can daily experiment that programs
are bugged. Software bugs can have severe if not catas-
trophic consequences in computer-based safety critical ap-
plications. This impels the development of formal methods,
whether manual, computer-assisted or automatic, for verify-
ing that a program satisfies a specification. Among the auto-
matic formal methods, program static analysis can be used
to check for the absence of run-time errors. In this case the
specification is provided by the semantics of the program-
ming language in which the program is written. Abstract in-
terpretation provides a formal theory for approximating this
semantics, which leads to completely automated tools where
run-time bugs can be statically and safely classified as un-
reachable, certain, impossible or potential. We discuss the
extension of these techniques to abstract testing where speci-
fications are provided by the programmers. Abstract testing
is compared to program debugging and model-checking.

Keywords— Abstract interpretation, Model-checking, De-
bugging, Abstraction, Testing, Abstract testing.

I. INTRODUCTION

Software debugging represents a large proportion of the
software development and maintenance cost (from 25% up
to 70% for safety critical software). Beyond classical debug-
ging methods, code review, simulation, etc., new formal
methods have been investigated during this past decade
such as:

deductive methods : to prove that a program semantics sat-
isfies a user-provided specification (using automatic theo-
rem provers or interactive proof checkers);

model-checking : to check that a (finite) model of the pro-
gram satisfies a user-provided specification (using exhaus-
tive or symbolic state exploration techniques);

static analysis : to verify that no program execution can
lead to run-time errors as specified by the programming
language semantics (by computation of an abstract inter-
pretation of the semantics of the program).

We investigate abstract testing, an extension of program
static analysis aiming at verifying user-provided specifica-
tions by abstract interpretation of the program semantics.
The technique is a natural extension of program debugging
using program properties instead of values. We compare
abstract testing to program debugging and model checking.

and

Radhia CousoT

Laboratoire d’informatique

Ecole polytechnique
91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr
http://lix.polytechnique.fr/ rcousot

II. AN INFORMAL INTRODUCTION TO ABSTRACT
TESTING

Abstract testing is the verification that the abstract se-
mantics of a program satisfies an abstract specification.
The origin is the abstract interpretation based static check-
ing of safety properties [1], [2] such as array bound checking
and the absence of run-time errors which was extended to
liveness properties such as termination [3], [4].

Consider for example, the factorial program (the random
assignment ? is equivalent to the reading of an input value
or the passing of an unknown but initialized parameter
value):

ITlra.analysis ();;

Reachability/ancestry analysis for initial/final states;
Type the program to analyze...

n :=7;

f :=1;

while (n <> 0) do
f := (f * n);
n:=(@-1)

od;;

The automatic analysis of this factorial program [5], [6]
leads to the result below. Each program point has been
numbered and a corresponding local invariant (given be-
tween parentheses) provides the possible values of the vari-
ables when reaching that program point. The value , typed
0, denotes the uninitialized value. Otherwise an inter-
val of possible values is given for integer variables (with
+0o (respectively —oo) typed +oo (resp. —00) denoting the
greatest (resp. smallest) machine representable integer).
The result of the automatic analysis is the following:

0: {n:_0_; f:_0_ %}
n :=7;

1:1: { n:[0,+00]; f:_0O_ }
f :=1;

2: { n:[0,+00]; f:[1,+o00] }

’while ((mn<0) | (0 <mn)) do
3: { n:[1,+00]; f:[1,+00] }

f := (f * n);
4: { n:[1,+00]; f:[1,+00] }
n:=(-1)
5: { n:[0,1073741822]; f:[1,+o0] }
od {(n = 0)}

6: { n:[0,0]; f:[1,+00] }

The analysis automatically discovers the condition n > 0
which should be checked at program point 1 (as indicated

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
Radhia.Cousot@polytechnique.fr
http://lix.polytechnique.fr/~rcousot

by :!:), since otherwise a runtime error or nontermination
is inevitable. Then the computed invariants will always
hold. For example the final value of n is 0 whereas £ >
1. The analysis is performed for the specific value +o0o =
1073741823 whence n € [0,1073741822] at program point 5
since otherwise there would have been an overflow so that
execution would have stopped after that runtime error.

III. A FORMALIZATION OF ABSTRACT TESTING

Let (S, t, I, F, E) be a transition system with set of
states S, transition relation ¢ C (S x S), initial states
I C S, erroneous states £ C S, and final states F' C S.
The transition system is assumed to be generated by a
small step operational semantics [7].

Example 1 In the factorial example of Sec. II, the states
are triples (p, n, f) where p € {0,...,6} is a program point,
n, f € ZU{} are the respective values of variables n and
f. The initial states are I = {(0, ,)}. The final states are
F ={(6,n, f)|n,f € ZU{}}. The erroneous states are
E = {<p7 n, f> | n ¢ [—OO,+OO] v f ¢ [—OO,-l—OO]}, that is
the value of the integer variables is out of bounds. Writing

t
s — ¢ for (s, ') €t, we have:

O,n, f) = (L2 f), €L

(In, f) — (2,n,1)

@ n f) -5 &nf) if nez\ {0}
(2,0, f) = (6,0, f)

(3, n, f) LN 4, n, f.n)

4, n, f) — (5,n—1,f)

G,on, f) = 2, f)

A program execution is a finite or infinite sequence
og...0;... of states o; € S. Execution starts with an
initial state o9 € I. Any state o; is related to its succes-
sor state ;41 as specified by the transition relation ¢ so
that (o;, 0;41) € t. The sequence is finite o¢...0;...0,
if and only if the last state is erroneous o, € E (because
of an anomaly during execution) or final o,, € F' (because
of normal termination). All other states have a successor
in which case execution goes on normally, may be for ever
(formally Vs € S\ (EUF):3s' € §: (s, &) €1).

Let t~! be the inverse of relation t. Let t* be the reflex-
ive transitive closure of the binary relation ¢. Let post[t] X
be the post-image of X by ¢, that is the set of states
which are reachable from a state of X by a transition ¢:
post[t] X & {s' € S |Is € X : (s,5) € t}[2], [4]. Inversely,
let pre[t] X = post[t~'] X be the pre-image of X by ¢ that
is the set of states from which there exists a possible tran-
sition t to a state of X: pre[t] X = {s € 5| 3¢’ € X : (s,
s’y € t}. The specifications considered in [3] are of the
form:

post[t*] I = (—E) Apre[t*] F .

Informally such a specification states that the descendants
of the initial states are never erroneous and can potentially
lead to final states.

By choosing different user specified invariant assertions
Iv for (—F) and intermittent assertions It for F', these
forms of specification were slightly extended by [8] under
the name “abstract debugging” to

post[t*] I = Iv A pre[t*]1t .

If the states (p, m) € S consist of a program point p € P
and a memory state m € M then the user can specify
local invariant assertions Iv,, attached to program points
p € Pv C P and local intermittent assertions It, attached
to program points p € Pt so that

v = {
and It = {(p,

m) | p € Pv = Ivp(m)}
m) | p € Pt Altp(m)} .

