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1. INTRODUCTION and SUMMARY

Semantic analysis of programs is essential in
optimizing compilers and program verification sys-
tems., It encompasses data flow analysis, data type
determination, generation of approximate invariant
assertions, etc.

Several recent papers (among others Cousot &
Cousot[77al, Graham & Wegman[76], Kam & Ullmanl76],
K11dall[73], Rosen[78], Tarjanl76], Wegbreit[751)
have introduced abstract approaches to program anal-
ysis which are tantamount to the use of a program
analysis framework (A,t,Y) where A is a lattice of
(approximate) assertions, t i1s an (approximate] pred-
icate transformer and Y i1s an often impliecit func-
tion specifying the meaning of the elements of A.
This paper is devoted to the systematic and correct
design of program analysis frameworks with respect
to a formal semantics.

Preliminary definitions are given in Section 2
concerning the merge over all paths and (least)
fixpoint program-wide analysis methods., In Section 3
we briefly define the (forward and backward) deduc-
tive semantics of programs which is later used as a
formal basis in order to prove the correctness of the
approximate program analysis frameworks. Section 4
very shortly recall the main elements of the lattice
theoretic approach to approximate semantic analysis
of programs.

The design of a space of approximate assertions
A i1s studied in Section 5. We first justify the very
reasonable assumption that A must be chosen such that
the exact invariant assertions of any program must
have an upper approximation in A and that the approx-
imate analysis of any program must be performed using
a deterministic process. These assumptions are shown
to imply that A is a Moore family, that the approxi-
mation operator (wich defines the least upper approx-
imation of any assertion) is an upper closure operator
and that A is necessarily a complete lattice. We next
show that the connection between a space of approxi-
mate assertions and a computer representation is nat-
urally made using a pair of isotone adjoined func-
tions. This type of connection betwsen two complete
lattices is related to Galois connections thus making
available classical mathematical results. Additional
results are proved, they hold when no two approximate
assertions have the same meaning.
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in Section 6 we study and examplify various
methods which can be used in order to define a space
of approximate assertions or equivalently an approx-
imation function. They include the characterization
of the least Moore family containing an arbitrary set
of assertions, the construction of the least closure
operator greater than or equal to an arbitrary approx-
imation function, the definition of closure operators
by composition, the definition of a space of approxi-
mate assertions by means of a complete join congruence
relation or by means of a family of principal ideals.

Section 7 is dedicated to the design of the
approximate predicate transformer induced by a space
of approximate asserticns. First we look for a rea-
sonable definition of the correctness of approximate
predicate transformers and show that a local corrsct-
ness condition can be given which has to be verified
for every type of elementary statement. This local
correctness condition ensures that the (merge over
all paths or fixpoint) global analysis of any program
is correct. Since isotony is not required for approx-
imate predicate transformers to be correct it is shown
that non-isotone program analysis frameworks are man-
ageable although it is later argued that the isotony
hypothesis is natural. We next show that among all
possible approximate predicate transformers which can
be used with a given space of approximate assertions
there exists a best one which provides the maximum
information relative to a program-wide analysis
method. The best approximate predicate transformer
induced.by a space of approximate assertions turns
out to be isotone. .Some interesting consequences of
the existence of a best predicate transformer are
examined. One is that we have in hand a.formal spec-
ification of the programs which have to be written in
order to implement a program analysis framework once
a representation of the space of approximate asser-
tions has been chosen. Examples are given, including
anes where the semantics of programs is formalized
using Hoare[78]1's sets of traces.

In Section 8 we shqw that a hierarchy of approx-
imate analyses can be defined according to the fine-
ness of the approximations specified by a program
analysis framework. Some elements of the hierarchy
are shortly exhibited and related to the relevant
literature.

In Section 9 we consider global program analysis
methods. The distinction between "distributive” and
"non-distributive” program analysis frameworks is
studied. It is shown that when the best approximate
predicate transformer is considered the coincidence
or not of the merge over all paths and least fixpoint
global analyses of programs is a consequence of the
choice of the space of approximate assertions. It is



shown that the space of approximate assertions can
always be refined so that the merge over all paths
analysis of a program can be defined by means of a
least Tixpoint of isotone equations.

Section 10 is devoted to the combination of
program analysis frameworks. We study and examplify
how to perform the "sum”, "product” and "power” of
program analysis frameworks. It is shown that comb-
ined analyses lead to more accurate information than
the conjunction of the corresponding separate ana-
lyses but this can only be achieved by a new design
of the approximate predicate transformer induced by
the combined program analysis frameworks.

2, PRELIMINARY DEFINITIONS

A program ™ is a pair (V,G) where G is a pro-
gram graph and V is the universe in which the pro-
gram variables take their values.

The set L of elementary commands consists in
elementary tests and elementary assignments
L =Lt ULa' An elementary test qe Lt is a total map

from dom(g) sV into B = {true,falsel. An elementary
assignment e € La is a total map from.dom(e) ¢V into
Ve

A program groph G 1s a tuple (n,E,ni,no,C)

where n is the number of vertices (therefore nz1),
Ecl1,n]? is the (non-empty) set of edges, ny el1,n]

is the entry point, n, el1,n] is the exit point and
Ce (E+L) defines the command C(<1,j>) associated

with each <i,3> in E. Let predc [1,n]—>2[1’n] be

Aj.{iel1,n] 1<1,3>cE} and suce e[1,n]-+2[1‘n] be
M. {jel1,n] :<i,3>cE}, then we assume that
pred[ni] =9, suce(n ) =% and for any vel1,n] -

{ni,no}, pred(v) =% and succ(v) =98,

Example 2.0.1
The program :
(1} begin
! while x<100 do  {x is an integer variable}
{3} X 1= x+13 {no overflow can occur}
fay _od
end

will be represented by its program graph :
1¢

Axa (x=100) Ax. (x>100)

P2

Ax. (x<100) Axa (x+1)

Ax. (x>100)

End of example.

If A(=,1,T,U,MM is a complete lattice,
te(L+(A~+A)) and ¢ € A then the merge over all paths
analysis of T uging (A,t) and ¢ [MOPn[t,¢]) is P e AN
defined as

vie[1,n], P,

U Tip) ()

p € pathli)

270

where path(i) is the set of paths from the entry
point ny to the vertex 1 and te (E*->(A-*AJ] is re-
cursively defined as follows if p is an empty path
then E(p] is the identity map on A else p = {qg,a)

where qu*, acE and g[p] =A¢.tlc(a)ICE () (411,

The system of equations P=Fﬂ(t,¢J[PJ associated
with the program m using (A,t) and ¢ is defined as
follows

P”i = ¢

P, = L t(C(<1,3>))(P,)  if jel1,nl-{n.}

J i e pred(]) * 1
Notation @ TIFf M(E,1,T,l,M) is a complete lattice

then the set (L ~+M) of total maps from the set L into
M is a complete lattice (L->M)(=',L',7', ", for
the pointwise ordering fE&'g iff ¥xel, f(x)=glx).

In the following the distinction between =, 1, T, L,
Mand g, L', 7', ", 1" will be determined by the
context. Also a map fe (L+M) will be extended to
[2L->2M) as AS EZL.{f(x] : xeS} and to (L"-M") as

ASK s anasX Zu(KF(x ), ., flx 1>).
1 n 1 n

3. DEDUCTIVE SEMANTICS OF PROGRAMS

3.1 Forward Semantics

The forward semantic analysis of a program T
consists in determining at each program point an in-
variant assertion which characterizes the set of
states which are the descendants of the input states
satisfying a given entry assertion ¢.

More precisely an assertion is a total map from
V into B. The set A= (V~>B)(=>,Axe V. false,
Ax eV, true,v,A,=) of assertions is a complete boolean
lattice partially ordered by the implication =>.

Let sp(S)(P) be Floydl67]1's stroniest post-condi-
tion derived from the pre-condition PEA for the ele-
mentary command gel. We assume that the operational
semantics of the elementary commands is such that for
an elementary test we have :

sp(q) = ApeA [hxeV, (P(X) A X e domiq) Aqix))]
whereas for an elementary assignment e we have

spe) = APeA [axeV, (3veV : p(y) A vedom(e) AX=e(Y))]
(Notice that for all S€l, ep(s) is a complete join-
morphism (i.e. YAcA, sp(S)(VA) =vsp(S)(A]).

We assume that the operational semantics of the
program T is such that at each program point i€[1,n]
the invariant assertion Pi which characterizes the

set of states which are the descendants of the input
states satisfying a given entry assertion 9€A is the
merge over all paths analysis of T using sp and ¢.

P is the least fixpoint pr[Fﬂ(sp,¢)] of the system

of equations P =FW[Sp,¢][P] assaciated with the pro-

gram T using sp and 9.



