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ABSTRACT
We introduce a general uniform language-independent framework
for designing online and offline source-to-source program trans-
formations by abstract interpretation of program semantics. Iter-
ative source-to-source program transformations are designed con-
structively by composition of source-to-semantics, semantics-to-
transformed semantics and semantics-to-source abstractions ap-
plied to fixpoint trace semantics. The correctness of the trans-
formations is expressed through observational and performance
abstractions. The framework is illustrated on three examples:
constant propagation, program specialization by online and of-
fline partial evaluation and static program monitoring.

1. INTRODUCTION
A program transformation is a meaning-preserving map-

ping defined on a programming language [21]. The program
transformation methodology provides thinking tools for the
development of programs from specifications (such as the
fold/unfold transformation [24]) and program verification
(such as temporal verification [9]). The program transfor-
mation techniques provide mechanical tools for program op-
timization (such as cache optimization [12], call-by-name to
call-by-value transformation [26], constant propagation [18],
continuation passing style transformation [23], deforestation
[29], finite differencing [20], partial evaluation [1, 14], tran-
sition compression [16]), software customization (such as se-
curity policy enforcement [10, 25], reverse engineering [31],
slicing [30]) and compilation [22].

The objective of this paper is to introduce a general uni-
form language-independent framework for reasoning on se-
mantics-based program transformation. The formalization is
based on abstract interpretation [4, 6] which accounts for:

• the static program analyses that are used to justify trans-
formations (such as binding time analysis [28] for partial
evaluation [13, 15]);
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• the correctness of transformations which should preserve
the semantics, at some level of observation or abstraction of
irrelevant details (this aspect is also standard and similar to
the use of abstract interpretation to hierarchically organize
programming language semantics [3]);

• the efficiency of transformations which should improve pro-
gram performances as measured by an abstraction of the se-
mantics (the use of abstract interpretation for performance
analysis is more recent, see e.g. [19]);

• the formalization of syntactic program transformations as
abstractions of program semantics transformations.

This last point is the main novelty of our approach which
leads to a constructive language-independent program trans-
formation design methodology where the syntactic transfor-
mation is constructed systematically by approximation of a
semantic transformation which is easily shown to be correct
and efficient. As noticed by [21], “Transformational systems
may have the power to perform sophisticated program anal-
ysis and to generate software at breakneck speed, but to
date they are not sound. Lacking from them is a conve-
nient mechanical facility to prove that each transformation
preserves semantics. In order to create confidence in the
products of transformational systems we need to prove cor-
rectness of specifications and transformations. Currently,
this is too labor-intensive to be practical.” The proposed
uniform framework to formalize semantics-based program
manipulation will hopefully be a useful step in that direc-
tion.

2. A FEW BASIC ELEMENTS OF ABSTRACT
INTERPRETATION

Abstract interpretation [4, 6] formalizes the approxima-
tion correspondence between the concrete semantics S�P� of
a syntactically correct program P ∈ P, chosen in a given
programming language P, and an abstract semantics S�P�
which is a safe/conservative approximation of the concrete
semantics S�P�.

The concrete semantics belongs to a concrete semantic
domain D which is a poset po〈D; �〉 when partially or-
dered by the approximation ordering � formalizing the loss
of information (e.g. the logical implication). The abstract
semantics is also a poset po〈D; �〉 which is ordered by the
abstract version � of the concrete approximation ordering
�. The concrete and abstract semantic domains often enjoy
stronger properties, such as being complete partial orderings
or complete lattices.
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The correspondence between the concrete and the ab-
stract semantic domains is given by a pair of maps α, which
is the abstraction, and γ, which is the concretization. The
concretization γ(S�P�) of the abstract semantics S�P� ex-
presses the abstract information available about program
execution in concrete terms. It should be a sound approxi-
mation of the concrete semantics in that S�P� � γ(S�P�).

If any element S of the concrete domain po〈D; �〉 has
a best approximation (i.e. �-most precise) in the abstract
domain po〈D; �〉 given by α(S), then the pair 〈α, γ〉 is a
Galois connection which is written po〈D; �〉 −−−→←−−−

α

γ
po〈D; �〉.

By definition, this means that ∀X ∈ D: ∀Y ∈ D: α(X ) � Y
⇔ X � γ(Y). A Galois insertion po〈D; �〉 −−−→−→←−−−−

α

γ
po〈D; �〉

is a Galois connection with α surjective.
One interest of the abstract interpretation theory is to

constructively derive the exact (resp. approximate) abstract
semantics S�P� from the given concrete semantics S�P� by
refining the specification α(S�P�) = S�P� (resp. α(S�P�) �
S�P�). If e.g. the concrete semantics is given in fixpoint
form S�P� = lfp

�
F�P� where the semantic transformer F�P�

is monotonic, then the abstract semantics can be chosen
as lfp

�
F�P� where the abstract semantic transformer F�P� is

designed using the local commutation conditions α ◦ F�P� ◦ γ

= F�P�, α ◦ F�P� = F�P� ◦ α (resp. �̇ i.e. � pointwise for
semi-commutation) or F�P� ◦ γ = γ ◦ F�P� (resp. �̇). Several
fixpoint transfer theorems e.g. [6, Th. 7.1.0.4(3)], [3, Th. 2.1],
[8, Cor. 2.4] (resp. fixpoint upper approximation theorems
e.g. [6, Th. 7.1.0.4(2)], [8, Th. 2.5]) guarantee that:

α(lfp
�

F�P�) = lfp
�

F�P�
(
resp. α(lfp

�
F�P�) � lfp

�
F�P�
)

(1)

and their duals (with 
, 
, γ substituted for �, � and α).

3. PRINCIPLE OF PROGRAM TRANSFOR-
MATION

In this section we introduce the principle of our formaliza-
tion of program transformations by abstract interpretation.

3.1 Syntactic Program Transformation
A syntactic program transformer t takes as input a sub-

ject program P ∈ P and, upon termination, produces as
output a transformed program t�P� ∈ P′ (for short P′ = P):

Subject
program P ∈ P

Syntactic
transformation t

→ Transformed
program t�P� ∈ P

However, program transformations seldom rely on syntactic
criteria only, so we now introduce the semantic foundations
which are especially needed to determine meaning preserved-
ness of program transformations. We first consider online
program transformations directly referring to program exe-
cutions and next offline transformations based upon a pre-
liminary static program analysis.

3.2 Semantics-Based Online Program Trans-
formation

Online transformations refer to program executions. For
example, online partial evaluation makes use of the concrete
values of the static input variables so that, according to
[16, Def. 4.6], the concrete values computed during program
specialization can affect the choice of action taken.

Formally, an online transformation can be understood as
making use of the program semantics S�P� ∈ D. From this

formal point of view, any program transformer t ∈ P �−−→ P
on the program syntax induces a corresponding semantic
transformer t ∈ D �−−→ D taking as input the semantics
S�P� of the subject program P and producing the semantics
S�t�P�� of the transformed program t�P�. A strong equiva-
lence requirement is that S�t�P�� = t[S�P�] stating that the
semantics of the syntactically transformed program is pre-
cisely the semantic transformation of the semantics of the
subject program:

Subject
program P

Syntactic
transformation t

→
Transformed
program t�P�

Subject
program

semantics S�P�

Seman-
tics S ↓

Semantic
transformation t

→
Transformed

program semantics
t[S�P�] = S�t�P��

Seman-
tics S↓

A generalization consists in considering P as a tuple of pro-
grams, see Sec. 8. We now study in more details the corre-
spondences between the various elements of this diagram.

3.3 Correspondence Between Syntax and Se-
mantics of Programs

Programs can be considered as an abstraction of their se-
mantics. For example the syntax of programs records the
existence of variables and maybe their type but not the se-
quence of their successive values during execution, as defined
by the semantics. Usually programs record the chaining of
actions but not their exact sequences of execution. The same
way, program performances are completely abstracted in the
program syntax although execution time might be included
in the operational semantics. Formally:

po〈D; �〉 −−−→−→←−−−−
p

S
po〈P/≡; �〉 (2)

where S�P� is the semantics of program P ∈ P while p[S ] is
the simplest program whose semantics upper-approximates
S ∈ D. Programs are considered up to a syntactic equiv-
alence P ≡ Q

∆
= (S�P� = S�Q�) (∆

= means “is defined as”).
The syntactic refinement is P � Q

∆
= (S�P� � S�Q�). In prac-

tice, neither � nor ≡ are computable and they must be
approximated (e.g. by = and ⊆ in Sec. 6.6).

3.4 Syntactic Program Transformations as Ab-
stractions of Semantics-Based Program
Transformations

Thanks to the above correspondence between the syntax
and semantics of programs, the transformed program t�P�
can be viewed as the decompilation p[t[S�P�]] of its seman-
tics t[S�P�]. Using this correspondence 〈S, p〉 between the
syntax and the semantics of a program as well as the seman-
tic form t of the program syntactic transformation t, we get
the following commuting schema (dashed arrows are unused
in the explanation):

Subject
program P

Syntactic
transformation t

→
Transformed

program
t�P� = p[t[S�P�]]

Subject pro-
gram seman-

tics S�P�

S↓ p
↑↑

Semantic
transformation t

→
Transformed

program
semantics t[S�P�]

S↓ p↑↑
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This schema leads to another view of online program trans-
formation. A syntactic program transformation algorithm
t�P� = p[t[S�P�]] is derived by abstraction of its semantic
specification t[S�P�]. In practice the syntactic transforma-
tion t�P� may be weaker, that is more restricted or less
effective, than the ideal semantics-based but undecidable
transformation p[t[S�P�]] so that t�P� 
 p[t[S�P�]].