Otherwise stated, the descendants of the initial states al-
ways satisfy all local invariant assertions (which always
holds) and can potentially lead to states satisfying some lo-
cal intermittent assertion (which will sometime hold). For
example, a specification that the above factorial program
should always terminate normally states that any execu-
tion should always reach program point 6 hence would
consist in choosing:

Ivp(n, f) n,f €[—oo,+0], p=1,...,6;
Itp(n,£) = false, p=1,...,5
Its(n,f) = true.

The termination requirement can be very simply specified
as comments in the program text:

O: n :=7;

1: £ := 1;

2: while ((n < 0) | (0 < n)) do
3: £ := (f * n);
4: n:= (n - 1)

5: od;

6: sometime true;;

or by using an external temporal specification such as
O at 6 (we use the temporal operators (O P (read always
P) to denote the set of sequences of states such that all
states satisfy P, & P (read sometime P) to denote the set
of sequences containing at least one state satisfying P and
the predicate at p holds in all states which control point is
p).

A program static analyzer can therefore be used for ab-
stract testing which is similar to testing/debugging, with
some essential differences such as the consideration of an
abstract semantics instead of a concrete one, the ability to
consider several (reversed) executions at a time (as speci-
fied by user initial and final state specifications), the use of
forward and backward reasonings, the formal specification
of what has to be tested, etc.

IV. MODEL-CHECKING OF TEMPORAL SPECIFICATIONS

At first sight, abstract testing is model-checking [9], [10]
of the temporal formula:

O(A\ at, = Ivp) AO(\/ atpAlty)

pEPV pePt

for a small-step operational semantics (S, ¢, I) of the pro-
gram, or more precisely, abstract model-checking [11], [12]
since abstract interpretation is involved.

Indeed model-checking and abstract testing are formal
verification techniques which enjoy remarkable common ad-
vantages, the most important ones being that they are
both fully automatic and both involve reasonings that are
close to tracing program execution whence are easily un-
derstandable by programmers. However abstract testing
is quite different both from program debugging and (ab-
stract) model-checking for the technical reasons explained
in the following sections.

V. SCOPE OF APPLICATION
A. Scope of abstract testing

The abstract interpreters are developed for programming
languages that is infinitely many programs, with modu-
lar and infinitary recursive control and data structures
which are difficult to abstract and are most often ignored
in model-checking (with peculiar exceptions involving com-
plete abstractions, such as e.g. [13]).

In order to apply abstract testing to a great variety
of programming languages, abstract interpreter generators
have been developed (see e.g. [14]).

The (generated) abstract interpreters are generic [14],
[15], [16], [17], that is parameterized by an abstract domain
specifying the considered approximated properties.

The advantage is that the user can choose the approxi-
mation of the semantics of the program which is considered
for the abstract testing of the program among a selection
of predesigned reusable choices. There is no need for the
user to manually design the abstract interpreter. A conse-
quence of this generality is that there is no easy fine tuning
of the abstract interpreter for a particular specification and
a particular program (abstract compilation, see e.g. [18],
improving mainly the performance rather than the preci-
sion of the analyses).

B. Scope of (abstract) model checking

(Abstract) “model checking is a technique for verifying
finite-state concurrent systems such as sequential circuit
design and communication protocols" [19]. Indeed many
model checking publications refer to the case study of a
particular concurrent system which is often debugged and
sometimes verified by using an existing model checker on
an abstract model of the concurrent system. The partic-
ular, often implicit, abstraction which is used to design
the model can be specifically developed for the considered
concurrent system, see e.g. [20], [21], [22]. However these
abstractions developed for a specific program and a spe-
cific specification of that program are not reusable hence
extremely expansive to design.

In a sense this approach should always succeed since
tuning the abstraction for a particular specification of a
particular transition system is always complete (see [23]).
However, the proper abstraction may be quite difficult to
find in practice [24], [25] and may require a lot of efforts

from the user sometimes amounting to a full manual proof.

VI. ABSTRACT SEMANTICS

The only abstractions considered in abstract model
checking [26] are state based abstractions p(S) — ©(S*) of
the form a(X) = {a(s) | s € X} for a given state abstrac-
tion a € S+ S¥, see [27, sec. 14, p. 23]. This restriction
follows from the requirement in abstract model-checking to
model-check the abstract semantics which, in order to be
able to reuse existing model-checkers, must have the form
of a transition system on (abstract) states.

Contrary to a common believe not all abstractions are of
that form. So some abstract semantics (using e.g. the inter-
val abstraction [1], [2] or the polyhedral abstraction [28])
are beyond the scope of abstract model checking. Some
model checking publications use these abstractions or sim-
ilar ones which are not state based, e.g. [29], [30], [31],
[32], [33], [34]. But then they use abstract interpretation
based techniques such as fixpoint approximation, widen-
ing/narrowing, etc. to check safety (mainly reachability)
properties as considered in Secs. II and III.

VII. THE NEED FOR INFINITE ABSTRACT DOMAINS

Infinite abstract domains are definitely needed in pro-
gram analysis for precision (and sometimes efficiency or
ease of programming of the program analyzer). The argu-
ment given in [23] uses reachability analysis with the at-
tribute-independent interval domain [1], [2] for the family
of programs of the form:

x := 0;

while (x < n) do
x = (x + 1)

od;;

where n is a given integer constant. For example, for n =

100, we get:
0: { x:_0_1}
x := 0;
1: { x:[0,100] }
while (x < 100) do
2: { x:[0,99] }
x := (x + 1)
3: { x:[1,100] }
od {((100 < x) | (x =
4: { x:[100,100] }

WO om

100))}

It is easy to prove that for any n > 0, the analyzer will
discover:

0: { x:_0_1}
x := 0;
1: { x:[0,n] }
while (x < n) do
2: { x:[0,n - 1] }
x = (x + 1)

3: { x:[1,n] }
od {((n <x) | (x=mn)}
4: { x:[n,n] }

The argument is then as follows:

1. for any given n it is possible to find an abstract domain
(here {, [0,n], [0,n—1], [1,n], [n,n]}) and to redesign a cor-
responding program analyzer (and its correctness proof) so

that the above result can be computed by this specific ana-
lyzer for the specific abstract domain corresponding to this
particular n.

More generally, once a reachability proof has been done
(e.g. by hand!), the abstract finite domain is the set of pred-
icates involved in this proof and the abstract interpreter is
nothing but the finite encoding of Floyd-Naur-Hoare verifi-
cation conditions restricted to this peculiar finite domain.
In general it is impossible to discover this best-fit abstract
domain by simple inspection of the program text '.