Example 3.1.0.1

The system of forward semantic equations asso-
ciated with the program 2.0.1 is :

P, = ¢
P, = sp(Ax.[x=1001) (P,vP,)
Py = 80 (Ax.[x+113(P,)

\ P, = sp{Ax.[%>1001) (P,vP,)

taking ¢=Ax.(x=1) its least fixpoint characterizes
the descendants of the input states satisfying ¢ :

P, = Ax.(x=1)

P, = Ax.(1<x<100)
P, = Ax.(25x2101)
Axa (x=101)

T
+=
n

End of Example.

3.2 Backward Semantics

The backward semantic analysis of a program con-
sists in determining at each program point an invari-
ant assertion which characterizes the set of states
which are the ascendants of the output states satis-
fying a given exit specification ¢.

Since we can consider the inverse of the state
transition relation defined by the operaticnal seman-
tics no new formalism is necessary in order to treat
backward program analysis. Instead of Floyd's for-
ward predicate transformer we just have to consider
Hoare[ 691-Dijkstral78]'s backward predicate trans-
former :

wp (g) = APeA.[AXeV. (P(X) A Xedom(g) Aq(X))]
wple) = APeA.LAXel. (Xedom(e) AP(e(X))]

(notice that ¥Sel, wp(S) is a complete join and meet
morphism) and the <nverted program graph G'={(n,E',n,
n;»C') where Et={<i,j> 1 <j,i>eE}, C'=A<i,j>eE’,

[ci<i,1>11.

Example 3.2.0.1
The inverted program graph corresponding to 2.0.1
is :
1

Ax. (x<100) Ax. (x>100)

AxXa (x<100) Ax.e (x>100)
s

The corresponding system of backward semantic
equations is

Py = wpOx.[x<1001) (P ) vuwp (Ax.[x>100]) (P,)
P, = wp(%x.[x+1]](P3]

2
P, = wp(Axa[x<1001) (P,) vup (Ax.[x>1001) (P,,)
P, = ¢

The merge over all paths and least fixpoint char-
acterizations of the ascendants of the output states
satisfying the exit specification ¢=Ax.(x=101) are
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both equal to :

P, = Ax.(x2101)
P, = Ax. (x<100)
P3 = Ax. (x<101)
P =¢ = Ax.{x=101)

End of Example.

In the following no distinction will be made be-
tween forward and backward program analyses because
of the above mentioned symmetry.

4, APPROXIMATE ANALYSIS OF PROGRAMS

The semantic analysis of programs cannot be au-
tomatized since neither the merge over all paths nor
the least fixpoint characterization of the invariant
assertions to be generated leads to a computable func-
tion. Therefore optimizing compilers and program
verification systems are only concerned with the dis-
covery of approximate.invariants assertions. Here an
approximate invariant assertion  will be one which
is implied by the exact invariant assertion P defi-
ned by the deductive semantics.

DEFINITION 4.0.1
If P,0 e A then "Q approximate P" iff P=>Q.

This definition of "approximate” is the one which is
useful in logical analysis of programs, data type
determination and data flow analysis.(The dual one
might be useful (e.g. for proving termination)).

The now classical lattice theoretic approach to
approximate analysis of programs can be briefly
sketched as follows the representation of an ap-
proximate assertion is an element of a complete lat-
tice Alg,L1,T,l,T). The meaning of the elements of A
is specified by a (too often implicit)_order morphism
Y mapping A to a subset of assertions A =7Y(A) cA, The
intention is that A is an implementable image of
those aspects Y(A) of the program properties which
are to be understood at each program point whereas
the assertions belonging to A-Y(A) are ignored (that
is approximated from above in Y(A)}. To each elem=
entary command Sel is associated an isotone map t(S)
from A to A. The intent is that t(S) is an approx-
imate predicate transformer such that t(S) (i) repre-
sents the propagation of the information ieA through
the statement S.

The ideal merge over all paths program-wide anal-
ysis (Graham & Wegman[76], Kam & Ullman[77], Rosen(781,
Tarjanl76]1) is often approximated by a fixpoint solu-
tion (Cousot & Cousot{77al, Jones & Muchnick[78], Kaplan
& Ullman[ 78], Kildall[73], Tenenbaum[74],
Wegbreit[75]). A fixpoint system of isotone eqguations
X=F (X) where F e (A">A") is associated with the pro-
gram graph. The approximate invariant asserticns are
generated by computing iteratively the least fixpoint
of F starting from the infimum of AN and using any
chaotic or asynchronous iteration strategy (Cousot
[771) or the least fixpoint is approximated from
above .using an extrapolation technigue in order to
accelerate the convergence of the iterates whenever A



does not satisfy the ascending chain condition
(Cousot & Cousot 77al).

The design of A, t, the implicit vy and the de-
termination of the construction rules for F are
often empirical. The correctness of the least fix-
point analysis is usually proved with respect to the
approximate merge over all paths analysis, the cor-
rectness of which is taken for granted. As opposed
to this empirical approach we now provide a formal
approach to the systematic design of an approximate
program analysis framework (A,t,Y) given (V,A,T)
where T is sp for forward and wp for backward pro-
gram analyses,

5. DESIGN OF A SPACE OF APPROXIMATE ASSERTIONS

5.1 A Very Reasonable Assumption

Assume that for a specific-purpose analysis of
procgrams a subset AcA of assertions has been found
to provide meaningful information.

Since any invariant assertion PeA for any pro-
gram must have. an upper approximation Q in A, the
set {QeX : P=>Q} must be non empty.

Let PeA be an asssrtion and assume that we want
to analyze a program T using the merge over all paths
semantic analysis and an entry condition Q which is
an upper approximation of P in A, What is the hest
choice for Q7 It is 'clear that if P=>Q'=>Q then
FW[T,Q']=¢’FW(T,Q) and by isotany the analysis

pr(Fw[T’Q,)] is more precise than prEFW[T,Q]J.

Hence Q must be a minimal upper approximation of P
in & (that is such that {P=>Q A =(39'c A-{Q} :
P=10Q' A~ Q'=0Q)}1). Assume that the set U of mini-
mal upper approximations of P in & has a cardinality
greater than 1. What is the "best” possible choice
for @ in U? IF QI,QZEU and §,#Q, then Q, and Q, are

not necessarily comparable so that pr[FW(T,Qll] and

Zf?(FW[T,QZJ] may be not comparable. Hence "best”

cannot be defined using the preciseness criterion
provided by the ordering =>. The only way to deter-
mine which of the two alternatives will be the most
useful in order to answer a given set of application
dependent questions about the program is to try both
of them. Also the best choice may vary from one
program to another. This try and see choice method
leads to a non-determinist analysis method which is
unacceptable because of obvious efficiency consider-
ations. Therefore it is reascnable to choose &

such that Card(U)=1,

Example 5,1.0.1
Assume that A = (ZxZ) +B where Z is the set of
integers and F=={A(x,y].[Px(x] APy(yJ] :PX.Py €

{Au.false,\u.uz0,Au.u<0, u.true}}. The assertion
P=Alx,y).(x=0 A y=0) has two distinct minimal upper
approximations in A namely 0, = Alx,y). (x20 A y=20)
and O, =Alx,y}. (x>0 A y<0). Now the choice of the
most useful upper approximation of the entry asser-
tion P 1s program-dependent. For example the best
choice is Ql for the program x:=x+y. This positive
declaration” can only be justified by performing the
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ASSUMPTION

THEOREM

THECREM

THEOREM

two semantic analyses (i.e. sp(x:=x+y) (Q;) =
Alay)a(xzy A y20) and splxi=x+y) (Q,) = Alx,y).(x2y
A y<0)) and next comparing them. Since these anal-
yses are not related by the ordering =, the compar-
ison criterion must be application dependent. For
example using Q, we can prove that sp{Ax.x+y)(Q) =
Alx,y). (x20) whereas this is impossible with Q,+ On
the contrary the best choice is Q, for the program
Xt==x3 x:=x+y since splx:=-x; xi=x+ry){0,) = Alx,y).
(x<y A y<0) which implies A(x,y).(x=<0) whereas
sp(xz=-x; x:=x+y)(Q;) = Ax,y).(x<y A y>0) does not
imply Alx,yl}.(x<0].

End of Example.

If any program must have an analysis which can
be approximated from above using A, and the process
for deriving the most useful approximate analysis of
any program is required to be determinist then it is

reasonable to make the following

5.1.0.2

The set AcA of approximate assertigns must be
chosen such that for all PeA the set {QeA : P=>Q} of

upper approximations of P in A has a least element.

5,1.0,3

For all PeA the set {QeA : P=>Q} has a least
element if and only if & is a Moore family (i.e. A
contains the supremum of A and is closed under
conjunction).