3.5 Correspondence Between Syntactic and Se-
mantic Program Transformations

Formally, the semantic transformation t ∈ D �−−→ D in-
duced by a syntactic transformation t ∈ P �−−→ P is:

t[S ]
∆
= S�t�p[S ]�� .

Conversely, the syntactic transformation t ∈ P �−−→ P in-
duced by a semantic transformation t ∈ D �−−→ D is:

t�P�
∆
= p[t[S�P�]] . (3)

We use (3) as a basis for designing the syntactic transforma-
tion t�P� formally from the semantic transformation t[S�P�].
Observe that po〈D; �〉 −−−→−→←−−−−

p

S
po〈P/≡; �〉 implies

po〈D m�−−→ D; �̇〉 −−−−−−−−−−−−−−→←−−−−−−−−−−−−−−
λ t·λ P·p[t[S�P�]]

λ t·λ T ·S�t�p[T ]��
po〈P/≡ m�−−→ P/≡; �̇〉

so that for �-monotonic transformations, the source-to-source
syntactic transformation is a functional abstraction of the
semantic transformation. However, because of undecidabil-
ity, we can often only compute an effective approximation
t�P� 
 p[t[S�P�]].

3.6 Correspondence Between the Subject and
Transformed Program Semantics

A program transformation corresponds to a loss of infor-
mation on the subject program whence its semantics. For
example, in partial evaluation, the transformed program is
specialized for given static values so that the information
on how these static values are computed in the subject pro-
gram is lost in the specialization process. In the abstract
interpretation framework, this can be formalized as:

po〈D; �〉 −−−→←−−−
t

γt
po〈D; �〉 . (4)

By composition of the Galois connections (2) and (4), by
definition (3) and by p ◦ S�P� ≡ P from (2), we have:

po〈P/≡; �〉 −−−→←−−−
t

γt
po〈P/≡; �〉 . (5)

3.7 Design of a Program Transformation Al-
gorithm by Abstraction of the Program
Fixpoint Semantics

The semantics S�P� of program P can often be expressed
in least fixpoint form as lfp F�P� (or dually as gfp F�P�) [3].
From this fixpoint semantic definition S�P� = lfp F�P�, we
constructively derive the semantic and then the syntactic
transformations in fixpoint form using the fixpoint transfer
theorems (1) successively applied with the abstraction (4)
and then (5), as follows:

p[t[S�P�]]

= p[t[lfp F�P�]] by the fixpoint definition S�P� = lfp F�P�
of the semantics,

= p[lfp F�P�] where F�P� ∈ D m�−−→ D is designed using
(1) with abstraction (4),

= lfp F�P� by (1) with (5),
∆
= t�P� (resp. � for approximations).

When the fixpoint lfp F�P� is defined on posets satisfying
the ascending chain condition, this fixpoint characterization
t�P� = lfp F�P� of the syntactic program transformation t�P�
directly leads to an iterative algorithm.

However, the semantic transformation t can depend on
undecidable results on the program semantics so that the
syntactic transformation algorithm t�P� may not terminate
or, even worse, fixpoint transfer theorems (1) may not be ap-
plicable. In this case, weaker approximate transformations
must be considered which depend upon decidable criteria
only. This leads to the idea of offline program transforma-
tion considered in Sec. 3.10. But before, we study seman-
tics-based correctness criteria of program transformation.

3.8 Correctness of Online Program Transfor-
mation: Observational Abstraction

Another advantage of understanding syntactic program
transformation as an abstraction of a semantics transforma-
tion is that it naturally leads to a simple notion of correct-
ness of the program transformation. A transformation is
correct iff, at some level of abstraction, the observation of
the execution of the subject program is equivalent to the
observation of the execution of the transformed program:

Subject
program P

Syntactic
transformation t

→ Transformed
program t�P�

Subject
program

semantics S�P�

Seman-
tics S ↓

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
Observational

equivalence

Transformed
program

semantics S�t�P��

Seman-
tics S↓

Observational equivalence can be formalized in the abstract
interpretation framework by requiring the abstraction of the
semantics of the subject and of the transformed programs
to be identical. The specification of the observational ab-
straction αO should be considered part of the problematics.
For example,BT ignoring the termination problem [16, Ch.
4, note on p. 69] can be formalized by an observational ab-
straction ignoring all infinite program behaviors. Schemati-
cally:

Subject
program

semantics S�P�
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡

Observational

equivalence

Transformed
program

semantics S�t�P��

Observational semantics
←

αO
α
O →

Formally, a source-to-source program transformation t ∈
P �−−→ P is said to be correct with respect to an observational
abstraction:

po〈D; �〉 −−−−→←−−−−
αO

γO
po〈DO; �O〉 (6)

if and only if for all programs P ∈ P, αO(S�P�) = αO(S�t�P��),
as shown in diagramed form, in Fig. 1. More generally, pro-
grams P and Q are said to be αO-observationally equivalent,
written P ≡O Q, if and only if:

αO(S�P�) = αO(S�Q�) . (7)

3.9 Principle of Online Program Transforma-
tion

Summarizing this point of view on online program trans-
formation, we get the schematic diagram of Fig. 2 including
a formalization of the transformation correctness through a
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Subject
program P

Syntactic
transformation t

→

Transformed
program

t�P�

Subject
program sem-

antics S�P�

S↓
Transformed pro-
gram semantics

S�t�P��

S↓

α
O

→
←

αO
Observational
abstraction

αO(S�P�) = αO(S�t�P��)

Figure 1: Correctness of a syntactic transformation

Subject
program P

Syntactic
transformation t

→

Transformed
program

t�P� 
 p[t[S�P�]]

Subject pro-
gram seman-

tics S�P�

S↓ p

↑↑

Semantic
transformation t

→
Transformed pro-
gram semantics
t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

αO

γO

→

Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

Figure 2: Online program transformation

semantics observational abstraction αO. According to this
diagram, the syntactic transformation t�P� is designed as
an upper-approximation of the best possible one p[t[S�P�]].
This consists in simplifying the term p[t[S�P�]] in order to
get rid of all semantic subterms in S and t.

By definition of the Galois connection (2), the correctness
condition p[t[S�P�]] � t�P� is equivalent to t[S�P�] � S�t�P��.
This equivalence leads to an alternative method for design-
ing the syntactic transformation t. Starting from the given
semantic transformation t, the term t[S�P�] is simplified by
pushing out S in order to rewrite it in the form S�t�P�� so as
to extract the definition of t�P�. This methodology, which
is quite common in abstract interpretation (e.g. [3]), is illus-
trated in Sec. 7.1.4.

In both cases, the transformation is an upper-approximation
and so must be proved correct. To do so we prove that S�P�
� t[S�P�] and αO(S�P�) = αO(S�t�P��). Then, by (6), αO is
monotonic so αO(S�P�) �O αO(t[S�P�]) �O αO(S�t�P��) =
αO(S�P�). By antisymmetry, we conclude that αO(S�P�) =
αO(t[S�P�]) = αO(S�t�P��).

3.10 Principle of Offline Program Transfor-
mation

Although offline program transformation does not directly
use the values of variables during program execution, it
nevertheless uses some information on program execution,
which is obtained by a preliminary static program analysis.
For example, in partial evaluation, a preliminary binding

time analysis is used to compute a division of program vari-
ables into static and dynamic ones, the transformation being
only applied to static ones [16]. From a syntactic point of
view, the preliminary static analysis phase is used to add
annotations to the program and then the transformation is
applied to the annotated program. This leads to the schema
of Fig. 3, which is the schema given for online program
transformation in Sec. 3.9, but for the fact that it is applied
to an annotated program P derived from the subject pro-
gram P by a preliminary static analysis based annotation
algorithm. Although the preliminary syntactic annotation
phase can be very useful as a user interface, one can isolate
the preliminary program static phase as an abstract inter-
pretation of the program semantics as specified by a static
analysis Galois connection

po〈D; �〉 −−−→←−−−
α

γ
po〈D; �〉 (8)

and consider syntactic transformations acting on the pro-
gram P given its abstract semantics S�P�, as shown in Fig.
4. We now exemplify this framework on elementary pro-
gram transformations of a simple imperative programming
language.

3.11 Transformation Combinations
Since the composition of Galois connections is a Galois

connection, the transformation diagrams of Fig. 2, Fig.
3 and Fig. 4 can be combined serially or in parallel (for
multi-programs transformations as examplified in Sec. 8) to
explain complex combinations of transformations. For ex-
ample, the reduced product [6] of constant propagation (Sec.
6) and online partial evaluation (Sec. 7.1) leads to an of-
fline partial evaluator where the values of some of the static
variables is detected by the preliminary constant detection
analysis (Sec. 6.2).

4. SYNTAX AND SEMANTICS OF THE EX-
AMPLE PROGRAMMING LANGUAGE

Let us consider imperative iterative programs acting on
global variables such as e.g.