2. Any single program analyzer being able to analyze the
entire infinite family of programs must use an abstract
domain containing the C-strictly increasing chain [1,n],
n > 0, hence an infinite abstract domain, as well as a
widening, to cope with:

0: { x:_0_1%

x := 0;
1: { x:[0,+00] }
while (0 < 1) do
2: { x:[0,+00] }
x = (x + 1)
3: { x:[1,+00] }
od {((1 <0) | (0=1)}

4: {x:_|_}%}

The per-example redesign of the program analyzer
has been proposed in model-checking, including with a
proof-check of its correctness [24], [25], [37], [38], but is
hardly conceivable for program analysis (but maybe for
large very popular programs on which a huge human in-
vestment is conceivable, such as MS Word [39]). Note
that this is different from using abstract interpretation or
model-checking to help a prover/proof checker to infer in-
variants [40], [41], [37] or to guide the automatic prover in
its proof search [42].

VIII. PRECISE CHECKING IN THE PRESENCE OF
APPROXIMATIONS

More importantly, the algorithms involved in abstract
testing are more precise than model-checking ones in the
presence of approximations. These approximations, such
as widenings [1], [2], can be simply ignored in model-
checking of finite-state transition systems.

A. Fizpoint approximation check

A first illustration of the enhanced precision of program
testing algorithms consists in considering a fixpoint approx-
imation check lprF C I where (L, C, 1L, T,C, J)isa
complete lattice, F' € L ~=*- [is monotonic and 1prF
is the C-least fixpoint of F.

For example an invariance check (such as array bound

checking) O I consists in verifying that lprF C I where

[
Ifp” F' characterizes the set of descendants of the entry
states and [is the invariant to be checked (asserting
for example that array indexes are within the declared

1Just as the invariants in Floyd-Naur-Hoare proof method are not
trivial to discover. From a practical point of view, compare the em-
piric approach of [35] based on heuristics for discovering invariants
from the program test which leads to worse results than [1], as shown
in [36].

bounds). In this example, L is {p(S), C, 0, S, C, D),
F =XX-EUpost[t] X so that lprF = post[t*] E.

In (abstract) model-checking, one computes iteratively
1prF and then checks that lprF C I (or uses a strictly

equivalent check, see [43, p. 73] and Sec. X below).
In abstract testing, one computes iteratively an up-

per-approximation J of lfpg)\X <IN F(X) with accel-
eration of the convergence of the iterates by widen-
ing/narrowing [4], [1], [2]. The convergence criterion is:

(INF(J)CJ. (1)

Then the invariance check has the form:

FJ)CI. (2)
This is sound, by the following theorem:

Theorem 1 If (L, C, L, T, C, 1) is a complete lattice,
F e L 225 [is monotonic and I, J € L, then:

(INFUJ)CJAFWJ)ET = lfp FCI

Proof: We have F(J) = F(J)N F(J) C INF(J)
[by (2)] C J [by (1)] proving F(J) C J by transitivity
cC
whence lfp” F' C J by Tarski’s fixpoint theorem [44], [45].
By definition of fixpoints and monotony, it follows that
[[
Ifp" F = F(lifp” F) C F(J) C I [by (2)]. By transitivity,
c
we conclude Ifp F' C I as required. |
The reason why abstract testing uses more involved com-
putations is that in the context of infinite state systems,
and for a given abstraction, the approximation of the more
complex expression is in general more precise than the ab-
straction of the trivial expression. Consider for example
interval analysis [1], [2] of the simple loop accessing se-
quentially an array A[1], ..., A[100]:
IT.analysis Q);;
Forward analysis from initial states;
Type the program to analyze...
i:=0;
while (i <> 100) do
i:=(1+1);
skip % array access %
od;;
The result of the analysis [6] is too approximate to stati-
cally check that the index i is within the array bounds 1
and 100 :
0: {i:_0_ }
i :=0;
1: { i:[0,+00] }
while ((i < 100) | (100 < i)) do
2: { i:[0,+00] }
i= (1 +1);
3: { i:[1,+00] }
skip
4: { i:[1,+00] }
od {(i = 100)}
5: { i:[100,100] }

However by explicit conjunction with the array access in-
variant 0 < i < 100 (the evaluation of the runtime check
always B has the effect of blocking the program execution
when the assertion B does not hold):

IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
i:=0;
while i <> 100 do
i=1i+1;
always (0 < i) & (i <= 100)
od;;

the static analysis now proves that the array out of bound
error is impossible:

0: {i:_0_}
i:=0;
1: { i:[0,100] }
while ((i < 100) | (100 < i)) do
2: { i:[0,99] }
i= (1 +1);
3: { i:[1,100] }
always ((0 < i) & ((1 < 100) | (i =
4: { i:[1,100] }
od {(i = 100)}
5: { i:[100,100] }

100)))

Experimentally, acceleration of the convergence may even
lead to a faster convergence of the more precise analysis.

B. Fizxpoint meet approrimation

A second illustration of the difference between
model-checking and abstract testing algorithms is the up-
per-approximation of the descendants of the initial states
which are ancestors of the final states. A model-checking
algorithm (such as [46]) computes a conjunction of forward
and backward fixpoints. The forward analysis of the facto-
rial program:

IT.analysis Q;;

Forward analysis from initial states;

Type the program to analyze...
n :=7;
f :=1;

while (n <> 0) do

f := (f * n);

n:=(@-1)
od;;
yields
0: {n:_0_; f:_0_ }
n :=7;
1: { n:[-00,+00]; f:_0_ }
f :=1;
2: { n:[-00,+00]; f:[-00,+00] }
while ((m < 0) | (0 < n)) do
3: { n:[-00,+00]; f:[-00,+00] }
f := (f * n);
4: { n:[-00,+00]; f:[-00,+00] }
n:=(@-1)
5: { n:[-00,1073741822]; f:[-00,+00] }
od {(n = 0)}

6: { n:[0,0]; f:[-00,+00] }

The backward analysis of the factorial program:

IT_1l.analysis O;;
Backward analysis from final states;
Type the program to analyze...

n :=7;

f :=1;

while (n <> 0) do
f := (f * n);
n:=(@-1)

od;;

yields:
0: { n:[-00,+00]?; f:[-00,+00]7 }
n :=7;
1: { n:[0,+00]; f:[-00,+00]7 }
f = 1;
: { n:[0,+00]; f:[-00,+00]7 }
while ((n < 0) | (0 < n)) do
3: { n:[1,+00]; f:[-00,+00] }
f := (f * n);
4: { n:[1,+00]; f:[-00,+00]7 }
n:=(@m-1)
5: { n:[0,+00]; f:[-00,+00]7 }
od {(n = 0)}

6: { n:[-00,+00]7; f:[-00,+00]7 }

The intersection is therefore:

0: {n:_0_; f:_0_}
n :=7;
1: { n:[-00,+00]; f:_0_ }
f :=1;
2: { n:[0,+00]; f:[-00,+00]7 }
while ((mn < 0) | (0 < mn)) do
3: { n:[1,+00]; f:[-00,+00] }
f := (f * n);
4: { n:[1,+00]; f:[-00,+00] }
n:=(-1)
5: { n:[0,1073741822]; f:[-o00,+00] }
od {(n = 0)}