5.2 The Approximation Operator

DEFINITION 5.2.0,1

P e A‘*K _
p = AP.A{QeA : P= [}

Approximation Operator

p(P) is the least upper appraximation of P in

A. Since A is a Moore family it follows from

Monteiro & Ribeirol[42,Th.5.3 and 5.171 that :

5.2.0.2

(1) -p is an upper closure operator (that is p is
isotone (if P,QeA and P=>Q then p(P) = p(Q)),
extensive (for all PeA, P=>p(P)) and idempo-
tent (p=p°p)

(21 -o(Ay = &

(3) -p is the unique upper closure operator on A
such that p(A) =&

Since A is equal to the image of the complete
lattice A(=,AX.false,AX.true,V,A) by the upper clo-
sure operator P we derive from Wardl42,Th.4.1] the
following :

5.2.0.3

(1) -A& is a complete lattice p(A)(=>,p(AX.false),
AX.true ,AS.p(VS),A)

(2) -p is a guasi-complete join-morphism (i.e.
¥ScA, plvs) = p(vp(SI)

(3) -K is a complete sub-lattice of A iff p is a com=-
plete join-morphism (i.e. ¥ScA, p(vS) =Vvp(S))



If the initial choice of A does not satisfy
assumption 5.1.0.2 we can use the following

THEOREM 5.2.0.4

If AcA, the upper closure operator P on A such

that p(A} is the least Moore family containing A is :

p = AP AM{Qe{ARu MX.truell : P= 0}
p(A) = A{s : sc{Au{AX.truel} A 528}

Example 5.2.0.5

Returning to example 5.1.0.1 where A = (Z~R)
and & = {}u.false,Au,u20, u,u<0,Au.true} the least
Moore family containing A is the one containing
Au.true, R and the meets of the non-empty subsets of
A that is the complete lattice :

AU true

Au.us<0 Au.uz0

¥ Au.u=0

Au.false

The corresponding approximation operator is

p = APLf P=Au.false then Au.false
eleif P=>Au.u=0 then Au.u=0
eleif P=>Au,u20 then Au.uz0
eletf P=>Adu.usO then Au.u<O
else Au.true fi

End of Example.

5.3 Representation of the Lattice of Approximate
Assertions

In order to represent the approximate asser-
tions in a computer memory we must use a complete
lattice A(s, 1, T,0,MM such that the similar algebras
A =p(A) (=, X.false, X . true, \S.p(vSl,A} and Alc, 1,
T,L,[M be isomorphic. Let ye (A+A) be the corres-
ponding lattice isomorphism. Let ae (A>A) be

Y 1°p. o.(P) is the representation of the least
upper approximation of the assertion PeA whereas
Y(Q) provides the meaning of QeA. The connection
<a,y> between A and A has the following property :

DEFINITION 5.3.0.1

Let L,(5,) and L,(5,) be posets. <a,Yy> is a
pair of adjoined functions if and only if :

- 0ely~>L,) is isotone
- Ye Ly ~>Ly) is isotone
- Wxeby, Yyel,, {xc;v(y)} <= {al(x) =y}

(Contrary to Scottl72]'sdefinition, Li; and L2
are not required to be continuous lattices and a, Yy
need not be continuous).

THEOREM 5,3,0.2

If p is an upper closure operator on A, the
image yY(A) of Alg,1,7,U,M through the lattice iso-
morphism v is equal to p{A) (=>,p()X.false), X.true,

AS.p(vS8),A) and o = vy ‘op then

=~ <0,Y> is a pair of adjoined functions
- 0 is onto, Y is one-to-one

Reciprocally the approximation process can be defined
by the lattice A(c,t,T,LL[M and a pair of adjoined
functions. Such a pair <a,Y> defines a Galeis con-
nection between A and the dual of A :

DEFINITION 5.3.0.3

Let Li1(=31) and La(=2) be posets, Ge (L1 ~>Lsl,
Ye (Lg >Ly)e The pair <o,Y> defines a Galois con-
nection between L1 and Lo if and only if :

(1) -0 is antitone (¥xy,xz€l1, {x1S1x2} =

{alx1) 2o 0lx2)1)
(2) =y is antitone (¥yi,yzelz, {y1S2y2} =

{yly1) 21 v(ly2)H

(3) -~ Axely.(x) E1 you

(4) - dyel,.(y) E5 aoy

The above conditiong (3) and (4) are equivalent
to : ¥xeli, Yyela, {x=17v(y)} <= {alx) 22y}
(Birkhoff[67]1), hence we have :

THEOREM 5.3.0.4

COROLLARY

Let Li(=1), La(c2) be posets, ae (Ly+L,),
Yellz+L1). <o,y> is a pair of adjoined functions
if and only if <a,Y> defines a Galois connection
between L3 (E;) and L3(g)) =L,(35), {(i.e. iff o and
Y are isotone, Ax.XEj Yoo, 0°Y Sy Ay.y)

Theorem 5.3.0.4, Orel44,Th.2] and Pickert[52]
imply :

5.3.0.5

Let L1(E1) and L, (E5) be posets and o€ (L ~Ly),
ve (Ly>Ly) be adjoined functions :

(1) =Yoo is an upper closure operator on Li, a°Yy is
a lower closure operator on Lz(i.e. isotone,
reductive (0°yE Ax.x) and idempotent)

Moreover if Lj(S1,11,T1,U1,MM) and La(Ss,15,Ts,Us, 03]
are complete lattices then :

(2) =yea(ly) and aey(Lz) are complete lattices. o
is an isomorphism from yea(Li1) onto o°y(L2) and
Y is an isomorphism from a°y(Lz) onto yea(lL;)

(3) - Each function in the pair <a,y> of adjoined
functions uniguely determines the other, more
precisely :
(3.1) ~a =XxeL1.ﬂ2{yeL2 T X ElyTy]}
{3.2) -y =AyeLa. i {xely 1 alx) 2 v}

(4) -0 is a complete join-morphism, af{l;)=i2, Y is a
complete meet-morphism, Y(T2)=Ty

In complement we will need the following :

THEOREM 5.3.0,6
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Let Ly(Ey,L1,T1,0U,M) and Lo (Sp,00,T2,05,0M)
be complete lattices and o e (Ly+Lp), ye (Lp~>L;1) be
adjoined functions :

(1) -0 is onto (surjective) if and only if y is ane-
to-one (injective) and if and only if aoy =
Ayela. (y)

(2) - if one of the above conditions holds then



- v = Ayeba.lhi{xely & a(x)=y}
- 0 is an isomorphism from the complete lattice
Yoo (Ly) onto the complete lattice L2 the in-
verse of which is vy.
(3) -a is one-to-one if and only if vy is onto and if
and only if yen Axeliae(x)

We use the notation LjP<a,y>Ls to state that Li
and Lz are connected by the pair <o,Yy> of adjoined
functions which are respectively surjective and in-
jective. If o is a complete join-morphism from Li
onto L2 (respectively Y is a one-to-one complete
meet-morphism from Lz into Li) we write LiP<a,> L2
(L1 P<,y>1L2) and assume that the adjoined y(a) is
determined by 5.3.0.5.(3.2) (5,3.0.5.(3.1}).

In the literature the most usual method for
defining a program analysis framework is to specify
the complete lattice A(S,1,T,L,MN representing ap-
proximate assertions and to informally describe the
meaning of its elements (e.g. constant propagation,
Kildali[ 73], Kam &Ullman([77]). Hence the function
vYe (A+A) remains implicit.

It is often the case that A is only assumed to
be a (complete) join-semi-lattice A(E,T,U) (or dual-
ly meet-semi~lattice for some authors} but since an
infimum is adjoined to A it is in fact a complete
lattice (even when the meet=-operation is not used or
what is called meet is not M (e.g. Wegbreit[751)).

When v e (A>A) 1is isotone but not a complete
meet-morphism the set Y(A) does not fulfill assump-
tion 5.1.0.2 with the consequences examined at para-
graph 5.1. The design of Y(A) and A can be revised
as stated by theorem 5.2.0.4.

When v € (A+A) is a complete mest-morphism but
not one-to-one, several distinct elements of A have
the same meaning. Since this is useless, the design
of A and Y can be revised as follows :

THEOREM

Let A(E,L,T,U,M be a complete lattice and
Ye (A>A) be a complete meet-morphism. Let 0 e (A>A)
be Ax.[HyeA : v(x)=y(y)}, A=0(A), ¥ =(y|R) :

- ¥xeA, Y(x) =v(o(x))

- 0 is a lower closure operator on A

-~ Y is a one-to-one complete meet-morphism from the
complete lattice A(g,L1,0(T),L,A5.0(18)) into A

5.3.0.7

Since Y(A) =Y(R), A and A have the same expres-
sive power. Among all subsets of A which have the
expressive power of A, A is one with minimal cardi-
nality.