X := ?; while X > 0 do X := X + 1 od

that would be written:

a : X := ? → b; c : X := X + 1 → d;
b : (X > 0) → c; d : skip → b;
b : ¬ (X > 0) → e; e : stop;

in the example language P. If execution is at some label
L then one of the transitions L : A → L′; labeled with L is
executed, provided the action A is not blocking and the exe-
cution can go on by branching to the next label L′. Programs
are nondeterministic since several actions can be referenced
by the same label. If no action is labelled L′, the execu-
tion is blocked at L, which is the case for the stop command
L : stop; which is a shorthand for L : skip → ł; where ł is
the undefined label. The skip command L : skip → � L; is
itself a shorthand for the boolean test L : true →� L;.

Formally, programs are not restricted to be finite. This
is useful to discuss program transformations such as partial
evaluation which may not terminate. However, in practice,
program transformations are required to be effective so as
to produce finite transformed programs out of finite subject
programs.
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Subject program P
Syntactic an-
notation a

→
Annotated subject
program P = a�P�

Syntactic trans-
formation t

→
Transformed program

t�P� 
 p[t[S�P�]]

Subject program
semantics S�P�

S
↓

p

↑↑

Semantic an-
notation a

→ Annotated subject
program semantics S�P�

p

↑↑
S

↓
Semantic trans-

formation t
→ Transformed program

semantics t[S�P�] � S�t�P��

S
↓

p

↑↑

α
O

→

←
γ
O γO

→

←
αO Observational

abstraction

αO(S�P�) = αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

αO

↓

γO

↑

Figure 3: Offline program transformation with annotations

Subject program P
Static program

analysis S
→ 〈P, S�P�〉

Syntactic trans-
formation t

→
Transformed program

t�P� 
 p[t[S�P�, α(S�P�)]]

Subject program
semantics S�P�

S
↓

p

↑↑

Semantic
abstraction α

→ 〈S�P�, α(S�P�)〉

p

↑↑
S

↓

......

�
.....

Semantic trans-
formation t

→ Transformed program semantics
t[S�P�, α(S�P�)] � S�t�P��

S
↓

p

↑↑

α
O

→

←
γ
O γO

→

←
αO Observational

abstraction

αO(S�P�) = αO(t[S�P�, α(S�P�)]) = αO(S�t�P��)

αO

↓

γO

↑

Figure 4: Offline abstract program transformation

4.1 Abstract Syntax of Programs
The abstract syntax of programs is defined in Fig. 5. We

let var�D� be the set of variables of an expression or action
D ∈ E ∪ B ∪ A and define:
lab�L1 : A →� L2;�

∆
= L1, var�L1 : A →� L2;�

∆
= var�A�,

act�L1 : A →� L2;�
∆
= A, lab�P�

∆
= {lab�C� | C ∈ P},

suc�L1 : A →� L2;�
∆
= � L2, var�P�

∆
=

⋃

C∈P

var�C� .

A stop command is L : stop; ≡ L : skip → ł; and a skip
command is L : skip →� L; ≡ L : true →� L;.

4.2 Environments
The commands of a program P act on global variables

X ∈ var�P�. The program variables take their value in the
semantic domain V. This value can be the uninitialized or
undefined value � �∈ V so V�

∆
= V∪{�} 1. An environment

ρ ∈ E maps variables X ∈ dom[ρ] to their value ρ(X) so
E

∆
=
⋃

X⊆X E�X � where E�X �
∆
= X �−−→ V� is the subset of

environments ρ with domain dom[ρ]
∆
= X . In particular the

empty environment � is the only environment with empty
domain dom[�] = ∅ so that E�∅� ∆

= ∅ �−−→ V� = {�}. E�P� is
1 Instead of using a special undefined value � raising error ex-
ceptions when used at runtime, we could have chosen to have
variables initialized to a specific value (like 0) or to a random
value (in practice often depending upon previous memory states).
Formally, these last choices can be enforced by adding (random)
initialization assignment commands to the program.

the set of environments of a program P whose domain is the
set of program variables: E�P�

∆
= E�var�P��.

ρ|X where X ⊆ X is the restriction of environment ρ to
the domain dom[ρ]∩X . We write ρ \X for the restriction of
environment ρ to the variables not in X . Therefore ρ \ X is
the environment ρ′ such that dom[ρ′] = {X ∈ dom[ρ] | X �∈ X}
and ∀X ∈ dom[ρ′] : ρ′(X) = ρ(X). For short we write ρ \ X for
ρ\{X} when X ∈ X is a program variable and R\X ∆

= {ρ\X |
ρ ∈ R} when R is a set of environments. Let us write ρ � ρ′

if ρ is identical to ρ′ on its domain that is dom[ρ] ⊆ dom[ρ′]
and ∀X ∈ dom[ρ] : ρ(X) = ρ′(X).

4.3 Semantics of Program Actions
The semantics A�E� of an arithmetic expression E is de-

fined inductively2:

A�n�ρ
∆
= n, A�X�ρ

∆
= ρ(X),

A�E1 − E2�ρ
∆
= A�E1�ρ − A�E2�ρ

where − is extended to the undefined value � as � − �
∆
= � − n

∆
= n − � ∆

= �. A�E� ∈ E�X � �−−→ V� is well-
defined when var�E� ⊆ X whence A�E� ∈ E�P� �−−→ V�

is well-defined when the arithmetic expression E belongs to
a program P. Similarly, we define the semantics B�B� ∈
2 For simplicity, here and afterwards, we do not distinguish
between values n = valofstr(n) and their denotations n =
strofval(n) (including for booleans so true denotes true). In
particular the denotation of the undefined value � is also writen� but should be some uninitialized variable Undefined.
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n : Z Integer numbers
X : X Program variables
E : E Arithmetic expressions
E ::= n Integer

| X Variable

| E1 − E2 Difference

B : B Boolean expressions
B ::= E1 < E2 Comparison

| B1 ∨ B2 Disjunction

| ¬B1 Negation

| true | false Truth/Falsity

A : A Program actions
A ::= X := E Assignment

| X := ? Random assignment

| B Test

L : L Program labels
ł �∈ L Undefined label

� L : � L
∆
= L ∪ {ł} Colabels

C : C Commands
C ::= L1 : A →� L2; Transition command

P : P
∆
= ℘(C) Programs

Figure 5: Abstract syntax of programs

E�X � �−−→ B� of a boolean expression B with var�B� ⊆ X ,
B

∆
= {true, false} and B�

∆
= B ∪ {�}:

B�E1 < E2�ρ
∆
= A�E1�ρ < A�E2�ρ, B�¬B�ρ ∆

= ¬B�B�ρ,

B�B1 ∨ B2�ρ
∆
= B�B1�ρ ∨ B�B2�ρ, B�true�ρ

∆
= true,

where ¬true = false, ¬false = true and the undefined
value � is propagated as in � < � ∆

= � < n
∆
= n < � ∆

=�, ¬� = �, etc. The semantics S�A�ρ of an action A in
a program P defines the effect of executing this action on
the environment ρ. Because of nondeterministic executions,
we define S ∈ A �−−→ (E�X � �−−→ ℘(E�X �)) where S�A�ρ is
well-defined when var�A� ⊆ dom[ρ]:

S�B�ρ
∆
= {ρ′ | B�B�ρ′ = true ∧ ρ′ = ρ},

S�X := ?�ρ
∆
= {ρ′ | ∃z ∈ Z : ρ′ = ρ[X := z]},

S�X := E�ρ
∆
= {ρ[X := A�E�ρ]}, S�true�ρ = S�skip�ρ = {ρ} .

4.4 Small-Step Operational Semantics of Pro-
grams

A state s ∈ S ∆
= E × C is a pair s = 〈ρ, C〉 where the

environment ρ records the values of variables while C is the
next command to be executed. The set of states S�P� of a
program P ∈ P is defined as:

S�P�
∆
= E�P� × P .

The transition relation S ∈ S �−−→ ℘(S) specifies which
successor states s′ can follow a given state s:

S(〈ρ, C〉) ∆
= {〈ρ′, C′〉 | ρ′ ∈ S�act�C��ρ ∧ suc�C� = lab�C′�} .

The transitional semantics S�P� ∈ S�P� �−−→ ℘(S�P�) of a
program P ∈ P restricts the transition relation to program
commands:
S�P�〈ρ, C〉 ∆

= {〈ρ′, C′〉 ∈ S(〈ρ, C〉) | ρ, ρ′ ∈ E�P� ∧ C
′ ∈ P} .