6: { n:[0,0]; f:[-00,+00] }

Abstract testing iterates an alternation between forward
and backward fixpoints [3], [36]. For the factorial program:
ITlra.analysis ();;

Reachability/ancestry analysis for initial/final states;
Type the program to analyze...

n :=7;

f :=1;

while (n <> 0) do
f := (f * n);
n:=(@-1)

od;;

the analysis is more precise (since it can now derive that £
is positive):

0: {n:_0_; f:_0_ }
n :=7;
1:!': { n:[0,+00]; f:_0_ }
f :=1;
2: { n:[0,+00]; f:[1,+00] }
while ((m < 0) | (0 < n)) do
3: { n:[1,+00]; f:[1,+00] }
f := (f * n);
4: { n:[1,+00]; f:[1,+00] }
n:=(-1)
5: { n:[0,1073741822]; f:[1,+o0] }
od {(n = 0)}
6: { n:[0,0]; f:[1,+00] }

Assume that we must approximate lprF M 1prB from
above using an abstraction defined by the Galois connec-
tion (L, £) == (L*, CF) that is by definition Vz € L :
Yy € L* : a(z) CF y <= 2z C ~(y). The intuition
is that, in the concrete world L, any element x € L can
be approximated by any z’ such that x C 2. In the ab-
stract world L*, x can be approximated by any y such that
2 C ~v(y). The best or more precise such abstract approxi-
mation is y = a(x). It is an abstract approximation since
x C v o a(r). It is the more precise since for any other
abstract approximation y, x C v(y) = v o a(z) C y(y).

Now F' and B can be approximated by their abstract inter-
pretations F* Jao F o~y of Fand B* Ja o B o~ of B.

Ct ct
A better approximation than Ifp- F* M#1lfp B* was sug-
gested in [3]. It is calculated as the limit of the alternating
fixpoint computation:

-0 Eﬁ [

X" = Ifp Fforlfp Bf (3)
2n-+1 = F2n i Dt
X Ifp” AX - (X*"M*B*(X)), neN (4)
. # .
X2+ Ifp- AX - (X2 1 F¥(X)), neN (5)

For soundness, we assume:

Ifp- F 1 B(X)) 6

Ifp Frilfp B = Ifp AX- (

Ifp- B F(X)) (7
(
(

C
— Ifp AX-
— Ifp AX-
— Ifp AX-

Ifp- Frlfp BrB(X)) (8
Ifp- Flfp B F(X)) (9

so that there is no improvement when applying the alter-
nating fixpoint computation to F' and B (such as the exact
collecting semantics). However, when considering approxi-
mations F'* of F and B* of B, not all information can be
collected in one pass. So the idea is to propagate the ini-
tial assertion forward so as to get a final assertion. This
final assertion is then propagated backward to get stronger
necessary conditions to be satisfied by the initial states for
possible termination. This restricts the possible reachable
states as indicated by the next forward pass. Going on this
way, the available information on the descendant states of
the initial states which are ascendant states of the final
states can be improved on each successive pass, until con-
vergence. A specific instance of this computation scheme
was used independently by [47] to infer types in flowchart
programs.

Let us recall the following classical results in abstract
interpretation [2], [48]:
Theorem 2 (Fixpoint abstraction) If (L, C, L, T, L,
M) and (L*,C*, L* T* L%, M%) are complete lattices, (L, C)

v
— (L%, C* men, [,

()
()
()
()

) is a Galois connection, and F € L +2

f
then c)c(lfpE F)C 1pr ao Fon. o
Proof: In a Galois connection, o and =y are monotonic,
so by Tarski’s fixpoint theorem [44], the least fixpoints ex-
:
ist. So let P* = 1fpE ao Foy. We have a o F oy(P*)
= P* whence F o y(P*) C v(P*) by definition of Galois
connections. It follows that v(P*) is a postfixpoint of F'
whence lprF C ~(P#) by Tarski’s fixpoint theorem or
!
equivalently cu(lfpE F)C* pt = 1pr ao Fon. [|
Theorem 3 (Fixpoint approximation) If (L*, C*, 1%
TF, U8 M¥) ds a complete lattice, F*, F* € L# 222 [#
_ !
and F* C* F* pointwise, then lfpE rce lfpE Ft. o
t_ _ t_
Proof: We have Fi(lfp F*) CF Fi(ifp F*) =
oo 1 t_ 1
1pr F* whence lpr Fr Cct lpr F* since lpr F*
[T{X | F*(X) C* X} by Tarski’s fixpoint theorem [44].

The correctness of the alternating fixpoint computation fol-
lows from the following;:
Theorem 4 (Alternating fixpoint approximation) If
(L, C, L, T,U, M) and (L*, C% L* TF U* N#) are com-
plete lattices, (L, C) —= — (L*, C*) is a Galois connection,
FelL v [and B € L +22 [satisfy the hypothe-
ses (8) and (9), F* € L* 225 [* B € L 2ty [F,
a o F oy CF FF, onBO'yE“B”andthese-
quence <X", neN) zs defined by (3), (4) and (5) then
Vk e N: a(lfp Fﬂlfp B) C* Xkt XF, o
Proof: Observe that by the fixpoint property,
X2n+1 _ X2n mE Bu(XQn—i—l) and X2n+2 _ X2n+1 mE
F#(X?+2) hence X2" C* X271 Cf X272 gince M* is
the greatest lower bound for C* so that Xk, ke Nisa
decreasing chain.

We have oz(lfpE Fn lfpE B) C*

tone and oz(lfpE F)Ct 1fpEﬁ
sition for k = 0.

Let us observe that awo F oy C* F* implies F oy C 7o
F* by definition of Galois connections so that in particular
for an argument of the form a(X), Foyoa C vyo F#o
a. In a Galois connection, v o « is extensive so that by
monotony and transitivity F'C v o F* o .

[
a(lfp” F) since « is mono-

F* by 3, thus proving the propo-

Assume now by induction hypothesis that a(lprF r
ifp- B) CF X2,
lois connections, that lprF M lprB C y(X?"). Since
F C v o F' o a, it follows that AX -1fp F M

[.
fp BN F(X) E AX-y(X?) My o Ff o ofX) =
AX-y(X? M F* o a(X)) since, in a Galois connection,
v is a complete meet morphism. Now by hypothesis (8),
we have lfp” Frlfp- B=1pA X - (ifp” Flfp- B F(X))
Cf UpAX -v(X?"MF*o (X)) by Th. 3. Let G be
AX-X?" 1 F¥X). In a Galois connection, a o 7
is reductive so that by monotony G o «a o v C* @
and @ o v o G o a o v £ G o a o ~, whence,
by transitivity, @ o 7 o G o «a o v C* G. By
Th. 2, we have a(lfpy o G oa) Cf lfpaocyoGoaoy CF
IfpG by Th. 3. Hence, lfpA X (XM P o (X)) C
Y(fpA X - X2 M F*(X)) so that by transitivity we con-
clude that a(lprF n lpr B) C* X2nt1,

The proof that oz(lprF m 1fpE B) C* X242 g similar,
using hypothesis (8) and by exchanging the roles of F' and
B. |
It is interesting to note that the computed sequence (3),
(4) and (5) is optimal (see [45]).