THEOREM 5.3.0.8

(1) =vLca, {yw) =y} = {o() =A}
(2) -¥LcA, {y(L) =y(A)} = {card(R) <Card(L)}
{3) - vxeA, ¥yeA, {y(x) =Y(y)} = {yc=x}

6. EQUIVALENT METHODS FOR SPECIFYING A SPACE OF
APPROXIMATE ASSERTIONS

A space of approximate assertions can be speci-
fied either by a Moore family or by an upper closure

operator, Moore families can be characterized using
definition 5.1.0.2 or theorems 5.1.0.3 and 5.2.0.4.
In addition to theorems 5.2.0.2.(1) and 5.3.0.6 we
now study and examplify various equivalent methods
which can be used to define an upper closure opera-
tor, ’

6.1 Least Closure Operator Greater than or Equal
to an Arbitrary Function

THEOREM 6.1.0.1

Let L(=,1,T,U,[N) be a complete lattice and
fel(L>1).

- Let Zg0 e ((L~>L) > (L>L)) be Af.LAxLU{fly) s yEx}]
Zs0(f) is the least isotaone operator on L greater
than or equal to f
Let ext e ((L>L)~>(L~>L)]) be Af.LAx.IxJF(x1]].
ext (f) is the least extensive operatar on L
greater than or equal to
Let 2de e ((L~>L) > (L+L)) be Ax.[Zufs(f)(x)] where
lute (£} (x) is the limit of the increasing and

J
ultimately constant sequence {x"} such that X°=x,

§+1

§
for every ordinal §, X =f(X") and for every

U x*
<8
elo(+) idelext (Zgo(f)) is the least closure

operator greater than or equal to f and elo(F) (L)
is the greatest Moore family contained in (L}

1imit ordinal §, X

6.2. Definition of a Space of Approximate Assertions
by Composition of Upper Closure Operators

The composition of two upper closure operators
on A is usually not a closure operator (Orel431),
However the space of approximate assertions can be
designed by successive approximations using the
following composition of upper closure operators :

THEOREM 6.2.0.1
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Let L(g,L,T,U,M be a complete lattice, p an
upper closure operator on L and N be an upper closure
operator on P(L). Then N°p is an upper closure oper-
ator on L and pEnep.

Example 6.2.0.2

Many program analysis frameworks are designed
in order to describe some properties of each program
variable but so that the relationships among the
values of these variables are ignored. An example
is Jones & Muchnick[761's type determination scheme,
a counter-example is the determination of linear
relationships among numerical variables, Cousot &
Halbwachs [78]. The corresponding approximation can
be characterized as follows :

Assume that V=D", let Am be (V+B) and A; be (D>B).
Let us define :
viel1,m], o,e(Am-+A )

1
oj=APeAm.[xXeD.[}<vl,....vj_l,vj+1,...,vm>

D™ L PV L eresV. aXeV, . seaesv )]
1 j-1 J+1 m
ce(A ~A )
moom S
g=APeA JTAIX ,uua,x D[ A 0 (PY(x,)]1]
m 1 m j=11J J



o is an upper closure operator on Am and an assertion
PeAm does not state relationships among the program
variables if and only if o(P)=P. The approximate as-
sertions on each individual program variable x. are
next defined using an upper closure operator p; on
Al. The induced closure operation p on G(Am] is de-

fined by P(P) =A(Xy,ueausXpl). _rlglpj(Pj](ij where P e
O[Am] is (necessarily) of the form P =Al(X;,ees,%p) s
jEle[xj]' It follows from theorem 6.2.0.1 that the
composition :

000 = APA [A (X 5w, xp) DL

N >3

05 (0s(P))(x411]
j=1 J7J J
is an upper closure operator on Am'

End of Example.

6,3 Definition of a Space of Approximate Assertions
by Means of a Complete Join Congruence Relation

Considering the equivalence relation (p) induced
by an upper closure operator P on A and defined as
P =Q(p) if and only if p(P) = p(Q), the approximation
process can be understood as essentially consisting
in partitionning the space of assertions so that no
distinction is made between equivalent assertions
which are all approximated by a representant of their
equivalence class. Since the epproximation is from
above and a least one must exist (assumption 5.1.0.2)
not all equivalence relations are acceptable :

DEFINITION B.3.0.1

Let L(=,L,T,U, ) be a complete lattice. A bin-
ary relation 8 on L is a complete join—congruence
relation if and only if :

(1) -6 is an equivalence relation

(2) -0 satisfies the jotm—substitution property
¥x,y,uel, xZy(8) = xUu = ylu(®)

(3) -6 satisfies the joitn—completeness property
wxel, x= U[x16 (8) where [x10 = {yel : x =y ()}
is the congruence class containing x.

THEOREM 6.3.0.2
JIEVRET

If p is an upper closure operator on L(E,L,T,
U,M and ¥x,yel, x=ylp) if and only if p(x)=p(y)
then

(1) - {p) is a complete join-congruence relation on L
(2) =p = Ax. UeExIp)

Reciprocally a complete join-congruence rela-
tion on A defines an upper closure operator on A
whence a space of approximate assertions :

THEDREM

6.3.0.3

Let © be a complete join-congruence relation on
the complete lattice L(=,L,T,U,MM. Ax. L ([x10) is
an upper closure operator on L,

(Similar results were already proved in Cousot
& Cousotl[77b] except that +the above definition of
complete join-congruence relations has been substan-
tially simplified].

The following result can sometimes facilitate
the proof that a given relation is a join-congruence
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relation (satisfying 6.3.0.71.(1) and 6.3.0.1.(2])).
It can be compared with Gratzer & Schmidt[581's
theorem which is relative to congruence relations.

THEOREM 6.3.0.4

A reflexive and symmetric binary relation © on
a complete lattice L(s,L,T7,U,MN is a join-congruence
relation iff the following three properties are sat-
isfied for x,y,z,tel

(1) - {x=y (01} <= {Iuel : (xLy) Eu A usx(8) A uZy(8)}
(2) -{xEyEz A x=y(0) A yZz(0)} = {x=z(0)}
(3) -{xcy A xEy8)} = {(xLt)=(ylL )6}

Example 6.3.0.5

Let V be a non-empty set of integers included
between two bounds ~® and +* (either V =Zu{-w,+»}
and Viel, —ws-w<i<iogseo or {-oo,+o} cZ and V ={ieZ
-wgig+®}), The binary relation 0 defined on A =
(V->B) by :

{P=08)} <= {minl{xel : PO} =min{xeV : Q(x)} A
{maxixeV : P{x)} =maxixeV : Q(x)}}
(where min(%) = +e and max(?) = -©) is a complete join
congruence relation. The quotient lattice L/0 is
isomorphic to p(A) where p is the upper closure
operator induced by ©
o = AP.V([PI18)

= WA DaxeV. Iminly 1 Py} < x <mazly :P(y)}1]
In conjunction with 6.2.0.2, p can be used for sta-
tic analysis of the ranges of values of numerical
variables (Cousot & Cousotf77al).

End of Example.

6.4. Definition of a Space of Approximate Assertions
by Means of a Family of Principal Ideals

The equivalence classes of the complete join-
congruence relation (p) induced by a closure opera-
tor p have the following property :

THEOREM

6+4.0.1

Let 0 be a complete join-congruence relatlon on
the complete lattice L(=,1,T,L,I, then ¥xel, x]16
is a complete and convex sub-joiln-semilattice of L.
(Let us recall that SclL is convex iff a,beS, ceL
and aScEb imply that ceS)

Here is another representation of convex sub-
join-semilattices of L (which can be compared with
GratzerL71]'s representation of convex sublattices]) :

An Zdeal is a nonvoid subset J of a lattice
L(g,1,l) with the properties (a) {{aeJ,xeL,x!Ea}
= {xeJ}} and (b) {{ael,bed}={allbeJ}}. It is
easy to show that J is‘an ideal when (allbleJ holds
if and only if aeJ and beJ (Caste property). Since
L has an infimum L, the intersection of an infinite
family of ideals in a lattice L is an ideal of L.

Given an element a in a lattice L, the set
{xelL : xS a}l is evidently an ideal; it is called a
principal ideal of L. If every ascending chain in
I is finite, every ideal is principal.

A semi-ideal 1s a nonvoid subset I of L with
the property {{ael,xeL,x=a}=>{xeI}}. The dual
notion is the one of dual semi-ideal.



THEOREM 6.4.0.2

(1) =Let I be a principal ideal and J be a dual semi-
ideal of a complete lattice L(E,L,T,U,/ . If
InJ is nonvoid then InJ is a complete and convex
sub-join-semilattice of L.