4.5 Partial Trace Semantics of Programs
We let D∗ be the set of finite partial traces. D∗ is therefore

defined as the set of all sequences σ of states of length #σ ≥
0 such that any state σi, i ∈ [1, #σ[ in the trace is a possible
successor of the previous state σi−1: σi ∈ S(σi−1)

3. The
set S∗�P� ⊆ D∗ of finite partial traces of a program P is, in
fixpoint form, S∗�P� = lfp

⊆
F∗�P� where, for the backward

case:
F∗�P�T ∆

= S�P� ∪ {ss′σ | s′ ∈ S�P�s ∧ s′σ ∈ T },
and similarly for the forward case. If we are only interested
in those executions of a program P starting from a given set
L�P� of entry points so that I�P� ∆

= {〈ρ, C〉 | ρ ∈ E∧var�P� ⊆
dom[ρ] ∧ C ∈ P ∧ lab�C� ∈ L�P�} is the set of initial states,
we can consider the partial trace semantics S∗

ι �P� ⊆ D∗ of
P which is the set of partial traces σ ∈ D∗ starting from an
initial state σ0 ∈ I�P�. The partial trace semantics S∗

ι �P�

can be expressed in fixpoint form as lfp
⊆

F∗
ι �P� where:

F∗
ι �P�T

∆
= I�P� ∪ {σss′ | σs ∈ T ∧ s′ ∈ S�P�s} .

4.6 Correspondence Between Program Syn-
tax and Semantics

The trace semantics maps programs to sets of traces. Con-
versely, we map sets of traces to programs by collecting com-
mands executed along traces so p∗ ∈ ℘(D∗) �−−→ P is:

p∗[T ]
∆
= {C | ∃σ ∈ T : ∃i ∈ [0, #σ[: ∃ρ ∈ E : σi = 〈ρ, C〉} .

Following (2), we have a Galois connection:

po〈℘(D∗); ⊆〉 −−−→−→←−−−−−
p∗

S∗ι
po〈P/≡; �〉

where P/≡ is the quotient of P by the syntactic equivalence
P ≡ Q and P � Q is the syntactic refinement. The Galois
connection follows from p∗ and S∗

ι are monotonic, p∗ ◦ S∗
ι �P�

is P up to dead code elimination and equivalences such as
L : stop; ≡ L : skip → ł; so p∗ ◦ S∗

ι �P� � P and T ⊆
S∗

ι ◦ p∗[T ] since all commands along the traces of T are
collected.

5. ACTION SPECIALIZATION

5.1 Definition of Expression Specialization
The residual of an arithmetic or boolean expression E in

a given (so-called “static”) environment ρ (assigning “static”
values to the “static” variables dom[ρ]) is the expression R�E�ρ
resulting from the specialization of that expression E to that
environment ρ. Expression specialization is defined in Fig.
6 (where values and their denotations are once again con-
founded).

An expression D ∈ E∪B is static in the (so-called “static”)
environment ρ (written static�D�ρ) if and only if it can be
fully evaluated in this environment ρ, that is var�D� ⊆ dom[ρ].
Otherwise var�D� �⊆ dom[ρ] and the expression D is dynamic
in the environment ρ.

The specialization of an arithmetic expression E ∈ E which
is static in an environment ρ always yields a static value
(i.e. a constant): static�E�ρ = (R�E�ρ ∈ V�) and similarly
for boolean expressions B ∈ B: static�B�ρ = (R�B�ρ ∈ B�).
3 For short we exclude infinite traces. This is not a problem
for the considered safety-preserving example program transfor-
mations because if sets of prefix-closed finite traces are observa-
tionally equivalent then so is their limit. Otherwise, see [8].
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R ∈ E �−−→ E �−−→ E
R�n�ρ

∆
= n

R�X�ρ
∆
= if X ∈ dom[ρ] then ρ(X) else X

R�E1 − E2�ρ
∆
= let E

′
1 = R�E1�ρ and E

′
2 = R�E2�ρ in

if E′1 = � or E
′
2 = � then �

elsif E
′
1 = n1 and E

′
2 = n2 and n = n1 − n2

then n else E
′
1 − E

′
2

R ∈ B �−−→ E �−−→ B
R�E1 < E2�ρ

∆
= let E

′
1 = R�E1�ρ and E

′
2 = R�E2�ρ in

if E′1 = � or E
′
2 = � then �

elsif E
′
1 = n1 and E

′
2 = n2 and b = n1 < n2

then b else E
′
1 < E

′
2

R�B1 ∨ B2�ρ
∆
= let B

′
1 = R�B1�ρ and B

′
2 = R�B2�ρ in

if B′1 = � or B
′
2 = � then �

elsif B
′
1 = true or B

′
2 = true then true

elsif B
′
1 = false then B

′
2

elsif B
′
2 = false then B

′
1

else B
′
1 ∨ B

′
2

R�¬B�ρ ∆
= let B

′ = R�B�ρ in

if B′ = � then �
elsif B

′ = true then false

elsif B
′ = false then true

else ¬B′

R�true�ρ
∆
= true R�false�ρ

∆
= false

Figure 6: Expression specialization

5.2 Correctness of Expression Specialization
Intuitively, expression specialization is correct in that the

semantics of the residual expression restricted to dynamic
variables is equivalent to the semantics of the subject ex-
pression with the same static variables. Formally, for any
arithmetic expression E, any (so-called “static”) environment
ρ and any (so-called “dynamic”) environment ρ′ such that
ρ � ρ′, we have A�R�E�ρ�ρ′ = A�E�ρ′. Moreover the evalua-
tion of the residual only depends on the dynamic variables
in that A�R�E�ρ�ρ′ = A�R�E�ρ�(ρ′ \ dom[ρ]).

In particular, for any static expression E in the environ-
ment ρ (such that static�E�ρ), the residual is equal (up to
the value/denotation correspondence) to the classical eval-
uation of Sec. 4.3: R�E�ρ = A�E�ρ. Similar results hold for
boolean expressions B.

5.3 Definition of Action Specialization
The specialization R�A�ρ of an action A in an environment

ρ is defined in Fig. 7. Action specialization produces both
a residual environment and a residual action, the residual
environment possibly recording the value of static variables
(upon initialization or e.g. after assignment of a constant)
or no longer recording the value of dynamic variables (e.g.
after a random assignment):

Action specialization is an abstraction in that (represent-

R ∈ A �−−→ E �−−→ (E× A)

R�B�ρ
∆
= 〈ρ, R�B�ρ〉

R�X := ?�ρ
∆
= 〈ρ \ X, X := ?〉

R�X := E�ρ
∆
= if static�E�ρ then 〈ρ[X := R�E�ρ], skip〉

else 〈ρ \ X, X := R�E�ρ〉 .

Figure 7: Action specialization

ing properties as usual by the set of elements having this
property):

po〈℘(E× A); ⊆〉 −−−−→←−−−−
αR

γR
po〈℘(E× A); ⊆〉

where αR(X)
∆
= {R�A�ρ | 〈ρ, A〉 ∈ X}.

5.4 Correctness of Action Specialization
The specialization 〈ρr, Ar〉 = R�A�ρ0 of an action A in a

(so-called “static”) environment ρ0 is correct since the resid-
ual action Ar and subject action A have the same semantics
in environments with identical static variables, ρr is the new
static environment after execution of action A and the execu-
tion of the residual action Ar depends on dynamic variables
only. Formally, for all actions A, if 〈ρr, Ar〉 = R�A�ρ0 and
ρ0 � ρ′ then S�Ar�ρ

′ = S�A�ρ′, ∀ρ′′ ∈ S�A�ρ′ : ρr � ρ′′ and
(S�Ar�ρ

′) \ dom[ρr] = (S�Ar�(ρ
′ \ dom[ρ0])) \ dom[ρr].

6. EXAMPLE 1: CONSTANT PROPAGA-
TION

6.1 Observational Abstraction
The observational abstraction for constant propagation

gets rid of commands but preserves the sequence of environ-
ments observed along a partial trace:

α
c
O(T )

∆
= {αc

O(σ) | σ ∈ T },
α

c
O(σ)

∆
= λ i · αc

O(σi), α
c
O(〈ρ, C〉) ∆

= ρ .

It is therefore insensible to the modification of the program
actions, relabelling (contrary to ≡ ) and dead code elimina-
tion (like ≡ ). We have:

po〈℘(D∗); ⊆〉 −−−−→←−−−−
αc
O

γc
O

po〈℘(R∗); ⊆〉

where R∗ is the set of finite sequences of environments.

6.2 Constant Detection Analysis
Constant detection static analysis Sc�P� of a program P

[18] is a sound abstract interpretation αc(S∗
ι �P�) �̈ Sc�P� of

the program partial trace semantics S∗
ι �P� [6] for the follow-

ing abstraction (which is the upper adjoint of the Galois
connection (8)):

αc(T )
∆
= λ L · λ X ·

⊔̈
{ρ(X) | ∃σ ∈ T : ∃C ∈ C : ∃i :

σi = 〈ρ, C〉 ∧ lab�C� = L}

where
⊔̈

is the pointwise extension of the least upper bound⊔
in the complete latticeDc ∆

= V�∪{⊥,�} partially ordered
by ∀x ∈ Dc : ⊥ � x � x � �.
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6.3 Offline Semantic Constant Propagation
Let T c = Sc�P� 
̈ αc(S∗

ι �P�) be the result of a preliminary
constant detection algorithm. The semantics transformer
propagates constants along commands appearing within traces:

tc[T , T c]
∆
= {tc[σ, T c] | σ ∈ T }, tc[σ, T c]

∆
= λ i · tc[σi, T c],

tc[〈ρ, C〉, T c]
∆
= 〈ρ, tc[C, T c(lab�C�)]〉 .