If the abstract lattice does not satisfy the descending
chain condition then [3] also suggests to use a narrowing
operator A [1], [2] to enforce convergence of the downward
iteration X* k € N. The same way a widening/narrowing

approach can be used to enforce convergence of the iterates
for AX - X?" M F*(X) and A X - X211 B¥(X).

or equivalently, by definition of Ga-

C. Local iterations

A third illustration of the difference between model-
checking and abstract testing algorithms in the context of

approximation is the local iterations [49] to handle tests,
backward assignments, etc. Below is an example of pro-
gram static analysis, without local iterations:

IT.analysis Q);;
Forward analysis from initial states;

0: { x:_0_; y:_0_; z:_0_ %}
x := 0;
1: { x:[0,0]; y:_0_; =z:_0_ }
y =7
2: { x:[0,0]; y:[-00,+00]; z:_0_ }
z = 7
3: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }
if (((x=y) & (y =2)) & ((z + 1) =x)) then
4: { x:[0,0]; y:[0,0]; =z:[-1,-1] }
skip
5: { x:[0,0]; y:[0,0]; z:[-1,-1] }
else
6: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }
skip
7: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }

fi
8: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }

The precision of the same program with the same abstract
domain is greatly enhanced with local iterations:

IT’ .analysis);;
Forward reductive analysis from initial states;

0: { x:_0_; y:_0_; z:_0_ 1%}
x := 0;
1: { x:[0,0]; y:_0_; =z:_0_ }
y =7
2: { x:[0,0]; y:[-00,+00]; z:_0_ }
z = 7
3: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }
if (((x=y) & (y =2)) & ((z + 1) =x)) then
4: { x:_l_; yi_l_s z:_l_ %
skip
5: { x:_I_; y:_l_; z:_I_}
else
6: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }
skip
7: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }
fi

8: { x:[0,0]; y:[-00,+00]; z:[-00,+00] }

When applied to tests without side-effects, the idea of
the local iterations is to iterate the abstract evaluation of
the test. From { x:[0,0]; y:[-00,+00]; z:[-00,+00]
}, the abstract interpretation of the test (x = y) yields
y:[0,0], the test (y = z) provides no information on y
and z while ((z + 1) = x) yields z: [-1,-1]. Iterating
once more, the tests (x = y) and ((z + 1) = x) provide
no new information while (y = z) is false and so is the con-
junction (((x = y) & (y =2)) & ((z+ 1) =x)). It
follows that program point 4 is not reachable which is de-
noted by assigning the bottom value L (typed _|_) to vari-
ables.

D. Fixpoint meet approximation check

The abstract testing strategy to check post[t*]] —

Iv A pre[t*] It and more generally lfpE FCIN 1fpE B com-
bines the results of Sec. VIII-A and Sec. VIII-B.

IX. COUNTER-EXAMPLES TO ERRONEOUS DESIGNS

Another important element of comparison between
model-checking and abstract testing concerns the conclu-
sions that can be drawn in case of failure of the automatic

verification process. The model checking algorithms usu-
ally provide a counter-example [50]. This is not always
possible with abstract testing (e.g. for non-termination)
since the necessary over-approximation leads to the con-
sideration of inexisting program executions which should
not be proposed as counter-examples. This is the price to
pay for undecidability.

However, abstract testing can provide necessary condi-
tions for the specification to be (un-)satisfied. These auto-
matically calculated conditions can serve as a guideline to
discover the errors. They can also be checked at run-time
to start the debugging mode before the error actually hap-
pens. For example the analysis of the following factorial
program with a termination requirement:

IT_1.analysis Q);;

Backward analysis from final states;

Type the program to analyze...

n :=7;

f :=1;

while (n <> 0) do
£ (f * n);
n (n-1)

od;;

leads to the necessary pre-condition textttn > 0:

0: { n:[-00,+00]?; f:[-00,+00]7 }
n :=7;
1: { n:[0,+00]; f:[-00,+00]7 }
f :=1;
2: { n:[0,+00]; f:[-00,+00]7 }
while ((n < 0) | (0 < n)) do
3: { n:[1,+00]; f:[-00,+00] }
f := (f * n);
4: { n:[1,+00]; f:[-00,+00]7 }
n:=(-1)
5: { n:[0,+00]; f:[-00,+00]7 }
od {(n = 0)}

6: { n:[-00,+00]?; f:[-00,+00]7 }

Indeed when this condition is not satisfied, i.e. when ini-
tially n < 0, the program execution may not terminate or
may terminate with a run-time error (arithmetic overflow
in the above example). The following static analysis with
this erroneous initial condition n < 0:

IT.analysis (Q);;

Forward analysis from initial states;

Type the program to analyze...
initial n < O;

f :=1;

while (n <> 0) do
f := (f * n);
n:=(@-1)

od;;

shows that the program execution never terminates prop-
erly so that the only remaining possible case is an incor-
rect termination with a run-time error (L, typed _|_, is
the false invariant hence denotes unreachability in forward
analysis and impossibility to reach the goal in backward
analysis):
O: {m:_|_; £:1_ %}
initial (n < 0);
1: { n:[-00,-1]; £:_0_ }
f :=1;
2: { n:[-00,-1]; f:[-00,1] }
while ((n < 0) | (0 < n)) do

3: { n:[-00,-1]; f:[-00,1] }
f := (f * n);
4: { n:[-00,-1]; f:[-00,0] }
n:=(-1)
5: { n:[-00,-2]; f:[-00,0] }
od {(n = 0)}
6: {n:_|_; f:_I_}

Otherwise stated, infinitely many counter-examples are si-
multaneously provided by this counter-analysis.

X. CONTRAPOSITIVE REASONING

For the last element of comparison between abstract test-
ing and model-checking, observe that in model-checking,
using a set of states or its complement is equivalent as
far as the precision of the result is concerned (but may
be not its efficiency). For example, as observed in [43,
p. 73], the Galois connection (p(S), C) %} (p(S),
oSst|r
C) (where 1 C S x S and pre[r] X = {s | Vs’ : (s,
sy er = s’ € X}) implies that the invariance specifica-
tion check post[t*] E C I is equivalent to pre[t*] -1 C —=FE
(or pre[t*] =I C —F for total deterministic transition sys-
tems [4]). Otherwise stated a forward positive proof is
equivalent to a backward contrapositive proof, as observed
in [51]. So the difference between the abstract testing algo-
rithm of [2], [48], [4] and the model-checking algorithm of
[52], [53], [10] is that abstract testing checks post[t*] E C I
while model-checking verifies pre[t*] =I C —F, which is
equivalent for finite transition systems as considered in
[52], [53], [10].