(2) -Every complete and convex sub~join-semilattice
C of L can be expressed in this form with
I={xel : x= (UE)} and {xeL : {}yeC :y=x}}cJ,

THEOREM 6.4.0.3

Let {IieA} be a family of principal ideals of
the complete lattice L(2,.,T,U,[ 1) containing L. Then
AX.U{nIi : ieA A xeIi} is an upper closure operator
on L.

6.4.0.4

The following lattice can be used for static
analysis of the signs of values of numerical varia-
bles

Example

(where 1, =, +, =, #0, ¥, T respectively stand for
AXa.false, Ax.x<0, Ax.x>0, Ax.x<0, Ax.x=0, Ax.x20,
Axotrue). A further approximation can be defined by
the following family of principal ideals :

and the space of approximate assertions (used in ex-

ample 5.2.0.5) T
: 1

0

L

End of Example.
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7. DESIGN OF THE APPROXIMATE PREDICATE TRANSFORMER
INDUCED BY A SPACE OF APPROXIMATE ASSERTIONS

In addition to A and Y the specification of a
program analysis framework also includes the choice
of an approximate predicate transformer te(l > (A= AJ)
(or a monoid of maps on A plus a rule for associa-
ting maps to program statements (e.g. Rosen[781)).
We now show that in fact this is not indispensable
since there exists a best correct choice of T which
is induced by A and the formal semantics of the con-
sidered programming language.

7.1 A Reasonable Definition of Correct Approximate
Predicate Transformers

At paragraph 3, given (V,A,T) the minimal asser-
tion which is.invariant at point 1 of a program T
with entry specification ¢€A was defined as :

p, = v Tip) (P
Y pepath(i)

Therefore the minimal approximate invariant assertion

_is the least upper approximation of P; in A that is :

D(Pil = pl v T(p) (9D

pepath(i)

Even when path(i) is a finite set of finite paths the
evaluation of T(p)($) is hardly machine-implementable
since for each path p=aj,...,ay the computation se-
quence X =, X; =T(Cla;))(Xg), weas Xy =T(ClapNiX,_J
does not necessarily only involve elements of A and
(A+A). Therefore using A and te(l > (A>7A)) a_
machine representable sequence Xy=¢, X1=t(C(ayN(X;y),
vees Xp=t(Clap)(Xp-1) is used instead of Xg,.a.sXp
which leads to the expression :

0, = ot v Epea@n
p epath(i)

The choice of t and $ is correct if_and only if Qi
is an upper approximation of P; in A that is if and
only if :

TEI6)) = ol v T(PI@))

p epath (i)

{ v
p e path(i}

In particular for the entry point we must have ¢ =>
o(d)=¢ so that we can state the following

DEFINITION 7.1.0.1

(1) - An approximate predicate transformer
te(L>(A~+P)) is said to be a correct upper
approzimation of Te(lL-> (A>A)) in A=p(A) if_
and only if for all ¢eA, $eA such that ¢=> ¢
and program T we have : MOPq(T,$) = MOPy(t,d)

(2) - Similarly if AP<a,Y>A, te(L+(A>A)) is said
to be a correct upper approximation of _
Te(L+(A+A)) in A=a(A) if and only if ¥d, Yo :
¢=>v($), ¥m, alMOPr(T,$)) E MOPR(t,0)],

(i.e. MOPR(T,9) = Y(MOPR(t,d))

This global correctness condition for t is very
difficult to check since for any program T and any
program point i all paths pepatZ(i) must be consi-
dered. However it is possible to use instead the
following equivalent local condition which can be
checked for every type of statements :



THEOREM 7.1.0.2

(1) -te(L>(A+A)) is a correct upper approximation
of Te (L>(A~A)) in A=p(A) iff {vsel, ¥PeA,
T(3)(P) = t£(S) (P}

(2) -t e (L>(A~A)) is a correct upper approximation
of Te (L>(A~>A)) in A=0(A) (where AP<a,Y>A) iff
{wsel, wPeA, alT(S)I(Y(PI) E t(SI(P)D,

If te (L+(A~A)) is a correct upper approxima-
tion of Te (L>(A+A)) in A=p(A) we have MOP,(T,$)
=> MOPg (t,p($)) whence p(MOPy(t,$))=>MOPL(t,p(9)).
The cases when equality holds are not easy to distin-
guish, Yet the following sufficient condition turns
out to be useful afterwards

_THEQOREM 7.1.0.3

(1) - If t is a correct upper approximation of T in
PlA) and {vsel, WPeA, p(T(S)(PN=1t(S)(p(P))}
then ¥, ¥4, p(MOPH(T,$)) =MOPH(E,p(¢))

(2) -If t is a correct upper approximation of T in
A where AP<a,y>A and {¥sel, wPeA, alT(S)(P)) =
£(S)(a(P))} then ¥m, ¥o, a(MOPL(T,$)) =
MOPL (t,a(¢))

Similar results hold for fixpoint analysis of
programs

THEOREM 7.1.0.4

Let tell~> (A+A)) be an isotone correct upper
approximation of Te(L>(A+A)) in_A=a(A) where
AD<o,Y> A then YoeA, ¥oeA 1 o=>v(d), v,

(1) - Fp(t,0) is isotone and aoFq(T,$)°Y EFq(t,d)

(2) =P (FplT,0)) S Lfp (Fp(t,$))

(3) - If ¢ =Y(P) and {¥Sel, WPeA, a(t(S)(P)) =
t(8) (0(P))} then equality holds in (2)

Notice that in theorem 7.1.0.2 the maps {t(S) :
Sel} are not assumed to be isotone. Yet isotony is
agssumed in theorem 7.1.0.4 and is a customary hypo-
thesis in the literature. An apparent justifica-
tion of this additional requirement is to ensure
that the system of equations X=Fy(t,$)(X) associa-
ted with a program T has fixpoints which can be
obtained as limits of iteration sequences. But
this could also be achieved without isaotony hypo-
thesis taking AX.XUFg(t,$)(X) instead of Fy(t,®)

THEOREM 7.1.,0.5

Let te(L~> (A+A)) be a correct upper approx-
imation of Te(L~ (A+A)) in A=a(A) where AP<a,y> A
then YoeA, ¥eA : ¢=>v(F), W,

(1) =aoFg(T,d)0Y £ Frlt,d)
(2) -a(lfp (Fp(T,0)) = Zuts[AX X UF;(t,$) (x)1[L]
(where Zuis[F](lJ is the limit of the station-

-1
ary iteration seguence x%=1, X6=F[X6 )] for

successor ordinals, X6= agax“ for limit ordi-
nals)

Hence the isotony hypothesis is even not nece-
ssary for technical purposes, However the profound
justification of this hypothesis can be found in the
fact that among all possible approximate predicate
transformers which can be used with a given set A of
approximate assertions the designer of a program ana-
lysis framework intuitively thinks to the best

approximate predicate transformer which happens to
be isotone. This property also explains the fact
that no significant counter-examples to the isotony
hypothesis have ever been found.

7.2 The Best Approximate Predicate Transformer
Induced by a Space of Approximate Assertions

DEFINITION 7.2.0.1

If t1, t2 are correct upper approx1mat10ns of
te (L~ (A+A)) in A=p(A) then we say that T 7s
better than t2 iff for all €A and all programs T,

MOP, (€1,9) = MOP, (£2,6)

LEMMA 7.2.0.2

Let t1, t2 be correct upper approximatigns of
te(L> (A+A)) in A=p(A), If (wSel, T1(8)=t2(3))
and (t; or t2 is isotone) then t1 is better than ta.
(Notice that the above isotony condition is suffi-
cient but not necessaryl.

THEOREM 7.2.0.3

Let T be AseL.[ipeA.lp(T(8)(P))]]

(1) -¥sel, T{S) € (A>A) is isotone

(23 -t€(L‘*(A'*A)] is a correct upper approximation
of Te(L> (A~A)) in A=p(A) 1ff {wsel, T(S) =

sy}

(3) -T is the best correct upper approximation of T
in A

COROLLARY 7.2,0.4

If AP<a,y> A(S,L,T,U,M then
Asel [ApPep La(T(s) (Y(P))]] is isotone, it is the
best correct upper approximation of T in A,

The most interesting consequence is that we
have in hand a formal specification of the programs
which have to be written in order to implement any
specific program analysis framework once A and Y
have been chosen. As a challenge to automatic pro-
gram synthesizers let us consider a simple

Example 7.2.0.5

Coming back to examples 6.2.0.2 and 6.3.0.5
assume that D is the set of integers included bet-
ween two bounds == and +® and V=DM, For simplicity
we shall assume that m=2. Let L be the camplete
lattice {1}u{la,b]l t a,bel A a<b} with ordering [a,b]
c [¢c,d) iff a<b<cs<d and L is the infimum. Let y' €
(L~ (P~+B)) be such that y'(L)=Ax.false, vy'(la,bl}=
Ax.(asxsb), Llet A be LOL where LOM = {x0Oy :
xeL A yem} and xOy = 2f x=1 or y=i then <i,1> else
<x,y> Fi. Let ye(A~A).where A=(D?+B) be
A<,y (Y (x) AYT(y)).

