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Abstract. The abstract interpretation framework based upon the approxi-
mation of a fixpoint collecting semantics using Galois connections and widen-
ing/narrowing operators on complete lattices [CC77a, CC79b] has been con-
sidered difficult to apply to Mycroft’s strictness analysis [Myc80, Myc81]
for which denotational semantics was though to be more adequate (because
non-termination has to be taken into account), see e.g. [AH87], page 25.

Considering a non-deterministic first-order language, we show, contrary to
expectation, and using the classical Galois connection-based framework, that
Mycroft strictness analysis algorithm is the abstract interpretation of a rela-
tional semantics (a big-steps operational semantics including non-termination
which can be defined in G*°SOS either in rule-based or fixpoint style by in-
duction on the syntax of programs [CC92])

An improved version of Johnsson’s algorithm [Joh81] is obtained by a
subsequent dependence-free abstraction of Mycroft’s dependence-sensitive
method.

Finally, a compromise between the precision of dependence-sensitive al-
gorithms and the efficiency of dependence-free algorithms is suggested using
widening operators.

Keywords: Abstract interpretation; Relational semantics; Strictness anal-
ysis; Galois connection; Dependence-free and dependence-sensitive analysis;
Widening.

Abstract interpretation [CCT77a, CCT9b] is a method for designing approximate se-
mantics of programs which can be used to gather information about programs in
order to provide safe answers to questions about their run-time behaviours. These
semantics can be used to design manual proof methods or to specify automatic pro-
gram analyzers. When the semantic analysis of programs is to be automated, the
answers can only be partial or approximate (that is correct/safe/sound but incom-
plete) since questions such as termination for all input data are undecidable.

By considering that non-terminating and erroneous behaviors are equivalent, call-
by-need can be replaced by call-by-value in functional programs either whenever the
actual argument 1s always evaluated at least once in the function body or upon the
later recursive calls (so that if the evaluation of the actual argument does not termi-
nate or is erroneous then so does the function call) or whenever the function call does
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not terminate or is erroneous (whether the actual argument is evaluated or not). Alan
Mycroft’s strictness analysis [Myc80, Myc81] is an abstract interpretation designed
to recognize these situations. Observe the importance of taking non-termination L
into account: left-to-right addition is strict in its second argument since it does not
terminate either when evaluation of its first argument i1s guaranteed not to termi-
nate (in which case the second argument is not needed) or the evaluation of its first
argument does terminate but that of the second does not. In the classical definition
of strictness, errors {2 must also be identified with non-termination L. Otherwise
left-to-right addition would not be strict in its second argument since true + 1 =
(1/0)+ L = 9.
Given a recursive function declaration f(z,y) = e, Alan Mycroft has designed

an abstract function f¥(x,y) = ! on the abstract domain {0, 1} such that:
if £4(0,6) = 0 for b € {0,1} then f is strict in z;
if f(a,0) = 0 for a € {0,1} then f is strict in y;
if f1(1,1) = 0 then f never terminates;
if f'(a,b) =1 for a,b € {0,1} then the abstraction is too approximate and no
conclusion can be drawn.
The abstract value e! of an expression e is determined as follows:

— If the expression e is reduced to a constant k then its abstract value ef is 1 which
is the best possible approximation to the fact that it is an integer.
If the expression e is reduced to a formal parameter x then its evaluation is erro-
neous or does not terminate if and only if the evaluation of the actual argument
is erroneous or does not terminate so that its abstract value ef is 2 which denotes
the value of the abstract actual argument.
If the expression e is a basic operation such as e; + ey (always needing its two
arguments e; and es) and the abstract values en1 and eﬁ2 of expressions e; and e,
are obtained recursively, then (e; + es)f = (62 A eﬁz) where (0A0) = (0A1) =
(1A0) =0 and (1 A1) =1 since the evaluation of e; + es is erroneous or does
not terminate when that of e; or that of e; is erroneous or does not terminate,
which we conclude from eﬁ1 =0or eﬁ2 =0.
The evaluation of a conditional e = (e; — es, e3) is erroneous or does not
terminate when the evaluation of the condition e; is erroneous (for example non-
boolean) or does not terminate so that e} = 0 implies e! = 0. If the evaluation
of the condition e; terminates and the returned boolean value is unknown (so
that eﬁ1 = 1), then erroneous termination or non-termination of e is guaranteed
only if those of both ey and e are guaranteed so that ¢! = 0 only if eﬁ2 =0 and
eg = 0. Therefore ¢! can be defined as (e% A (eﬁ2 \Y eg)) where (0 VvV 0) = 0 and
(Ovl)=(1vo)y=(1vl) =1
For the traditional addition example:

f(x, )=(x=0)—y, 1 + £f(x -1, y)))
we have:
lay) = @A) A(yV (LA fiz A Ly)))
After simplifications (such as (x Al) = (1 Az) =2, (t A0) = (0A ) =0, etc.), we
get:
e y) =N (yV iz, y))
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so that:
F10,0)=0 FHL,0) = f1(1,0) fH0,1)=0 Ay =1

Constraint f#(0,1) = 0 shows that f is strict in its first parameter. Constraint
FH(1,0) = £4(1,0) is satisfied by f#(1,0) = 0 proving that f is also strict in its
second parameter. It is also satisfied by f#(1,0) = 1 which states that the call may
terminate or not, which is compatible with but less precise than f#(1,0) = 0 stating
that the call is erroneous or does not terminate.

Myecroft’s strictness analysis is dependence-sensitive® in that for example we
might have f#(0,0) = 0 whereas f#(0,1) = 1 and f*(1,0) = 1 so that f is jointly
strict in 1ts two parameters without being strict in any of them. Thomas Johnsson
[Joh81], followed by John Hugues [Hug88], proposed a dependence-free strictness
analysis method that would not discover this property. However it 1s more efficient
and can discover useful information when no dependence relationship between pa-
rameters is needed. For the above addition example, the equations:

[Elx)(x) = @ FEiyy) =y Vv FEyly)

are such that f*[x](0) = 0 and f*[y](0) = 0 proving that f is strict in its two
parameters.

The purpose of abstract interpretation is to prove the safeness of such program
analysis methods with respect to a semantics, or better to formally design them by
approximation of the semantics of programs.

1 Principles of Abstract Interpretation

Abstract interpretation, when reduced to its basic principles introduced in [CC77a],
can be understood as the approximation of a collecting semantics®.

— The collecting semantics collects a class of properties of interest about a program®.

[
It is assumed to be defined as the least fixpoint Ifp F' of a monotonic operator F'
where the set of concrete properties:

F(C, L, T, U, M) is a complete lattice. (1)

C 1is called the computational ordering. The definition of the operator F' is by struc-
tural induction on the syntax of the program. F' is assumed to be monotonic® (but,

® In order to later avoid the confusion between “relational semantics” and “relational
analysis” in the sense of S.S. Muchnick and N.D. Jones [JM81], we use “dependence-
sensitive” for “relational” and “dependence-free” for “independent attribute” analysis.

* introduced in [CC77a] under the name static semantics, and renamed “collecting” by F.
Nielson.

® invariance properties in [CC77a).

6 § ™5 T denotes the set of total functions ¢ € S +— T on posets S(C) and T'(<) which
are monotonic, that is, Ve,y € S:x C y = px < ¢y.
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for simplicity, could be assumed to be continuous”#):

FeFZEF (2)
Proposition 1 Tarski’s fixpoint theorem [CC79a]. Let O be the class of ordinals®.