This relies on the following command specialization algo-
rithm:

tc[L1 : A →� L2;, ρ
c]

∆
= L1 : tc[A, ρc] →� L2;

tc[A, ρc]
∆
= let 〈ρr, Ar〉 = R�A�(ρc|{X∈X|ρc(X)∈V�}) in Ar .

6.4 Semantic Correctness of the Semantic Con-
stant Propagation Transformation

The first aspect of semantic correctness is to prove that
the semantic transformation produces valid traces (belong-
ing to D∗). The proof relies on the fact that the execution
of subject and transformed actions are equal:

S�A�ρ = S�tc[A, ρc]�ρ whenever ρ ∈ γc(ρc) . (9)

The second aspect of semantic correctness is that the ob-
servational abstraction αc of the subject and transformed
partial trace semantics are identical. This is trivial since
environments are left untouched in the transformation.

6.5 Performance Correctness of the Semantic
Constant Propagation Transformation

For performance correctness, the length of maximal traces
is left unchanged while the evaluation of the transformed
actions takes fewer elementary steps. Formally, the weight
of a finite trace is:

�[σ]
∆
= Σ#σ−1

i=0 ��σi�

��L1 : A →� L2;�
∆
= ��A�

��X := E�
∆
= 1 + ��E�

��E1 − E2�
∆
= 1 + ��E1� + ��E2�

��skip�
∆
= 1

��n�
∆
= 0

��X�
∆
= 1

. . . . . . . . .

The weight of a set of traces is a mapping of trace obser-
vations to the maximal weight of the concrete traces with
such observation:

�[T ]
∆
= λ ς ∈ α

c
O(T ) · max{�[σ] | α

c
O(σ) = ς} .

This is an abstraction:

po〈D∗; ⊆〉 −−−−→←−−−−
�

γ�
po〈R∗ �−−→ N; ≤̇〉

where ≤̇ is the pointwise extension of ≤. The performance
correctness of semantic constant propagation follows from
�[tc[T , T c]] ≤̇ �[T ].

6.6 Offline Syntactic Constant Propagation
The constant propagation algorithm tc�P, T c� is finally

derived from the partial trace semantics lfp
⊆

F∗
ι �P� by the

abstraction λ T · p∗ ◦ tc[T , T c], (where T c = Sc�P� is the
constant detection algorithm) using the fixpoint approxima-
tion theorem (1): p∗ ◦ tc[lfp

⊆
F∗

ι �P�, T c] � lfp
�

Fc�P� where

Fc�P�X
∆
= {tc[C, T c(lab�C�)] | C ∈ P ∧ lab�C� ∈ L�P�}
∪ {tc[C′, T c(lab�C′�)] | ∃C ∈ X : act�C� �= false

∧ suc�C� = lab�C′� ∧ C
′ ∈ P} .

As is classical in abstract interpretation [6], Fc�P� is for-
mally derived from F∗

ι �P�
4 by the commutation condition

p∗ ◦ tc[F∗
ι �P�T , T c] � Fc�P�p∗ ◦ tc[T , T c]. In practice, � is

not computable so we compute lfp
⊆

Fc�P� such that lfp
�

Fc�P�

� lfp
⊆

Fc�P� whence p∗ ◦ tc[lfp
⊆

F∗
ι �P�, T c] � lfp

⊆
Fc�P�. Since

the subject program is finite lfp
⊆

Fc�P� immediately leads
to an iterative constant propagation algorithm (where dead
code is also partially eliminated).

6.7 Correctness of Offline Syntactic Constant
Propagation

Finally, (9) implies that the semantics of program ac-
tions is unchanged by constant propagation which implies
αc

O(S∗
ι �tc�P, T c��) = αc

O(tc[S∗
ι �P�, T c]) whence the correct-

ness of syntactic constant propagation.

7. EXAMPLE 2: PARTIAL EVALUATION
It is now shown that online partial evaluation and binding

time analysis based offline partial evaluation [1, 13, 14, 15]
can be captured in the program transformation framework
introduced in Sec. 3. This is applied to the imperative lan-
guage of Sec. 4 which is similar to the one considered in [16,
Ch. 4]. It is shown that the widening operation [4, 7] can be
used in practice to enforce termination of the transforma-
tion expressed in fixpoint form which leads to a terminating
iterative algorithm. Moreover widenings offer a continuum
between online and offline partial evaluation as required in
mixline partial evaluation [16, p. 153].

7.1 Online Partial Evaluation
Applying the framework of Sec. 3.9, we understand par-

tial evaluation of a subject program (a syntactic transfor-
mation) as an abstract interpretation of a partial evaluation
of its semantics (a semantic transformation which is itself an
abstraction of the subject semantics). Following [16, p. 78],
“the idea of program point specialization is to incorporate
the values of the static variables into the control point” so
the set L of program labels is assumed to be of the form:

L
∆
= N× E

where N is the set of naturals and E is the set of environ-
ments. We assume that all labels in the subject program
belong to N× {�} (for short to N up to an isomorphism).

7.1.1 Semantic Online Partial Evaluation
We define the environment and the label of the command

of the first state in the non-empty trace σ respectively as
env[σ]

∆
= env[σ0] where env[〈ρ, C〉] ∆

= ρ and lab[σ]
∆
= lab[σ0]

where lab[〈ρ, C〉] ∆
= lab�C�. Similarly suc[〈ρ, C〉] ∆

= suc�C� and
act[〈ρ, C〉] ∆

= act�C�.
The partial evaluation of a set of non-empty traces T is

the partial evaluation of the traces σ in that set starting at a
given program label L0 for a given static environment ρ0:

αPE
on [T ]〈L0, ρ0〉 ∆

= {PEon[σ]〈L0, ρ0〉 | σ ∈ T ∧ lab[σ] = L0 ∧
ρ0 � env[σ]}

Observe that the semantic online partial evaluation is a func-
tional abstraction:
4 For short, this computation is not shown here. A similar one is
detailed in the following Sec. 7.1.4.
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po〈℘(D∗); ⊆〉 −−−−→←−−−−
αPE

on

γPE
on

po〈(L× E) �−−→ ℘(D∗); ⊆̇〉 (10)

The partial evaluation of a non-empty trace σ starting with
an environment ρ specifies the residual/specialized compu-
tation when knowing the given static values ρ0 � ρ (we write
〈|� L1, ρr|〉 ∆

= if � L1 = ł then ł else 〈� L1, ρr〉):

PEon[〈ρ, L0 : A →� L1;〉σ]〈L0, ρ0〉 ∆
= (11)

let 〈ρr, Ar〉 = R�A�ρ0 and L
′
0 = 〈L0, ρ0〉 in

let � L′1 = 〈|� L1, ρr|〉 in

〈ρ \ dom[ρ0], L
′
0 : Ar →� L′1;〉PEon[σ]〈� L1, ρr〉 .

We define PEon[σ]〈ł, ρ0〉 ∆
= �ε to handle stop commands and

PEon[�ε ]〈L0, ρ0〉 ∆
= �ε to cover the case of the empty trace.

7.1.2 Observational Abstraction
The observational abstraction of a set T ⊆ D∗ of traces

gets rid of those traces in T not starting at the given pro-
gram label L0 with the given static environment ρ0:

α
PE
O [T ]〈L0, ρ0〉 ∆

= {αPE
O [σ](ρ0) | σ ∈ T ∧ (σ �= �ε) ⇒

(lab[σ] = L0 ∧ ρ0 � env[σ])}

The observation αPE
O [σ](ρ0) of a trace σ records only the

value of dynamic variables (not in dom[ρ0]):

α
PE
O [�ε ](ρ0)

∆
= �ε,

α
PE
O [〈ρ, C〉σ](ρ0)

∆
= let 〈ρr, Ar〉 = R�act�C��ρ0 in

(ρ \ dom[ρ0]) · αPE
O [σ](ρr) .

By defining the concretization:

γ
PE
O [R]〈L0, ρ0〉 ∆

= {σ ∈ D∗ | (σ = �ε ∨ (lab[σ] = L0 ∧
ρ0 � env[σ])) ⇒ (αPE

O [σ](ρ0) ∈ R)},

we have the following observational abstraction (R∗ is the
set of finite sequences of environments):

po〈℘(D∗); ⊆〉 −−−−→←−−−−
αPE
O

γPE
O

po〈(L× E) �−−→ ℘(R∗); ⊆̇〉 .

7.1.3 Semantic and Performance Correctness of the
Semantic Transformation

The semantic correctness of the semantic partial evalua-
tion follows from the fact that the subject and specialized
semantics have the same observed environments up to static
variables:

α
PE
O [T ]〈L0, ρ0〉 = α

PE
O [αPE

on [T ]〈L0, ρ0〉]〈L0, ρ0〉

The performance correctness of partial evaluation can be
expressed by the performance abstraction introduced in Sec.
6.5 in that �[αPE

on [T ]〈L0, ρ0〉] ≤̇ �[T ].

7.1.4 Fixpoint Online Partial Evaluation Semantics

We now compute the abstraction by the online partial
evaluation abstraction αPE

on [T ]〈L0, ρ0〉 defined in Sec. 7.1.1
of the partial trace semantics S∗�P� expressed in the fixpoint
form lfp

⊆
F∗�P� of Sec. 4.5. We first establish the local com-

mutation property necessary for fixpoint transfer (1).