Given A and Y let us determine the best correct
upper approximation of sp in A. Again for lack of
space we just study the case of sp(A<x,y>.(x<yl).

Since y' is an injective complete meet-morphism
the adjoined function o'e((D+B)~>L] is determined
by 5.3.0.5.(3.1) : o' =AP.Zf P=Ax.false then 1 else
Tmin{x : P(x) },max{x 1 P(x3}] f£. The same way, o «
(A-1L0L) is XP,MXWGX(P]][]a'(Oy[PD] where o, =

AP IAx.[3yeD : P(x,y)]] and Oy = AP LAy [3IxeD : P{x,y11]
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According to theorem 7.2.0.4 the best upper ap-
proximation of sp(A<x,y>.(x<y)) in A is t=
aesp (A<x,y>. (x<y)Jey, If PeA equals <1,1> then t(P)=
<L,1> else P=<[a,bl,[c,d]> where as<b and e<d in which
case t(P)=a(Q) where Q=A<x,y>,(a<x<b A osy<d A x<y).
Ox(@)=Ax.(}y : a<x<b A cSysd A x<y)=Ax.(a<xsb A
max (c,x}<d}=Ax, (a<x<b A x=d) since c<d. The same way
0y (Q)=Ay. (max(c,a)<ysd). Therefore t(P) =<if a>d then
<1,1> else <[a,min(b,d)],[maz(c,a),dl> fZ =<[a,b]
[-e,d],[c,d1M[a,+»]> praving that this choice in
Cousot & Cousotl 77al was optimal.

End of Example.

Example 7.2.0.6

Some program analyses (such as "reaching defi-
nitions”, "available expressions”", "live variables”,
ees Aho &Ullman[77]) are "history sensitive” because
the approximate assertions which are useful at each
program point p characterize sets of sequences of
states (or execution paths from the entry point to B)
and not sets of states. 1In such a case Hoarel781's
formal definition of languages using sets of sequen-
tial traces is more convenient that the deductive
semantiecs of paragraph 3.

7.2.0.68.1. Assccilating a Set of Traces with a
Progran

Given a universe V of values, a set Ly of ele-
mentary assignments, a set Lt of elementary tests,
the set of sequential traces is the free monoid
T(;,<>) generated by L =L u Ly,

The concatenation operation ";"_is extended to
elements of the complete lattice 2T(E,¢,T,U,ﬂ]
by S:T ={sst 1 5€5 A teT},

Let us define a forward "set of tracestransfor-
mer” fte (L> (2T >2T)) as AS.[AT.IT;{s}17. The set
of traces associated with a program T and an entry
specification ¢eA <Ly is MOPH(fE,{dh).

7.240.6.2. Approximating a Set of Traces by an
Assertion Characterizing the Descendants
of the Entry States :

The connection with the deductive semantics of
paragraph 3 is made using ae (2T >A) such that for
any set T of traces, o(T) characterizes the possible
descendants of the entry states (belonging ta V)
when the traces teT are executed. From an {(obvious
hence not given here) operaticnal semantics of se-
quential traces we derive that a=AT.[v{a’'(t) : teT}]
where a'e (T +A) is such that a'(<>)=AXel.true and
wSel, vteT, o’ (t;S)=sp(S) (0’ (t)).

Since o is a complete join-morphism from 27
onto A, theorem 5,3.0.5.(3.2) defines an adjoined
function ye(A>27),

According to theorem 7.2.0.4 the best correct
upper approximation of f£ in A is FE = ASel.[APeA,
La(re(S) ty(PMIT, wSel, WPeA, we have FE(S) (P)=
alfE(S) (Y(P=aly(P);{sH=a({t;s : tey(PI})=
vi{or (£38) & tey(PI} =visp(S)(a'(t)) : tey(P)}.
Since ¥Sel, sp(S) is a complete V-morphism, F£(S)(P)=
ep(S) (Vo' (£) : tey(PI}) =sp(S)(aly(PI) =sp(S)(P)
(theorem 5.3.0.6.(1)). Hence the best correct upper
approximation of ft in A is sp.

Since ¥Sel, ft(S) and sp(8) are complete join-
morphisms, ¥TeT, a(ft(S)(T)) =sp(S)(alT)) and ¥oeA
clt, al{¢}) =¢ theorems 9.1.0.1 and 7.1.0.3.(2) im-
ply that for all programs m, o(Zfp (Fy(fp, {4} =
o (MOPy (Fp, {9} = MOPy(sp,9) = Ifp(Fylsp,d)).

7+2.0.8.3. Justifying the Data Flow Equations of
"4vailable Expressions™

Let £ be the set of expressions. The set
avail(t) of expressions which are available at exit
of a path teT is defined by avail(<>)=? and ¥Sel,
avat 1(t;S) = (avatl(t) n trans(S)) Ugen(S) where
trans (S) is the set of expressions in E not killed
by the command S while gen(S) is the set of expre-
ssions generated by S.

An expression is available at some program
point g if it is available at exit of every path
from the entry point n; to g« Therefore the set of
expressiong available at g is O(MOPx(fp,{Ax.true}lq)
where ae (2! +2E) 15 AT n{avail(t) : teT},

Since 0 is a complete join-morphism from
2T(<,2,7T,u,0) onto 2E(2,E,%,n,u), theorem 5.3.0.5.
(3.2) defines an adjoined function Y.

According to theorem 7.2.0.4 the best correct
upper apprgximation of ft in 2C is at =
Asel [AEe2E, LalFt () (Y(EMIT = A3, [AE.[ (E n trans(s))
Ugen(S)1], Since ¥TeT, a(fE(S)(T)) =at(S)(Q(T))
and a({AX.truel) =2 and v¥sel, at(S) is a complete
join-morphism on ZE(Q,E,¢,ﬂ,U], theorems 8.1.0.1
and 7.1.0.3.(2) imply o(MOPq(fp,{AX.trae})) =
MOP; (at,2) = Lfp (Fylat,®)). Notice that Frlat,?)
(as defined at paragraph 2 taking L(S,1,7,U,M
to be 2E(2,5,¢,0,UD is the classical system of data
flow equations for available expressions (Aho &
Ullmanl77]) and that the largest possible solution
(least for 2) is desired.

End of Example.

8, HIERARCHY OF PROGRAM ANALYSIS FRAMEWORKS

Once the semanties of programs has been defined
by (A,T) all program analysis frameworks [(A,t,y]
are specified up to the isomorphism vy by (p(A),
AS.LpeT(S)]) where p =7yea is an upper closure
aoperator on A and AP<a,y>A. Program analysis
frameworks can be partially ordered using the order-
ing of the corresponding closure operators on A
since whenever 01 E P2, P2(A) €p1(A) so.that program
analysis frameworks corresponding to P1 yield sharp-
er information than the ones corresponding to P2
{whichever global program analysis method is used).

The following theorem is a constructive version
of Ward[42,Th.5.3]

THEOREM 8.0,1

The set of upper closure operators on a com-
plete lattice L(E,4,T,L,[M is a complete lattice
elo(L > L) (5, Ax.x,Ax.T,A3,2de (LIs),M),

Example 8,0,2

In order to briefly illustrate the hierarchy
of program analysis frameworks, let us consider
three comparable examples the approximation func-
tion of which can be sketched using a geometrical
analogy. Let P be a predicate over two numerical
variables x and y thecharacteristic set of which
is the following :

y
+  Plx,y)

+ o+ +
+
+



The upper closure operator of example 5.2.0.5
defines a very rough approximation consisting in ap-
proximating this set by the guarter of plane contain-
ing all its points

P(P) (x,y)

A more precise approximation (example 8.3.0.5)
consists in approximating the characteristic set of
P by the smallest rectangle including it and whose
sides run parallel with the axes :

%

0 X

P{P) (x,y)

A refinement consists in approximating the char-
acteristic set of P by its convex-hull

Y 0LP) (x,y)

Z

X

The corresponding framework was used for the automa-
tic discovery of linear restraints among variables
of programs (Cousot & Halbwachs [781).

End of Example.