Define FD(X) =X, FHI(X) = F(FA (X)) for successor ordinals A+ 1 and FA(X)
= U Fﬂ(X) for limit ordinals A. (1) and (2) imply that the transfinite iteration
B<A

sequence F}(J_), A € O s well-defined, ncreasing for C and ultimately stationary
(FecO:YA>e: F (L) = F (L)) Its limit:

c
p, F = Ueo F (L) (3)
s the least fizpoint of F' for C. In particular of FF € F <L F s continuous then:
C n
p F = Uen F"(L) (4)

— Since the collecting semantics is not effectively computable and sometimes not
even computer representable, approximations must be considered. The notion of
approximation is formalized using an approzimation relation: ¢ < ¢ means that
property ¢ safely approximates . To effectively compute such an approximation
of Ifp  F', we replace concrete properties in F by more crude abstract properties in
a well-chosen set F'. Concrete properties ¢ € F and abstract properties ¢! € F?
should be related by a “semantic function” v € F! +— F. The idea is then to mimic
the computation of lprE_F = IJ)\E@FA(J_) within F! as I_Iﬁ)\E@FﬁA(J_u) by defining
1t F' and U!, such that:

L <y(Lh (5)

for all ¢ € F and ¢! € FI:
p <7(F) = Flp) <y(F(eh)) (6)
and for all {¢, |3 € O} C F, {d)ﬁ | 3 € 0} C F' and all limit ordinals A (w only if

F' is continuous):

IN

' . , f Y
(Y8 <8 <29, Cow A, <7(6h) = N 7(ﬁ|—<|>\¢5) (7)
We get a fixpoint approximation method:
C i
lprFS’Y(I—l Ae0 FHA(J-ﬁ)) (8)

TIf lim € p(P)— P then a mapping ¢ € P — P is said to be a complete lim-morphism,
written ¢ € P 'h_m> P, (respectively lim-upper-continuous, lim-lower-continuous) if
lim{p(z) | + € X} = ¢(lim{s | ¢ € X}) for all X C P (respectively increasing and
decreasing chains X C P) when the limits are well-defined. For short, it is continuous if
L-upper-continuous.

=3

Continuity would require the non-determinism of the primitives of the functional lan-

guage considered in section 2 to be bounded.

Ordinals constitute an extension into the infinite of the order properties of the naturals

numbers: 0,1, 2, ..., w,w+1,w+2, ..., w2, w2+1, w2+2, ..., w2, o, w?
o

w® , ...where successor ordinals have the form A + 1, A € O and limit ordinals are of
the form w.A, A € O — {0} and w is the least upper bound of the naturals.

3 ey



102

Proposition 2 Fixpoint approximation. (1), (2}, (5), (6) and (7) imply (8).
— It is often the case that the approximation relation is a partial ordering:
< is a partial order on F (9)

Then, we can consider an abstract version <! on F! of the concrete approximation
ordering < on F:10

<! is a partial order on F! (10)

The abstract approximation ordering approximates the concrete one, hence the se-
mantic function v is monotonic:

yeFteslr (11)

An interesting situation is when all concrete properties ¢ € F have a best corre-
sponding approximation a(p) € F' where a € F + F*. Since a(yp) is an approxi-
mation that correctly describes ¢, we have:

Ve € F o <y(aly)) (12)
and since 1t 1s the most precise one, we also have:
Vo € F Vol € Flip <v(¢") = a(p) <! ¢ (13)

(9) and (10) imply that (11), (12) and (13) are equivalent to the characteristic
property of Galois connections written:

F(S) == FUSH) B Vo e FiWol € Flip <9(00) & alp) <o (14)
As suggested in [CCT7¢], a Galois connection can be lifted to higher-order functional
spaces for the pointwise ordering:

< 6tV p(a) < 6(2) (15)
as follows:
Proposition 3 Functional Galois connection. (9), (10), (14) for {ag, vo) and
(a1, 11) and (15) for < and <* imply:
)\W"yloi/ooij

m <
Fo — f1(<) | ——
- APsay0Poryg

Fh et Fi <t (16)

—  When no abstract property is useless, that is the abstraction function « is sur-
jective or equivalently « o 7 is the identity, we have a Galois surjection written:

F(S) == FUL) 2 F(Q) == AU AVeeF iaon(9) =0 (IT)