However, when considering infinite state systems the
negation may be approximate in the abstract domain. For
example the complement of an interval as considered in [1],
[2] is not an interval in general. So the backward contra-
positive checking may not yield the same conclusion as the
forward positive checking. For example when looking for
a pre-condition of an out of bounds error for the following
program:

IT_1.analysis Q;;
Backward analysis from final states;
Type the program to analyze...
i:=0;
while i <> 100 do
i=1i+1;
if (0 < i) & (i <= 100) then
skip % array access %
else
final (i <= 0) | (100 < i) % out of bounds error %
fi
od;;

the predicate (i <= 0) | (100 < i) cannot be precisely
approximated with intervals, so the analysis is inconclu-
sive:

0: { i:[-00,+00]7 }
i:=0;
1: { i:[-00,1073741822] }
while ((i < 100) | (100 < i)) do

2: { i:[-00,1073741822] }
i= ({1 +1);
3: { i:[-00,+00] }
if ((0 < i) & ((i < 100) | (i =
4: { i:[-00,1073741822] }

100))) then

skip
5: { i:[-00,1073741822] }
else {(((1 <0) | (0 =1)) | (100 < i)}
6: { i:[-00,+00] }
final (((1 <0) | (1 =0)) | (100 < i))
7: { i:[-00,1073741822] }

fi
8: { i:[-00,1073741822] }
od {(i = 1000}
9: { i:_|_}

However both the forward positive and backward contra-
positive checking may be conclusive. This is the case if we
check for the lower bound only:

IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
i:=0;
while i <> 100 do
i=1i+1;
if (0 < i) then
skip % array access %
else
final (i <= 0) % out of lower bound error %
fi
od;;

This is shown below since the initial invariant is false so
the out of lower bound error is unreachable:

o: {i:_I_}%}
i := 0;
1: { i:[-00,-1] }
while ((i < 100) | (100 < i)) do
2: { i:[-00,-1] }
i= (1 +1);
3: { i:[-00,0] }
if (0 < i) then
4: { i:[-00,-1] }
skip
5: { i:[-00,-1] }
else {((1 <0) | (0 =1i)}
6: { i:[-00,0] }
final ((i < 0) | (i = 0))
7: { i:[-00,-1] }

i
i
1

fi
8: { i:[-00,-1] }
od {(i = 100)}
9: { i:_|_}

Similarly for the upper bound:
o: {i:_|_}

i
i :=0;
1: { i:[101,1073741822] }
while ((i < 100) | (100 < i)) do
2: { i:[100,1073741822] }
i= (G +1);
3: { i:[101,+00] }
if ((i < 100) | (i = 100)) then
4: { i:[101,1073741822] }
skip
5: { i:[101,1073741822] }
else {(100 < i)}
6: { i:[101,+00] }
final (100 < i)
7: { i:[101,1073741822] }

fi
8: { i:[101,1073741822] }
od {(i = 100)}
9: { i:_|_}

Both analyzes could be done simultaneously by considering
both intervals and their dual, or more generally finite dis-
junctions of intervals. More generally, completeness may

always be achieved by enriching the abstract domain [54].
To start with, the abstract domain might be enriched with
complements [55], but this might not be sufficient and in-
deed the abstract domain might have to be enriched for
each primitive operation [56], thus leading to an abstract
algebra which might be quite difficult to implement if not
totally inefficient.

XI. CONCLUSION

As an alternative to program debugging, formal meth-
ods have been developed to prove that a semantics or a
model of the program satisfies a given specification. Be-
cause of theoretical and practical limitations, these formal
methods have had more successes for finding bugs than
for actual correctness proofs of full programs. For com-
plex programs, the basic idea of complete program verifi-
cation underlying the deductive and model checking meth-
ods must be abandoned in favor of debugging. In the
context of debugging, we have shown that abstract inter-
pretation based program static analysis can be extended
to program testing. Abstract interpretation methods of-
fer techniques which, in the presence of approximation,
can be viable and powerful alternatives to both the ex-
haustive search of model-checking and the partial explo-
ration methods of classical debugging. The main advan-
tage is that no tuning of the abstract is needed since the
program model is provided by approximation of its se-
mantics chosen among a predefined set of wide-spectrum
approximations hence avoiding the need to be designed
by the user which ultimately amounts to a full proof.

REFERENCES

[1] P. Cousot and R. Cousot, “Static determination of dynamic
properties of programs,” in Proceedings of the Second Interna-
tional Symposium on Programming, pp. 106—-130, Dunod, Paris,
France, 1976. II, VI, VII, VIII, 1, VIII-A, VIII-A, VIII-B, X

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, (Los Angeles, California),
pp- 238-252, ACM Press, New York, New York, United States,
1977. 1I, 111, VI, VII, VIII, VIII-A, VIII-A, VIII-B, VIII-B,
X

[3] P. Cousot, Méthodes itératives de construction et d’approzima-
tion de points fizes d’opérateurs monotones sur un treillis, ana-
lyse sémantique de programmes. These d’ Etat és sciences mathé-
matiques, Université scientifique et médicale de Grenoble, Gre-
noble, France, 21 March 1978. II, III, VIII-B, VIII-B

[4] P. Cousot, “Semantic foundations of program analysis,” in Pro-
gram Flow Analysis: Theory and Applications (S. Muchnick and
N. Jones, eds.), ch. 10, pp. 303-342, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, United States, 1981. II, III, VIII-A,
X

[5] P. Cousot, “The Marktoberdorf’98 generic abstract interpreter.”
http://www.di.ens.fr/"cousot/Marktoberdorf98.shtml ,
November 1998. II

[6] P. Cousot, “Calculational design of semantics and static ana-
lyzers by abstract interpretation.” NATO International Summer
School 1998 on Calculational System Design. Marktoberdorf,
Germany. Organized by F.L. Bauer, M. Broy, E.-W. Dijkstra, D.
Gries and C.A.R. Hoare., 28 July — 9 August 1998. II, VIII-A

[7] G. Plotkin, “A structural approach to operational semantics,”
Tech. Rep. DAIMI FN-19, Aarhus University, Denmark, septem-
ber 1981. III

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17)

(18]

(19]

20]

(21]

(22]

23]

[24]

F. Bourdoncle, “Abstract debugging of higher-order impera-
tive languages,” in Proceedings of the ACM-SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pp. 46-55, ACM Press, New York, New York, United States,
1993. III

E. Clarke, E. Emerson, and A. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifi-
cations,” ACM Transactions on Programming Languages and
Systems, vol. 8, pp. 244-263, January 1986. IV

J.-P. Queille and J. Sifakis, “Verification of concurrent systems in
CESAR,” in Proceedings of the International Symposium on Pro-
gramming, Lecture Notes in Computer Science 137, pp. 337-351,
Springer-Verlag, Berlin, Germany, 1982. IV, X

E. Clarke, O. Grumberg, and D. Long, “Model checking and ab-
straction,” ACM Transactions on Programming Languages and
Systems, vol. 16, pp. 1512-1542, september 1994. IV