αPE
on [F∗�P�T ]〈L0, ρ0〉

= �def. F∗�P��

αPE
on [S�P� ∪ {ss′σ | s′ ∈ S�P�s ∧ s′σ ∈ T }]〈L0, ρ0〉

= �By (10) in Sec. 7.1.1 so that αPE
on is a complete

∪̇-join morphism�

αPE
on [S�P�]〈L0, ρ0〉 ∪

αPE
on [{ss′σ | s′ ∈ S�P�s ∧ s′σ ∈ T }]〈L0, ρ0〉

We consider the two terms separately. For the first term,
we have:

αPE
on [S�P�]〈L0, ρ0〉

= �def. αPE
on 〈L0, ρ0〉 and �ε �∈ S�P��

{PEon[σ]〈L0, ρ0〉 | σ ∈ S�P� ∧ lab[σ] = L0 ∧ ρ0 �
env[σ]}

= �def. S�P��

{PEon[〈ρ, L0 : A → � L1;〉]〈L0, ρ0〉 | ρ ∈ E�P� ∧
L0 : A →� L1; ∈ P ∧ ρ0 � ρ}

= �def. (11) of PEon[s]〈L0, ρ0〉�
{〈ρ\dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉 | ρ ∈ E�P�∧
ρ0 � ρ ∧ L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0}

For the second term, we have:

αPE
on [{ss′σ | s′ ∈ S�P�s ∧ s′σ ∈ T }]〈L0, ρ0〉

= �def. αPE
on 〈L0, ρ0〉�

{PEon[ss
′σ]〈L0, ρ0〉 | s′ ∈ S�P�s ∧ s′σ ∈ T ∧

lab[ss′σ] = L0 ∧ ρ0 � env[ss′σ]}
= �def. (11) of PEon[〈ρ, L0 : A →� L1;〉σ]〈L0, ρ0〉�

{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉
PEon[s

′σ]〈� L1, ρr〉 | s′ ∈ S�P�〈ρ, L0 : A →� L1;〉∧〈ρr,

Ar〉 = R�A�ρ0 ∧ s′σ ∈ T ∧ ρ0 � ρ}
= �letting s′ = 〈ρ′, C′〉, def. S�P�〈ρ, L0 : A →� L1;〉

in Sec. 4.4 and def. S�A�ρ so that ρ′ ∈ E�P� iff
ρ ∈ E�P��

{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉
PEon[〈ρ′, C′〉σ]〈� L1, ρr〉 | ρ ∈ E�P� ∧ ρ0 � ρ ∧
L0 : A → � L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0 ∧ ρ′ ∈
S�A�ρ ∧� L1 = lab�C′� ∧ 〈ρ′, C′〉σ ∈ T }

= �〈ρr, Ar〉 = R�A�ρ0 implies ρ′ ∈ S�A�ρ iff (ρ′ \
dom[ρr]) ∈ S�Ar�(ρ \ dom[ρ0]) and ρr � ρ′ as
observed in Sec. 5.4�

{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉
PEon[〈ρ′, C′〉σ]〈� L1, ρr〉 | ρ ∈ E�P� ∧ ρ0 � ρ ∧
L0 : A → � L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0 ∧ env[〈ρ′,

C
′〉σ] \ dom[ρr] ∈ S�Ar�ρ \ dom[ρ0]∧ lab[〈ρ′, C′〉σ] =

� L1 ∧ 〈ρ′, C′〉σ ∈ T ∧ ρr � env[〈ρ′, C′〉σ]}
= �letting σ′ = 〈ρ′, C′〉σ so that (env[σ′] \

dom[ρr]) = env[PEon[σ
′]〈� L1, ρr〉]�

{〈ρ\dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉PEon[σ
′]〈� L1,

ρr〉 | ρ ∈ E�P� ∧ ρ0 � ρ ∧ L0 : A → � L1; ∈ P ∧ 〈ρr,

Ar〉 = R�A�ρ0 ∧ env[PEon[σ
′]〈� L1, ρr〉] ∈ S�Ar�(ρ \

dom[ρ0]) ∧ lab[σ′] =� L1 ∧ σ′ ∈ T ∧ ρr � env[σ′]}
= �σ = PEon[σ

′]〈� L1, ρr〉 and def. αPE
on [T ]〈� L1, ρr〉

in Sec. 7.1.1�
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{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉σ | ρ ∈
E�P� ∧ ρ0 � ρ ∧ L0 : A → � L1; ∈ P ∧ 〈ρr,

Ar〉 = R�A�ρ0 ∧ env[σ] ∈ S�Ar�(ρ \ dom[ρ0]) ∧ σ ∈
αPE

on [T ]〈� L1, ρr〉}
Grouping the two terms together, we have:

αPE
on [F∗�P�T ]〈L0, ρ0〉

= {〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉σ | ρ ∈
E�P� ∧ ρ0 � ρ ∧ L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 =

R�A�ρ0 ∧ (σ = �ε ∨ env[σ] ∈ S�Ar�(ρ\dom[ρ0])∧σ ∈
αPE

on [T ]〈� L1, ρr〉)}
= FPE

on �P�[αPE
on [T ]]〈L0, ρ0〉

by defining (again, to avoid a particular case for stop com-
mands we assume, for short, that Tι〈ł, ρr〉 = �ε):

FPE
on �P� ∈ ((L× E) �−−→ ℘(D∗)) �−−→ ((L× E) �−−→ ℘(D∗))

FPE
on �P�[Tι]〈L0, ρ0〉 ∆

= {〈ρ \ dom[ρ0],

〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉σ | ρ ∈ E�P� ∧
ρ0 � ρ ∧ L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0 ∧ (σ = �ε ∨
env[σ] ∈ S�Ar�(ρ \ dom[ρ0]) ∧ σ ∈ Tι〈� L1, ρr〉)}

By (10), the above local commutation property αPE
on [F∗�P�T ]

= FPE
on �P�[αPE

on [T ]] and fixpoint transfer (1), we conclude that

αPE
on [S∗�P�] = αPE

on [lfp
⊆

F∗�P�] = lfp
⊆̇

FPE
on �P�.

7.1.5 Syntactic Source-to-Source Online Partial Eval-
uation

We now apply the semantics-to-syntax abstraction of Sec.
4.6 extended to

po〈(L×E) �−−→℘(D∗); ⊆̇〉 −−−→−→←−−−−−
ṗ∗

Ṡ
∗

po〈(L×E) �−−→P; �〉 (12)

where ṗ∗[Tι]〈L0, ρ0〉 ∆
= p∗[Tι〈L0, ρ0〉] and p∗ collects com-

mands along a set of partial traces as defined in Sec. 4.6.
The local semi-commutation property is computed for ⊆ as
an approximation to � (and similarly for fixpoints as in Sec.
6.6):

ṗ∗[FPE
on �P�[Tι]]〈L0, ρ0〉

= �def. ṗ∗�

p∗[FPE
on �P�[Tι]〈L0, ρ0〉]

= �def. FPE
on �P��

p∗[{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉σ | ρ ∈
E�P� ∧ ρ0 � ρ ∧ L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 =

R�A�ρ0 ∧ (σ = �ε ∨ env[σ] ∈ S�Ar�(ρ\dom[ρ0])∧σ ∈
Tι〈� L1, ρr〉)}]

⊆ �ignoring the values of dynamic variables in
ρ \ dom[ρ0]�

p∗[{〈ρ \ dom[ρ0], 〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;〉σ |
L0 : A → � L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0 ∧ σ ∈
{�ε} ∪ Tι〈� L1, ρr〉}]

= �def. p∗ in Sec. 4.6�⋃
{{〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;} ∪ p∗[Tι〈� L1, ρr〉] |

L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0}
= �def. ṗ∗�

⋃
{{〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;} ∪ ṗ∗[Tι]〈� L1, ρr〉 |

L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0}
= F

PE
on �P�[ṗ∗[Tι]]〈L0, ρ0〉

by defining (again, to avoid a particular case for stop com-
mands we assume, for short, that Tι〈ł, ρr〉 = ∅):
F

PE
on �P� ∈ ((L× E) �−−→ P) �−−→ ((L× E) �−−→ P)
F

PE
on �P�[Tι]〈L0, ρ0〉 ∆

=
⋃

{{〈L0, ρ0〉 : Ar → 〈|� L1, ρr|〉;}
∪ Tι〈� L1, ρr〉 | L0 : A →� L1; ∈ P ∧ 〈ρr, Ar〉 = R�A�ρ0} .

By (12), the above semi-commutation property ṗ∗[FPE
on �P�[Tι]]

⊆̇ FPE
on �P�[ṗ∗[Tι]] and fixpoint approximation (1), we con-

clude that ṗ∗[αPE
on [S∗�P�]] = ṗ∗[lfp

⊆̇
FPE

on �P�] ⊆̇ lfp
⊆̇
FPE

on �P�.
We can have a strict approximation since e.g. dead code
whose uselessness can be established only thanks to the dy-
namic variable cannot be discovered using the values of the
static variables and the program source only. Consequently
the correctness of this approximation must be established
by proving:

α
PE
O [S∗�P�] = α

PE
O [lfp

⊆̇
F

PE
on �P�] .