Corollary 4 Functional Galois connection. (9), (10), (14) for (a1, 1), (17)
for (ag, 7o) and (15) for < and <V imply:

def

AW eyi0¥oag

Fo =5 Fi(<) P aiodor, Fy— Fl(<h) (18)

Corollary 5 Functional Galois surjection. (9), (10), (17) for {ao, 7o) and (a1,
y1) and (15) for < and <* imply:

Fo B5 Fi (<) N g ml oty (19)
=/ AFeajodoyy 0 1A=

10 We can always define ' <! ¢# Lt (") < v(¢*) and reason on the equivalence classes
]:Ii/Eﬁ where ¢! =t ¢! det el <t gl A gl <t ol
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— Proposition 3 and corollary 5 lead to the hypothesis that approximations are
preserved by the semantic function F":

FeF22F (20)

Then, by defining L*, F* and U! such that:
1 >ha(l) (21)
Ft>VaoFony (22)

and for all {¢, |3 € O} CF, {8} |68 e 0} CF!and all limit ordinals A (w only if

F is continuous):
/ . , Y PP gl
(vB<# <XigaComnaten) <tol) = a(Ue) < Lol @
we obtain the following fixpoint approximation method:
Proposition 6 Fixpoint approximation. (1), (2), (9), (10), (14), (15), (20),
(21), (22) and (23) imply (8).

— If the computational ordering has an abstract correspondent:

FHCH, LF T Uf Nt is a complete lattice. (24)
such that:
F(D) = F(Ch (25)
then we can characterize L' and U!, as follows:
1P =a(l) (26)

L reo ¢! = Of(l—lAE(D 7(903)) (27)
Lemma 7. (1), (24) and (25) imply (26) and (27).

If the abstract computational and approximation orderings coincide then we can
simplify hypothesis (23) as follows:

Lemma8. (1), (24), (25) and <} = C* imply (23).
Corollary 9 Fixpoint approximation. (1), (2), (9), (10), (14), (15), (20), (22),
(24), (25) and <t = C imply (5),

2 Syntax and Relational Semantics of a First-order
Functional Language

2.1 Syntax

In order to simplify the manipulation of tuples of parameters, we understand a
tuple (e1, ..., €, ..., ey) of actual arguments corresponding to formal parameters
(v1,...,0i,...,0,) as avector €. This vector € is a notation for a special kind of func-
tions from its domain Dom & = {vy,...,v;,...,v,} into the set of expressions such
that €[v;] = e;. The domain of € is left implicit in the notation (e1,...,¢e;,...,€p)
but can be obtained from the syntactic context. The correspondence between wv;
and e; i1s given as usual by a positional notation so that each v; and e; has a
rank rk(v;) = rk(e;) = i. We write v ¢ € for v € Dom € so that & = [], . €[v].
For uniformity, we also use a vector notation ¢ for the tuple of formal parameters
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(v1,..., 0, ...,0,) with the convention that v; = ¥[v;]. Finally, the same notation is
used for functions, so that a program consists of function declarations fv'= F', also

written: .
IL, /7= Fin

where the body ﬁ[f] of function f is an expression e depending upon the formal
parameters v « ¥ and containing recursive calls to the functions f ¢ f. This expression

e is written accordmg to the following syntax!!:
=k constant
| v variable
| b€ basic operation
| fé function call
| (e1 — €2, e3) conditional
7 = (v1,...,v,)  tuple of formal parameters
€ n=(e1,...,e,)  tuple of actual arguments

2.2 Semantic Domains

Computed values belong to a given set T* containing the booleans {tt, ff} and other
basic values such as natural numbers IN, integers Z, reals IR, etc. We use 2 ¢ 7 to
denote run-time errors and L € 7" to denote non-termination. Therefore saying that
an expression has value {2 means that its evaluation terminates by the production
of an error message. Saying that its value is L means that its evaluation does not
terminate. We define ¥? =7 U {2}, 7, £ T U {J_} and T2 =T U {.Q 1}. Values
v taken by a variable v belong to D* and values 7/ taken by a tuple ¥ of variables
belong to D12,
D= d:d Tf ,ZS% d:‘5f va’)’pm