9. MERGE OVER ALL PATHS VERSUS LEAST FIXPOINT GLOBAL
ANALYSIS OF PROGRAMS

9,1 "Distributive" Program Analysis Frameworks

We recalled at paragraph 4 that once a program
analysis framework (A,t,Y) has been designed, the
program-wide analysis problem has various soclutions
including the merge over all paths and least fix-
point solutions. It is known (Kam & Ullmanl[77]) that
when A satisfies the ascending chain condition and
¥Sel, t(S) is isotone we have MOPy(t,d) €
Ifp(Fp(t,4)). Also the additional hypothesis that
¥Sel, t(S) is a join-morphism (sometimes called
join-distributive map) implies MOPy(%,¢) =
Lfp (Fq(t,9)). Slightly more general is the fol-
lowing

THEOREM S.1.0.1

If A(s,4,7,U,MM) is a complete lattice and
te(L~+ (A~+A)) is such that ¥Sel, t(S) is isotone
then for all programs T and $eA, MOPy(t,¢) &
Lfp(Fp(t,$)). If moreover ¥Sel, t(S) is a complete
U-morphism then MOPg(t,¢) = Zfp (Fqr(t,9)).

{(This theorem is implicitely used at paragraph 3
taking A = (V> B) (=>,AX.false,\X.true,vV,A) for A(E,L,
T,LL,M and either sp or wp for t).

If AD<a,y>A and te(L-+ (A~>A)) then the above
theorem establishes the correctness of Lfp (F;(t,$))
with respect to MOPr(t,¢). In the literature the
correctness of MOPy(t,9) is generally taken for gran-
ted. Also MOP¢(t,¢) is considered as the desired
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solution to program-wide analysis problems since
whenever some t(S) is not a complete join-morphism
MOPr(t,$) can be strictly better than Ifp(Fql(t,9)).
When A satisfies the ascending chain condition

Ifp (Fy(t,9)) is computable, which is not necessarily
the case of MOPp(t,$). 1In that case a variety of
methods can be used (e.g. Rosenl78]) which can find
sharper information that fixpoint methods and there-
fore approach the ideal merge over all paths solution
which provides the maximum information relevant to
A, t and Y.

In our opinion the above argument is
ly convincing since for different correct
predicate transformers tj, t,e(L->(A-+A)) it may be
the case that Ifp(Fyp(t;,$)) =MOPq(t,,9). In order
to relieve from the burden of badly chosen approx-
imate predicate transformers the argument must con-
sider the best approximate predicate transformer
relevant to A (theorem 7.2.0.4), Then the following
result i1s a useful complement to theorem 8.71.0.1 :

not entire-
approximate

THEOREM 9.1.0.2

Let Te(L+ (A>7A)) be the best correct upper
approximation of Te(L+(A=A)) in A=p(A). If p(A)
is a complete sublattice of A then MOP;(T,¢) =

Lfp (Fr (T, ).

Example 9.1.0.3
If A=(Z+B) and A =Yv(A) where :
T
= +
A= - +
L

and Y(L1)=du.false, Y(-)=Au,(u<0), Y(0)=Au.(u=0), etc.
then A is not a sublattice of A since Y(=)vy(+)&y(A).
The merge over all paths analysis of the program :

if x>0 then while x#0 do x :=-x3 od; fi;
(which is powerful enocugh in order to determine that
the while-loop does not terminate) is strictly better
than the least fixpoint analysis (which fails to dis-
cover that 1 is invariant on the exit path of the
loopl.

End of Example.

9.2 "Non-Distributive" Program Analysis Frameworks

The merge over all paths analysis of a program
using some "non-distributive” program analysis frame-
work can always be defined by means of the least
fixpoint of a system of isotone equations assoclated
with that program :

THEOREM

Let A(=s,t,T,L,MM be a complete lattice,
te (L > (A>A)) be an approximate predicate trans-
former, 2P(<,%,A,u,n) be the complete lattice of all
subsets of A, Tel(l~ (2A>2R)) be AS.[AP.{t(S) (x):xeP}]
and ue(2A>A) be AP.LUPT.

- ¥Sel, T(S) is a complete u-morphism
- v, YdeA, u(lfp(F (T,{6}) = MOP,(t,¢)

9,2.0.1

The above construction is not fully satisfac-
tory since [ZA,T] is not isomorphic to (A,t) when t
is a complete join-morphism, so that the choice of
(2A,T) in order to define MOP,(t,4) as a least



fixpoint is unnecessarily too complicated. The fol-

lowing construction is preferable :

LEMMA 8.2.0.2

Let L(=,L,T,U,M) be a complete lattice and R,
EF[ZL->2L] be defined as :

= AM.Zf H=g then ¢ else {Us
AH.Zf H=¢ then ¢ else {[1g

se (2 -¢1} 7%
Se(2H-¢)} f2

ﬂ and | are upper closure cperators on 2k,

= =
i

Let oe(2b~>2L) be the join Zufs(Muy) of T and
Y in the lattice of upper closure operators on 2L,
(theorems 8.0.1 and B.1.0.1), YHe (2L -g), o(H) is
the least complete sublattice of L containing H.

LEMMA 9.2.0.3

Let p be an upper closure operator on L(E,L,T,
U,MM. Then n=AxJH{yeo(p(L)) : x=y} is the great-
est closure operator on L which is 1less than or egual
to 0 and which is a complete join-morphism.

THEOREM 9.2.0.4

(1) -Let p be_an_upper closure operator on A,
t,e(L~> (A~ A)) be a correct upper approximation
of Te(L+ (A+A)) in A=p(A). Let ne(A>A) be
AP A{Qe(p(A)] 1 P=>Q} and t2e (L~ (n(A) >n(AN
be AS.[net(S)]. Then ¥m, VYieA,

p(Lfp (Fyp(t,,0)) = MOP, (t,, )

Moreover p(pr(Fﬂ(t2,¢]D = MOPy(t,,%) whenever one

of the following three conditions holds

(2) -p is a complete join morphism and t1=XS.[p°T(SJ]

(3) -vsel, wPeA, p(T(S)(P)) =1t,(S)(p(P))

(4) -o(p(A)) =Ti(p(A)) and t; =AS.[peT(S)] _is the best
correct upper approximation of T in A =p{A).

Example 9.2.0.5

Coming back to example 8.1.0.3 where A = (Z~+B)
and p(A) = {hu.false,u. (u=0),Au. (u<D),iu. (u<0),
Au. (u>0),Au. (u20),Au.true} and applying theorem
9.2.0.4 we get n{A) =p(A) u{lu.(u#0)} so that accor-
ding to 9.2.0.4.(3), ¥m, ¥ e p(A),
PLLfp(Fr(AS. (NeT(S)],00 = MOPR(AS. (PoT(S)),d).

End of Example.

It is clear that when p(A) satisfies the ascen-
ding chain condition, the construction of theorem
9.2,0.4 may lead to a refined space of approximate
assertions N(A) which does not satisfy the ascending
chain condition. Then the iterative computation of
Lfp (Fp(AS.Inet(S)],4)) may not be naturally conver-
ging in a finite number of steps. Nevertheless this
least fixpoint can be approximated from above using
an extrapolation technique in order to accelerate
the convergence of the iterates. Such a technigue
was developped in Cousot & Cousot[77al using a "wide-
ning operator” Ve (n(A)xn(A) >n(A)). 1In our case a
possible choice of V is A<P,0>.[p(PVvQ)]. This
choice will guarantee that the refined fixpoint anal-
ysis (based on mn and V) will be more precise than
the original one (based on p) (but other application
dependent definitions of V might even be more effi-
cient).

THEOREN

THEOREM

10, COMBINATION OF PROGRAM ANALYSIS FRAMEWORKS

The ideal method in order to construct a pro-
gram analyser (to be integrated in optimizing com-
pilers or program verification systems) would consist

in a separate design and implementation of various

complementary program analysis frameworks which could
then be systematically combined using a once for all

implemented assembler. In this section, we show that
such an automatic combination of independently desi-

gned parts would not lead to an optimal analyser and

that unfortunately the efficient combination of pro-

gram analysis frameworks often necessitates the revi-
sion of the original design phase.

10,1 Reduced Cardinal Product of Program Analysis
Frameworks

10.1.0.1

Let [Al,tl,yl], (Az,tz,yz) be two program analy-
sis frameworks such that A; P<,y >A, A, ><,y,>A and
t,, t, are correct upper approximations of T in A,
Ap. The direct product (A,t,Y) of (Al,tl,Yll and
(A2,t2,Y2) is defined as A=Ai1xAz, t=tixts=AS,[A<P;,Ps>.
[<t1(5)(P1),t2(3)(P)>]], Y=A<P1,Po>. (Y1 (P1)AY2 (P2) ).