R. Cleaveland, P. Iyer, and D. Yankelevitch, “Optimality in
abstractions of model checking,” in Proceedings of the Second
International Symposium on Static Analysis, SAS '95 (A. My-
croft, ed.), Glasgow, United Kindom, 25-27 september 1995, Lec-
ture Notes in Computer Science 983, pp. 51-63, Springer-Verlag,
Berlin, Germany, 1995. IV

B. Boigelot and P. Godefroid, “Symbolic verification of communi-
cation protocols with infinite state spaces using QDDs (extended
abstract),” in Proceedings of the Eight International Conference
on Computer Aided Verification, CAV ’96 (R. Alur and T. Hen-
zinger, eds.), New Brunswick, New Jersey, United States, Lec-
ture Notes in Computer Science 1102, pp. 1-12, Springer-Verlag,
Berlin, Germany, 31 July -3 August 1996. V-A

C. Ferdinand, Generating Program Analyzers. Verfasser — Pirrot
Verlag, Saarbriicken, Germany, 1999. V-A

P. Cousot, “The calculational design of a generic abstract inter-
preter,” in Calculational System Design (M. Broy and R. Stein-
briiggen, eds.), vol. 173, pp. 421-505, NATO Science Series, Se-
ries F: Computer and Systems Sciences. IOS Press, Amsterdam,
The Netherlands, 1999. V-A

B. Le Charlier and P. Van Hentenryck, “Experimental evalua-
tion of a generic abstract interpretation algorithm for Prolog,” in
Proceedings of the 1992 International Conference on Computer
Languages, Oakland, California, pp. 137-146, IEEE Computer
Society Press, Los Alamitos, California, United States, 20-23
April 1992. V-A

G. Puebla, M. Hermenegildo, and J. P. Gallagher, “An inte-
gration of partial evaluation in a generic abstract interpreta-
tion framework,” in Proceedings of PEPM’99, The ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, ed. O. Danvy, San Antonio, January
1999., pp. 75-84, University of Aarhus, Dept. of Computer Sci-
ence, January 1999. V-A

D. Boucher and M. Feeley, “Abstract compilation: A new im-
plementation paradigm for static analysis,” in Proceedings of
the Sixth International Conference on Compiler Construction,
CC ’96 (T. Gyimothy, ed.), Linkdping, Sweden, Lecture Notes
in Computer Science 1060, pp. 192-207, Springer-Verlag, Berlin,
Germany, 24-26 April 1996. V-A

E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, Cambridge, Massachusetts, United States, 1999. V-B

K. Havelund, K. Larsen, and A. Skou, “Formal verification of an
audio/video power controller using the real-time model checker
UPPAAL,” in ARTS’99, 1999. V-B

K. Havelund, M. Lowry, and J. Penix, “Formal analysis of a
space craft controller using SPIN,” in SPIN’98, 1998. V-B

K. Havelund and T. Pressburger, “Model checking Java pro-
grams using Java PathFinder,” International Journal on Soft-
ware Tools for Technology Transfer (STTT), 2000. toappear.
V-B

P. Cousot and R. Cousot, “Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation, in-
vited paper,” in Proceedings of the International Workshop Pro-
gramming Language Implementation and Logic Programming,
PLILP ’92 (M. Bruynooghe and M. Wirsing, eds.), Leuven, Bel-
gium, 13-17 August 1992, Lecture Notes in Computer Science
631, pp. 269-295, Springer-Verlag, Berlin, Germany, 1992. V-B,
VII

S. Graf and C. Loiseaux, “A tool for symbolic program verifica-
tion and abstraction,” in Proceedings of the Fifth International
Conference on Computer Aided Verification, CAV ’93 (C. Cour-
coubetis, ed.), Elounda, Greece, Lecture Notes in Computer Sci-

http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml

25]

(26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

ence 697, pp. 71-84, Springer-Verlag, Berlin, Germany, 28 June
—1 July 1993. V-B, VII

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem,
“Property preserving abstractions for the verification of concur-
rent systems,” Formal Methods in System Design, vol. 6, no. 1,
1995. V-B, VII

M. Miiller-Olm, D. Schmidt, and B. Steffen, “Model checking: a
tutorial introduction,” in Proceedings of the Sizth International
Symposium on Static Analysis, SAS *99 (A. Cortesi and G. Filé,
eds.), Venice, Italy, 22-24 september 1999, Lecture Notes in
Computer Science 1694, pp. 330-354, Springer-Verlag, Berlin,
Germany, 1999. VI

P. Cousot and R. Cousot, “Temporal abstract interpretation,”
in Conference Record of the Twentyseventh Annual ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming Lan-
guages, (Boston, Massachusetts), pp. 12-25, ACM Press, New
York, New York, United States, January 2000. VI

P. Cousot and N. Halbwachs, “Automatic discovery of lin-
ear restraints among variables of a program,” in Conference
Record of the Fifth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, (Tucson, Ari-
zona), pp. 84-97, ACM Press, New York, New York, United
States, 1978. VI

T. Bultan, R. Gerber, and W. Pugh, “Model checking concurrent
systems with unbounded variables, symbolic representations, ap-
proximations and experimental results,” ACM Transactions on
Programming Languages and Systems, vol. 21, pp. 747-789, July
1999. VI

N. Halbwachs, “Delays analysis in synchronous programs,” in
Proceedings of the Fifth International Conference on Computer
Aided Verification, CAV 93 (C. Courcoubatis, ed.), Elounda,
Greece, Lecture Notes in Computer Science 697, pp. 333-346,
Springer-Verlag, Berlin, Germany, 28 June —1 July 1993. VI
N. Halbwachs, “About synchronous programming and abstract
interpretation,” Science of Computer Programming, vol. 31,
pp- 75-89, May 1998. VI

N. Halbwachs, Y. Proy, and P. Roumanoff, “Verification of
real-time systems using linear relation analysis,” Formal Meth-
ods in System Design, vol. 11, pp. 157-185, August 1997. VI
P.-H. Ho and H. Wong-Toi, “Automated analysis of an audio con-
trol protocol,” in Proceedings of the Seventh International Con-
ference on Computer Aided Verification, CAV ’95 (P. Wolper,
ed.), Liége, Belgium,Lecture Notes in Computer Science 939,
pp- 381-394, Springer-Verlag, Berlin, Germany, 3-5 July 1995.
VI

F. Huch, “Verification of Erlang programs using abstract in-
terpretation and model checking,” in Proceedings of the 1999
ACM SIGPLANInternational Conference on Logic Program-
mang, ICFP ’99, (Paris, France), pp. 261272, ACM Press, New
York, New York, United States, 27-29 september 1999. VI

R. Gupta, “A fresh look at optimizing array bound checking,” in
ACM-SIGPLAN Conference on Programming Language Design
and Implementation ’90, pp. 272-282, June 1990. 1