7.1.6 Online Partial Evaluation Semi-Algorithm
The definition of the source-to-source partial evaluation in

Sec. 7.1.5 is functional in that lfp
⊆̇
FPE

on �P� ∈ (L×E) �−−→P.
In practice, partial evaluation algorithms consider a given
specific value 〈L0, ρ0〉 of the initial argument only. The semi-

algorithm to compute (lfp
⊆̇
FPE

on �P�)〈L0, ρ0〉 follows from the
first-order chaotic iterations of [5] popularized as minimal
function graph [17]. We obtain the semi-algorithm of [16,
Fig. 4.6, p. 80] using a working list WL:

specialization(P, L0, ρ0) =
Q := ∅; WL := {〈L0, ρ0〉};
while WL contains an unmarked 〈L, ρ〉 do

mark 〈L, ρ〉;
forall L : A →� L1; ∈ P do

〈ρr, Ar〉 := R�A�ρ;
if � L1 �= ł then
WL := WL ∪ {〈� L1, ρr〉};
Q := Q ∪ {〈L, ρ〉 : Ar → 〈� L1, ρr〉;}

else
Q := Q ∪ {〈L, ρ〉 : Ar → ł;}

end end end;
return Q.

Figure 8: A simple online specialization algorithm

7.2 Online Partial Evaluation with Widening
specialization is a semi-algorithm since it operates on

an infinite complete lattice. As suggested in [5, 7], we can
enforce convergence using widenings � and compute:

lfp
⊆̇
λ Tι · λ 〈L, ρ〉 · Tι〈L, ρ〉 �1

F
PE
on �P�[λ 〈L′, ρ′〉 · Tι(〈L, ρ〉 �2 〈L′, ρ′〉)]〈L, ρ〉.

The first widening �1 is to avoid an infinite iteration for the
function body called with a given parameter (which is use-
less here since there are finitely many 〈L, ρ〉, L ∈ lab�P� for
a given ρ) and the second widening �2 is used to avoid in-
finitely many calls of the function with different parameters

187



(which is possible here, see an example in [16, p. 83]). The
notion of generalization in the partial evaluation literature
(see [16, p. 83]) is an example of �2.

A very simple form of widening consists in replacing WL
∪ {〈� L1, ρr〉} by WL � {〈� L1, ρr〉} in Fig. 8 and to use a
threshold n for the size of WL as in WL � {〈� L1, ρr〉} ∆

= if
|WL| < n then WL ∪ {〈� L1, ρr〉} else WL ∪ {〈� L1, �〉}. When
the threshold n is overrun, Q := Q ∪ {〈L, ρ〉 : Ar → 〈� L1,
ρr〉;} must be replaced by Q := Q ∪ {〈L, ρ〉 : Ar → � L1;}
(where � L1 is a shorthand for 〈� L1, �〉 so that a potentially
diverging specialization is cancelled over the threshold and
all subject commands syntactically reachable from � L1 in P

will be added to the specialized program Q) 5. Many al-
ternative widenings are considered or referenced in [16, Ch.
14]. Since the widening provides a � over-approximation its
observational correctness must be checked.

7.3 Binding Time Analysis
Binding time analysis (BTA for short) is used in offline

partial evaluation in order to determine which variables are
static at each program point. It is a static program anal-
ysis by abstract interpretation [16, Sec. 15.1.4], [28]. For-
mally, a pointwise division δ ∈ L �−−→ ℘(X) is a bind-
ing time information associating a set of static variables
to each program point [16, Sec. 4.9.1] 6. The meaning
γBTA〈L0, X0〉[δ] of a division δ is relative to a given ini-
tial program point L0 and a given corresponding set X0 of
variables which are assumed to be static. γBTA〈L0, X0〉[δ]
is the set of program execution traces σ for which, when
starting at program point lab[σ] = L0 with δ[L0] ⊆ X0, the
values env[σi+1]|δ[lab[σi+1]] of the static variables δ[lab[σi+1]]

at a given program lab[σi+1] can be statically computed in
terms of the values env[σi]|δ[lab[σi]]

of the static variables
δ[lab[σi]] at the predecessor program points lab[σi] only. If
〈ρr, Ar〉 = R�act[σi]�(env[σi]|δ[lab[σi]]

) is the specialization of
the action act[σi] of state σi to the static part env[σi]|δ[lab[σi]]

of the environment env[σi] of state σi then dom[ρr] is the
maximal set of static variables after executing the action of
state σi with static variables δ[lab[σi]] so the division should
provide a subset δ[lab[σi+1]] of this maximal set after execu-
tion of this action (δ = λ L·∅ being therefore always correct).
Formally:

γBTA〈L0, X0〉[δ] ∆
= {σ | (lab[σ] = L0) ⇒ (δ[L0] ⊆ X0 ∧

∀i ∈ [0, #σ − 1[: suc[σi] = lab[σi+1] ∧ 〈ρr, Ar〉 =

R�act[σi]�(env[σi]|δ[lab[σi]]
) ∧ δ[lab[σi+1]] ⊆ dom[ρr])} .

We have the abstraction:

po〈℘(D∗); ⊆〉 −−−−−→←−−−−−
αBTA

γBTA

po〈(L× X) �−−→ L �−−→ ℘(X); ⊇̇〉

We prefer to understand BTA as an abstraction of the pro-
gram semantics rather than of the online partial evaluation
semantics of Sec. 7.1.4 in order to be able to design an offline
partial evaluation semantics without having to first design
an online partial evaluation semantics (as in [2]).
5 Formally, the widening �2 is therefore on both Q and WL.
6 This set of static variables is often encoded by its characteristic
function as a map from the program variables to {S, D} where
S stands for “belongs to the set” (static) and D stands for “does
not belong to the set” (dynamic). It is very confusing to try to
understand S and D themselves as “abstract values” (see [16, p.
314]).

In the following we assume that a correct division δ[P] is
available for the program P, that is for all L0 ∈ L and all
X0 ⊆ X, S∗�P� ⊆ γBTA〈L0, X0〉[δ[P]]. In order to avoid a
particular case for stop commands, we extend δ ∈ L �−−→
℘(X) to δ ∈� L �−−→ ℘(X) by δ[ł]

∆
= ∅.

7.4 Offline Partial Evaluation
Offline partial evaluation [16, Ch. 7] uses a division δ

specifying which inputs are static and initial values ρ0|δ[L0]

of the static variables at the program entry point L0. It
considers only those execution traces σ starting at L0 with
values env[σ] of the variables which are those assumed for
the initial static variables (as specified by the condition
ρ0|δ[L0] � env[σ]):

αPE
off [δ, T ]〈L0, ρ0〉 ∆

= {PEoff[δ, σ]〈L0, ρ0〉 | σ ∈ T ∧ (σ �= �ε)

⇒ (lab[σ] = L0 ∧ ρ0|δ[L0] � env[σ])}

The partial evaluation of a trace computes static values and
specializes actions for dynamic values as in the case of online
partial evaluation (11) but for the fact that the considered
static values are only those specified by the division:

PEoff[δ, 〈ρ, L0 : A →� L1;〉σ]〈L0, ρ0〉 ∆
= (13)

let ρ′
0 = ρ0|δ[L0] and L

′
0 = 〈L0, ρ′

0〉 and 〈ρr, Ar〉 = R�A�ρ′
0

and ρ′
r = ρr|δ[� L1] and � L′1 = 〈� L1, ρ′

r〉 in

〈ρ \ δ[L0], L
′
0 : Ar →� L′1;〉PEoff[δ, σ]〈� L1, ρ′

r〉

(Note that by induction on the length of traces and cor-
rectness of the BTA, we have δ[L0] ⊆ dom[ρ0] and δ[� L1] ⊆
dom[ρr].) The design of the offline specialization algorithm is
then similar to that of online specialization as shown in Sec.
7.1.1. The resulting algorithm is therefore similar to Fig.
8 but for the fact that static environments (i.e. ρ0, ρ and
ρr) are restricted to the division specified by the preliminary
BTA (i.e. respectively ρ0|δ[L0], ρ|δ[L] and ρr|δ[� L1]).

7.5 Mixline Partial Evaluation
Widenings offer a continuum between online and offline

partial evaluation to achieve mixline partial evaluation. A
simple example would consist in using the online partial eval-
uator of Fig. 8 with a widening, as considered in Sec. 7.2,
but with a history-based one that computes for each label L1

a division δ[L1] which is initially var�P� and is progressively
restricted during the partial evaluation by cumulating the
intersection of the domains of all the static environments ρr

computed for that label L1. The specialization R�A� would
be restricted to that division δ[L1] as in the offline partial
evaluation of Sec. 7.4. With this widening, a BTA is per-
formed during the mixline partial evaluation.

8. EXAMPLE 3: STATIC PROGRAM MON-
ITORING

Program monitoring consists in restricting the possible
executions S∗

ι �P� of a program P ∈ P in order to enforce
a safety property. An example is the insertion of run-time
checks for checking errors such as division by zero and out of
bound array indexing. Another example is the enforcement
of security policies by modifying object code for a target
system before that system is executed so as to halt that
system whenever it is about to violate some security policy
of concern [10, 25]. This is similar to the idea of observers
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in synchronous programming, i.e. a program that observes
the behavior of the subject program and decides whether it
is correct [11].