(1) - ¥, Yd1eA1r, ¥oaeAz, MOPq(t,<¢1,02>) =
<MOPq{t1,91),MOPy(t2, 421>
(2) - If moreover t; and t, are isotone, then
pr[Fﬂ-[tl Xt21<¢11¢2>)] =
<pr(Fﬂ(t1,¢1)],pr(Fﬁ(tz,(bz]]>

This definition of direct product is not satis-
factory since Yy is not necessarily injective and ©
is not necessarily optimal. Hence given a glcbal
program analysis algorithm we can get sharper infor-
mation than the one obtained by the separate analyses
just by revising the definition of A and t as stated
in theorems 5.3.0.7 and 7.2.0.4 :

10.1.0.2

- Let (Ap,t1,v1) and (As,t2,y2) be two program anal-
ysis frameworks such that AjP<ai,y;>A,
A2D<QZ,Y2>A, ty = AS. (ay0oT(S)eyy) and t, =
AS, (apoT(S)eyy) are respectively the best upper
approximation of T in A, Let 0e((A1xAp) > (A1xA2))
be defined as A<Py,P2>.J1{<Qqy,02> 1 y1 (P1) Ava(Py) =
Y1 Q1) /\YQ[Qz]}.

- The reduced product (A1,t1,Y1)*(Ax,ts,Y2) is
(A,t,y) where A =0(A; xA2)(E,L,0(T),U,AS. (o (TS,
t =>\S.|:0L°T(S]°'Y], Y =>\<P1,P2>.[’Y1 (P1) /\Yz[Pg)],
o = AP. (gl<o1 (P),0, (P1>])

- Ap<a,Y> A, ¥Sel, (aeT(S)oy)lcol(ty xt2)(S)) and
this inequality can be strict.

Since yeo =Yi°0; AYgeda, O(Ay XAz) is a repre-
sentation of the space of approximate assertions
corresponding to the meet of the closure operators
vieay and Yyaeap (theorem 8.0.1) viz. to the join
{MNMP:P c v1(A1) UY2(A2)} of the Moore families
v1 (A1) and Y2 (Az).
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Example 10.1.0.3

+u

od

Y1 (L)=Ax.false, Y1(0)=Ax,(x=0), Y1 ($)=Ax.(x20), vi(=)=
Axa (x£0), Y1(T)=Ax.true, Yz (L)=Ax.false, Yz (ev)=
Ax.(x modulo 2 = D), Yz (od)=Ax.(x modulo 2 = 1),
Y2 (T)=Ax.true, ¥xcA1, ¥WyeAz, O(<x,1>)=0(<L,y>)=
0(<0,o0d>)=<L,1>, 0O({<0,ev>)=0(<0,T>)=<0,ev> otherwise
0(<x,y>)1=<x,y>. The product is

<T,T>

<t,av>

<1,1>
The following program (Mannal 74 ,p.179] computes

Vs =xT2 (with the convention O
x1 and natural number X2z

=1) for every integer

{1} <Y1aV25Y3> 15 <X1,X2,1>;

(2} wntil y2=0 do

{3} if odd(y,) then

{a} <y2,y3> 1= <y2=1,y1*y3>;
(5} else

{5} C<V1,y2> 1= <y1rya,ya dEV 275
7y, 0

{8} ;

The fixpoint analysis with entry condition
Ay1s,V2,V3,X1,%2) e (X220) using Ay leads to the fol-
lowing result for the variable y»

[ {1 {2y {3} {4} {5}

& T T T T

{8}

T

{7}

T

{8}
0

ve |

The fixpoint analysis using A2 leads to the follo-
wing result for the variable y2

{1} {2} {3} {4} {5}

T T od ev ev

{8}

T

{7}

T

{8}

eV

ya

According to theorem 10.71.0.1 the direct product of
the above analyses cannot yield sharper information.
On the other hand using the reduced direct product
(A-{<1,1>1)" u{<<i,1>,,..,<1,1>>} and the correspond-
ing optimal approximate predicate transformer (which
takes account of the rule <%,o0d>-1 <i,ev>) we get

| {17 {2} {3} {4} {s} {e} {7} {8}

<h, 1> <E,T> < od> <3, ev> <i,ov> <E,T> <1,T> <0,ev>

V2

End of Example.

10.1.0.4

Let Li(=1), L2(E2) be posets. The cardinal sum
of Ly and L2 is the set of all elements in L1 or Lo,
considered as disjoint. When Li{S1,L11,T1,001,1) and
La(Eo,10,T2,li2,M2) are complete lattices we can de-
fine the disjoint sum Li+Lp as L1 ulz u{L, T} with
ordering xSy iff (x=L1) or (y=T) or (x,yeLi,and xE1y)
or (x,yelz and xE2 y). The meaning of elements of
Li+Ls can be defined as Y(L)=yy(L1) AyalL2), Yix)=
Y1(x) if xeli, Y(x)=Ya(x) if xela, Y(T)=Ax.true. Even
when Yy and Yz are one-to-one complete meet-morphisms,
Y may be neither one-to-one nor a complete meet-
morphism. In order to satisfy assumption 5.1.0.2 the
set y(Li+L2) must be completed using theorem 5.2.0.4.
Then it turns out that the least Moore family contain-
ing Y(Li+L») is equal to y'(LixLp) (Y' as defined in
theorem 10.,1.,0.2). Therefore the use of disjoint sums
amounts to the use of reduced products.

End of Remark.

Remark

10.2 Reduced Cardinal Power of Program Analysis
Frameworks

The cardinal power L%l with base L2 (E2,12,T2,
Us,M2) and exponent Li(=1,L1,T1,U1,M1) (hereafter
noted Zso(lLy >Ly)(s,L,T,LLM1)) is the set of all iso-
tone maps from L1 te Lo with f£g if and only if
f(x) Eag(x) for all x in L1. Two program analysis
frameworks (Ai1,t1,Y1) and (Az,t2,Ye) can be combined
by letting g e 7s0(L1 ~L2) mean that for all x in Az,
Y2 (g(x)) holds whenever Yi(x) holds.

THEGREM 10.2.0.1

The reduced cardinal power with base (Aa,t2,Y2)
and exponent (A1,ti,Y1) is (A,t,Y) where
A=0(7s0(A1 >A2)), Oc(iso(A1 +~A2) ~T80({A1~>A2}) is
AgJHF e 80 (A1 > A2) 1 Y(F)=Y(g)}, Ye(fso(A1>A2) ~A)
is Ag LAXo ALy (vl (X) = Y2 (gv)) (XD s veAr 1],
t = AS, (@oT(S)ey) and 0e(A~+780(A1 ~A2])) is
AL fo(v. o tPAayi(v)) ]

A<a,y>A and ¥Sel, t(3) cAg.lAv.lz{t2(5)(glz)):
zeAr A £1(5)(2) Ev}] (with L% =15).

Example 10.2,0,2
T2
T
= 3
A= tof Ap= } ‘ {
- 0 +
11
12

Y1 {11)=y2 (L2)=A(b,x).false, Y1(T1)=Y2(T2)=A(b,x).true,
Y1 (£)=A(b,x).(b), Y1 (f)=A(b,x).(=b), Y2(=)=
Alb,x).(x<0), etc.

The analysis of the program :

x :=100; b := true;
%;1 while b do
X 1= x=1;
%2% b= (x>0);
=3 ods
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using the reduced cardinal product of A1 and A2
yields no information since no relationship can be
discovered between b and x.

Following theorem 10.2.0.1 we determine that if
ge (A1 > Az2) then y(gl=(y1 (EIAY2 (g (£)IVIYL(FIAY2 (g(FID
Therefore G(gl)=h where h(Li1)=L2, h(E)=g(£), h(f)=
g(f), h(T1)=g(t) U2 g(f). It follows that c(Zso(A1+A2))
is isomorphic to ({£,F} +A2) (or AazxAsz).

The system of equations associated with the
above program and the entry specification Ab.T, is
then 1

g1 = Ab.Zf b=t then + else Ly f%

g2 = Ab.Zf b=t then gi1(t) Uy gy(¢) else Lo fI

gs = Ab.decr(gz (b))

gy = Ab.Tf b=t then (g3(t) [y +) s (g3 (a2 +)
elstlf b=f then (gs3(£)22)a(gs (FIM22) 7

gs = Ab.Zf b=f then gi(f) Uz gy (f) else 1o Fi

where decr(Llz)=12, decr(0)=decr(-)=decr(~)=-,
decr(+)=%, decr(#0)=decr(¥)=decr(T2)=T2,

The iterative resolution of this system of equa-
tions starting from the infimum Ab.Ll2 yields y(gi)=
Y(g2)=A(b,x).(bAx>0), Y(gsl=Alb,x).(bAx20}, Y(gy)=
Alb,x). ((bAx>0)V(~b A x=0)]), vlgs)=A(b,x).(~bAx=0),

End of Example.
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