P. Cousot and R. Cousot, “Abstract interpretation and ap-
plication to logic programs,” Journal of Logic Programming,
vol. 13, no. 2-3, pp. 103-179, 1992. (The editor of Jour-
nal of Logic Programming has mistakenly published the un-
readable galley proof. For a correct version of this paper, see
http://www.di.ens.fr/"cousot.). 1, VIII-B

H. Saidi and N. Shankar, “Abstract and model check while you
prove,” in Proceedings of the Eleventh International Conference
on Computer Aided Verification, CAV 99 (N. Halbwachs and
D. Peled, eds.), Trento, Italy, Lecture Notes in Computer Science
1633, pp. 443-454, Springer-Verlag, Berlin, Germany, 6-10 July
1999. VII

S. Graf and H. Saidi, “Construction of abstract state graphs
with PVS,” in Proceedings of the Ninth International Conference
on Computer Aided Verification, CAV ’97 (O. Grumberg, ed.),
Haifa, Israel,Lecture Notes in Computer Science 1254, pp. 72-83,
Springer-Verlag, Berlin, Germany, 22-25 July 1997. VII

M. Das, “Static analysis of large programs: Some experiences
(invited talk),” in Proceedings of the ACM Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM 00, (Boston, Massachusetts, United States), p. 1, ACM
Press, New York, New York, United States, 22-23 January 2000.
VII

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS:
Combining specification, proof checking, and model checking,” in

9

[41]

42]

[43]

(44]

[45]

[46]

[47)

(48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

10

Proceedings of the Eight International Conference on Computer
Aided Verification, CAV 796 (R. Alur and T. Henzinger, eds.),
New Brunswick, New Jersey, United States, Lecture Notes in
Computer Science 1102, pp. 411-414, Springer-Verlag, Berlin,
Germany, 31 July -3 August 1996. VII

A. Pnueli and E. Shahar, “A platform for combining deductive
with algorithmic verification,” in Proceedings of the Eight Inter-
national Conference on Computer Aided Verification, CAV ’96
(R. Alur and T. Henzinger, eds.), New Brunswick, New Jer-
sey, United States, Lecture Notes in Computer Science 1102,
pp- 184-195, Springer-Verlag, Berlin, Germany, 31 July -3 Au-
gust 1996. VII

F. Giunchiglia and A. Villafiorita, “ABSFOL: A proof checker
with abstraction,” in Proceedings of the Thirteenth International
Conference on Automated Deduction, CADE ’962 (M. McRob-
bie and J. Slaney, eds.), New Brunswick, New Jersey, United
States, Lecture Notes in Computer Science 1104, pp. 136-140,
Springer-Verlag, Berlin, Germany, 30 July — 3 August 1996. VII
P. Cousot and R. Cousot, “Refining model checking by ab-
stract interpretation,” Automated Software Engineering, vol. 6,
pp. 69-95, 1999. VIII-A, X

A. Tarski, “A lattice theoretical fixpoint theorem and its appli-
cations,” Pacific Journal of Mathematics, vol. 5, pp. 285-310,
1955. VIII-A, VIII-B, VIII-B

P. Cousot and R. Cousot, “Constructive versions of Tarski’s
fixed point theorems,” Pacific Journal of Mathematics, vol. 82,
no. 1, pp. 43-57, 1979. VIII-A, VIII-B

S. Berezin, E. Clarke, S. Jha, and W. Marrero, “Model
checking algorithms for the p-calculus,” Technical report
tr-cmu-cs-96-180, Carnegie Mellon University, september 1996.
VIII-B

M. Kaplan and J. Ullman, “A general scheme for the automatic
inference of variable types,” Journal of the Association for Com-
puting Machinary, vol. 27, no. 1, pp. 128-145, 1980. VIII-B

P. Cousot and R. Cousot, “Systematic design of program analy-
sis frameworks,” in Conference Record of the Sizth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, (San Antonio, Texas), pp. 269282, ACM Press, New
York, New York, United States, 1979. VIII-B, X

P. Granger, “Improving the results of static analyses of programs
by local decreasing iterations,” in Proceedings of the Twelfth
Foundations of Software Technology and Theoretical Computer
Science Conference (R. Shyamasundar, ed.), New Delhi, India,
18-20 December 1992, Lecture Notes in Computer Science 652,
pp. 68-79, Springer-Verlag, Berlin, Germany, 1992. VIII-C

J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Sym-
bolic model checking: 102° states and beyond,” Information and
Computation, vol. 98, no. 2, pp. 142-170, 1992. IX

P. Cousot and R. Cousot, “Induction principles for proving in-
variance properties of programs,” in Tools & Notions for Pro-
gram Construction (D. Néel, ed.), pp. 43-119, Cambridge Uni-
versity Press, Cambridge, United Kindom, 1982. X

E. Clarke and E. Emerson, “Synthesis of synchronization skele-
tons for branching time temporal logic,” in IBM Workshop on
Logics of Programs, Lecture Notes in Computer Science 131,
Springer-Verlag, Berlin, Germany, May 1981. X

E. Clarke, E. Emerson, and A. Sistla, “Automatic verification
of finite state concurrent systems using temporal logic specifica-
tions: A practical approach,” in Conference Record of the Tenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 117-126, ACM Press, New York,
New York, United States, January 1983. X

R. Giacobazzi and F. Ranzato, “Completeness in abstract in-
terpretation: A domain perspective,” in Proc. of the Sixth In-
ternational Conference on Algebraic Methodology and Software
Technology (AMAST’97) (M. Johnson, ed.), vol. 1349 of Lec-
ture Notes in Computer Science, pp. 231-245, Springer-Verlag,
Berlin, Germany, 1997. X

R. Giacobazzi, C. Palamidessi, and F. Ranzato, “Weak relative
pseudo-complements of closure operators,” Algebra Universalis,
vol. 36, no. 3, pp. 405-412, 1996. X

R. Giacobazzi, F. Ranzato, and F. Scozzari, “Complete abstract
interpretations made constructive,” in Proceedings of the Twen-
tythird International Symposium on Mathematical Foundations
of Computer Science, MFCS’98 (L. Brim, J. Gruska, and J. Zla-
tuska, eds.), vol. 1450 of Lecture Notes in Computer Science,
pp. 366377, Springer-Verlag, Berlin, Germany, 1998. X

Published in the Proceedings of the SSGRR 2000 Computer € eBusi-
ness International Conference, CD Rom paper 248, 1’Aquila, Italy,
July 31 — August 6 2000. Scuola Superiore G. Reiss Romoli.

http://www.di.ens.fr/~cousot

	Introduction
	An informal introduction to abstract testing
	A formalization of abstract testing
	Model-checking of temporal specifications
	Scope of application
	Scope of abstract testing
	Scope of (abstract) model checking

	Abstract semantics
	The need for infinite abstract domains
	Precise checking in the presence of approximations
	Fixpoint approximation check
	Fixpoint meet approximation
	Local iterations
	Fixpoint meet approximation check

	Counter-examples to erroneous designs
	Contrapositive reasoning
	Conclusion