8.1 Correctness of the Monitoring Transfor-
mation

Let M be the abstract specification of the program prop-
erty to be enforced. The semantics of the transformed pro-
gram tm

M �P� should, up to an observational abstraction αm
O ,

be a subset of the executions of P (so that tm
M �P� refines

P) and satisfy the abstract monitoring specification M . For-
mally, αm

O (S∗
ι �tm

M �P��) ⊆ αm
O (S∗

ι �P�)∩αm
O (γ(M)) (where equal-

ity is preferred since most precise and γ(M) is the semantic
meaning of the abstract specification M as defined below).

8.2 Observational Abstraction
We choose the abstraction αm

O to only observe the modi-
fications to the successive environments during execution of
P that is αm

O (T )
∆
= {αm

O (σ) | σ ∈ T } and for traces αm
O (�ε)

∆
=

�ε , αm
O (〈ρ, C〉〈ρ, C′〉σ)

∆
= αm

O (〈ρ, C′〉σ) and αm
O (〈ρ, C〉〈ρ′, C′〉σ)

∆
= ρ|var�P�α

m
O (〈ρ′, C′〉σ) when ρ �= ρ′.

8.3 Reference Monitor
We choose the abstract monitoring specification M to be

provided as a program M ∈ P called the reference monitor
(as usual in the particular context of security policy enforce-
ment [10, 25]), γ(M) being now its semantics S∗

ι �M�. (Any
other mean for specifying finite sequences, such as automata
[10, 25], grammars, safety temporal formula, etc. would do
as well for M and could be handled equally well in the frame-
work provided their semantics can be expressed in fixpoint
form). The subject program P is assumed to have its labels
in LP and its actions in AP so its execution traces belong to
D

∗�LP,AP� where D∗�L,A� is the set of finite partial execu-
tion traces with labels in L and actions in A. The reference
monitor M is assumed to have its labels in LM and its actions
in AP∪AM with AP∩AM = ∅ so its execution traces belong to
D

∗�LM,A�. Actions in AM are specific to the monitor while
actions in AP specify which actions of P are allowed (in prac-
tice one would prefer abstract actions in M designating a set
of concrete actions in P such as ¬A standing for all actions
in P but A).

8.4 Semantic Monitoring Transformation
The transformed program tm

M �P�, which incorporates both
the subject program P and the reference monitor M has its
labels in LP×LM (so L = LP ∪LM ∪ (LP×LM)) and its actions
in A = AP ∪ AM. A state 〈ρ, 〈L, L′〉 : A → 〈� L, � L′〉;〉 in a
transformed trace must have L = � L when A �∈ AP (in which
case the monitor M makes a step and the subject program
P makes no progress). To avoid a particular case for stop
commands, we set ł ∼= 〈ł,� L〉 ∼= 〈� L, ł〉. The set of such partial
execution traces is written D∗�LP×LM,A�. Intuitively, tm

M �P�
is equivalent to P but blocks when stopped by the reference
monitor M.

The projection of a trace σ ∈ D∗�LP×LM,A� according to
P and M is defined as (starting with the projection of states):

〈ρ, 〈L, L′〉 : A → 〈� L, � L′〉;〉�P

∆
= 〈ρ|var�P�, L : A →� L;〉, if A ∈ AP;

〈ρ, 〈L, L′〉 : A → 〈� L, � L′〉;〉�M

∆
= 〈ρ|var�M�, L

′ : A →� L′;〉;

�ε �P

∆
= �ε �M

∆
= �ε;

(sσ)�P

∆
= (s�P)(σ�P), if act[s] ∈ AP;
∆
= σ�P, if act[s] �∈ AP;

(sσ)�M

∆
= (s�M)(σ�M) .

The program monitoring semantic transformation can now
be defined as tm[TP, TM] ∆

= {σ ∈ D∗�LP × LM,A� | σ�P ∈ TP ∧
σ�M ∈ TM}. This is an abstraction po〈D∗�LP,AP� ×D∗�LM,A�;

⊆2〉 −−−−→←−−−−
tm

γtm

po〈D∗�LP × LM,A�; ⊆〉. Its correctness follows
from the fact that αm

O (tm[S∗
ι �P�, S

∗
ι �M�]) = αm

O (S∗
ι �P�)∩αm

O (S∗
ι �M�).

8.5 Monitored Fixpoint Semantics
The monitored semantics tm[S∗

ι �P�, S
∗
ι �M�] can now be ex-

pressed in fixpoint form. In order to use (1), the pair of
semantics of P and Q is first expressed in fixpoint form as

lfp
⊆2

λ 〈T , T ′〉 · 〈F∗
ι �P�T , F∗

ι �M�T ′〉. Then it is abstracted
by the monitoring semantic transformation tm as lfp

⊆
λT ·

Init∪Next(T ) where the term Init = {s1 . . . sn | n > 0∧∀i ∈
[1, n[: act[si] �∈ AP ∧ ∀i ∈ [1, n[: lab[si�P] = suc[si�P] =
lab[si+1�P]∧ act[sn] ∈ AP ∧ sn�P ∈ I�P�∧ s1�M ∈ I�M�∧∀i ∈
[2, n] : sn�M ∈ S�M�sn−1�M} corresponds to the initializa-
tion of the reference monitor M making its own computa-
tions before initializing the source program P and the term
Next(T ) = {σs1 . . . sn | σs1 ∈ T ∧ act[s1] ∈ AP ∧ ∀i ∈
[2, n[: act[i] �∈ AP ∧ act[sn] ∈ AP ∧ ∀i ∈ [1, n[: suc[si�P] =
lab[si+1�P] = suc[si+1�P] ∧ sn�P ∈ S�P�sn−1�P ∧ ∀i ∈ [1, n[:
si+1�M ∈ S�M�si�P} corresponds to a step of the source pro-
gram P controlled by several steps of the monitor M.

8.6 Iterative Sources-to-Source Monitoring
Transformation

The transformed monitored program tm
M �P� can now be

expressed in fixpoint form using the semantics-to-syntax ab-
straction p∗ defined in Sec. 4.6. Solving the fixpoint equa-
tion by chaotic iterations, we get the iterative transforma-
tion algorithm of Fig. 9. The algorithm is simpler than the

monitoring(P, L�P�, M, L�M�) =
Q := ∅; WL := {〈L, L′〉 | L ∈ L�P� ∧ L′ ∈ L�M�};
while WL contains an unmarked pair 〈L, L′〉 � ł do

mark 〈L, L′〉 in WL;
forall L : A →� L; ∈ P and L′ : A′ →� L′; ∈ M do

if A = A′ then — step A in source and monitor
Q := Q ∪ {〈L, L′〉 : A → 〈� L, � L′〉;};
WL := WL ∪ {〈� L, � L′〉}

elsif A′ �∈ AP then — control step A′ in monitor
Q := Q ∪ {〈L, L′〉 : A′ → 〈L, � L′〉;};
WL := WL ∪ {〈L, � L′〉}

end end end;
return Q.

Figure 9: A simple program monitoring algorithm

copying and simplification of the reference monitor automa-
ton at each program point in [10].

8.7 Program Proof by Transformation
Finally, program monitoring can be used as a proof method.

If the semantics of the transformed program tm
M �P� (maybe

after static analysis and optimization) is empty (e.g. when
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tm
M �P� itself is empty), the program P does not satisfy the

specification M. An example is the contrapositive automata-
theoretic based model-checking [27].

When the observational abstraction of the semantics of
the subject and transformed programs P and tm

M �P� are equal
(e.g. when, maybe after further optimizations such as partial
evaluation, P and tm

M �P� are isomorphic up to label renam-
ing), then P does satisfy the specification M. An example is
the introduction of run-time tests in programs and their sub-
sequent elimination by program analysis [4]. Another exam-
ple is that of observers in synchronous programming where
the verification consists in checking, by traversing the finite
automaton built by the compiler, that the parallel compo-
sition of the subject program and its observer never causes
the observer to complain [11].

This method of proving program properties by program
transformation remains to be fully explored.

9. CONCLUSION
We have shown that program transformation can be for-

malized within abstract interpretation theory. This leads
to a new construction of program transformations as syn-
tactic approximations of provably correct semantic trans-
formations. This has been applied to the simple case of con-
stant propagation, to online and offline partial evaluation
which is certainly the most widely applicable and practical
classical program transformation and to program monitor-
ing (such as security policy enforcement). The framework
unifies the static analysis and transformation of programs
within solid semantic foundations. For offline transforma-
tion we use a specification of the static analysis algorithm
as an abstraction of the program semantics thus making the
transformation correctness proof independent of the partic-
ular static program analysis algorithm which is used. By
using widening techniques as well as abstract domain com-
bination techniques this leads to formal methods for com-
bining static analyses and transformations more intimately.
Although illustated on a low level imperative language, the
formalization is language independent. It is indeed applica-
ble to any computational process, for example to database
search. Our formalization of program transformation by ab-
stract interpretation makes very few hypotheses on the con-
sidered transformations and programming languages (only
required to have some well-defined operational semantics)
so that the model should be of very general scope.
Acknowledgments: B. Blanchet, J. Feret, N. Jones, F.
Logozzo, L. Mauborgne, A. Miné & X. Rival for comments.
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