Using {2 to denote run-time errors and L to denote non-termination, we can always
consider total functions over T corresponding to partial functions over 7. Contrary
to a common practice in denotational semantics, which is explained and followed
by [Mos90] (see page 599), we avoid representing errors by L since we want to dis-
criminate finite against infinite executions'3. The relational semantics of a function
declaration fi/ = e is a relation f* € F*® where:

F* £ o(D* x D)
We write f(7) ~ v for (7, v} € f* which means that the call of function f with
actual arguments having values 7 may return the result v. If this call may terminate

! Expressions e and tuples & of expressions have an attribute e.# (resp. €.%) which is the
list of visible parameters and an attribute e.d (resp. €.9) which is the set of headings
f¥ of the visible functions f which can occur free in the expression. Tuples of variables
¥ (respectively tuples of expressions €) have a domain attribute Dom @ (resp. Dom &)
which is the set of variables occurring in the tuple (resp. the set of formal parameters
corresponding to each expression in the tuple).

12 B* ig a shorthand for 'Z_)'E]'e = HvGDom 7

1% More refinement of £2 might be useful. For example we could differentiate the class of
run-time failures due to a type error (using “wrong” as in [Mil78] for the value 1/tt) from
those due to partially defined well-typed functions (such as 1/0). Each kind of error might
even be described by a different error value (corresponding to different error messages).

D™ where 7 is left context-dependent.
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erroneously then f(7) ~ §2 whereas f(7) ~ L indicates that nontermination is
possible. The relational semantics f* of a program erf‘fﬁ' = F[f] (where the

expression ﬁ[f] is the body of function f) is a tuple of functions belonging to F*

ﬁm def H F®
fef

An expression e can be evaluated when the relational semantics ¢ of the functions
fand the value 7 of the variables ¥ which may occur free in e are known. We write
@,V F e~ v to mean that evaluation of e in environment @, 7 may return v. In
particular this evaluation returns an error if v = §2 and does not terminate when
v = L. Therefore the relational semantics e® of the expression e belongs to £*1%:

£r L PR (D x D)

whereas the relational semantics €* of a tuple of expressions € belongs to Erld;

g LS o(DY x D7)

2.3 Rule-based Presentation of the Relational Semantics

We now present the relational semantics of expressions, by induction on their syntax
and then the semantics of programs. We use the technique of bi-inductive definitions
introduced in [CC92], but resort only to the intuitive understanding of the reader.
fm, V' F e ~ v means that evaluation of expression e may return value v in the
evaluation environment specified by j?%, giving the relational semantics j?% [f] of the
functions f used in e, and ¥ giving the value ¥[v] of the variables v which can occur
free in e.

—  We assume that the value k € T of the constant k is given. Therefore:

Rt k~k o+ (28)
Such a positive axiom schema j?*, UV F e~ v+, marked “+”, describes finite behav-
iors in F* — p(D* x T?) that is terminating or erroneous evaluations of expression
e for all possible values of f*, ¥ and v.
— A formal parameter v denotes the value of the corresponding actual parameter
which is stored in 7[v]:

A ibrv~dpl+  if Plu] €T? (29)
If the evaluation of the actual parameter does not terminate, which is formally
represented by the fact that 7[v] = L, and the corresponding formal parameter v is
used, then this use leads to a non-terminating evaluation:

fRibv~Ll- ifPp]=L1 (30)

Such a negative axiom schema, marked “-”, describes infinite behaviors in F*
(D™ x {L1}) that is non-terminating computations for all possible values of f*, 7
and v satisfying the side condition 7#[v] = 115,

1% Once again, e and € is left context-dependent so as to avoid the precise but heavy notation
g=(mo((m »)o))eto((m )« (11 )
fvee.o v€EDom T vEE. T vEDom &
!5 here all non-terminating computations deliver L but in lazy langnages they might also
result in infinite data structures.
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— The evaluation of a tuple € of actual parameters consists in evaluating each
parameter €[v], v ¢ €. This evaluation does not terminate if the evaluation of at
least one component does not terminate. Else the evaluation of the tuple € of actual
parameters is terminating or erroneous:

Vveé':f_’%,ﬁl—é'[v]fwﬁ’[v]

= + fYvee : P v]eT?
2 ike~p

- ifdwed V] =L

—  We assume that the relational semantics of each basic operation b is specified by
a total relation b® € IP(T? x T?) 15 (or a function b € T2 +— T if the language is
deterministic, in which case b* = {(#, (7)) | 7 € T2}). We write b(7) ~ v for (i,
v) € b*.

Ezample 1. o The integer addition is strict in its two parameters and is defined only
ef

for integers so that plus(v, V') = (w=1lvv =10)—= L (vEgZVV ¢ Z) —

2, (v+ ")) where + denotes the usual mathematical addition.

e For McCarthy’s conjunction, we would have cand(v, V') = (v = L — L, (v =

ff = ff, (v =ttt = ((¢ € {L, tt, T} — V', 2)), £2)). Observe that the first parameter
is passed by value since evaluation of the conjunction does not terminate as soon as
this first parameter does not terminate whereas the second is passed by need, and
used only if the first is tt.
e For the unbounded random assignment ‘7’ which does not need its argument,
we have ?(v) ~ n if and only if n € IN.
e For the bounded random assignment, we have:

v, V)~ L iff (v=L)v (/' =1),

v, V)~ 02 iff wel?-Z)v(V eT?—-Z)Vv

(veZNV eZny >V,
v, V) ~z ff WeZANV eZNv<z<V). a

The value of be" is obtained by applying b to the value of the arguments & (which
may be {2 or L without preventing the result to be in 7 when the argument is not

needed):

- + frer”?
fRUEbBE ~ v

— The evaluation of the conditional (e; — es, e3) does not terminate when the
evaluation of the condition e; does not terminate:
fm, 17 l_ €1 ™ 1

f%,ljl_(el—>62, 63)’\/->L_

16 We define the set IP(S x T') of total binary relations on S x T as {p € p(S x T) | Vs €
S:3teT: (s, t) € p} sothat p € IP(S x T) implies that for every s € S there exists at
least one t € T such that the pair (s, t) belongs to p.
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The evaluation of the conditional (e; — es, e3) terminates with an error when the
evaluation of the condition e; terminates without returning a boolean:

—

fBPFer~v A VET“—{tt,ﬂ}+
f%,ﬁ l_ (61 — €9, 63)’\/? Q
If the evaluation of the condition e; returns a boolean b, then the value of the

conditional (e; — eq, e3) is that of e if b is true and that of e3 if b is false, including
the run-time error and non-termination cases:

f’m,ﬁl—elf\»tt A f"%,ﬁl—ezvy

= ifver?
R0k (e1 — ea, e3)~v
f%,ﬁkelvtt A f‘%,ljf_ez’\#J_
f%,ﬁl‘(el—>62, 63)'\/->L
f .7 ff A f? 0+ ,
f vV €1~~~ f vV €3~V lfI/ETQ

j?%,ﬁl—(el — ey, e3) >V

[P iber~T A 2 0Fes~ L
f* 0k (1 — €2, e3)~ L
The relational semantics of the function call fé" can be defined knowing the value
v of the free variables ¢ which may appear within € and the relational semantics
J® = [®[f] of the function f ¢ f of the program erf‘fUE F[f]. f* specifies a set
of arguments-result pairs f(7') ~ v. The call f& may return value v if, given the
value 7' of the actual parameters &, the function f may return that value v, that is
f(7") ~ v. Therefore, we have:
fRORE~T A f(7)~v
[0k fe~v
2 GE &~ A (D L
Lol P AT, (32
fRvEfé~ L
Observe that in an effective implementation of the above rules (31) and (32), pa-
rameters must be passed by need since a non-terminating actual parameter é[v],
such that 7/[v] = L, will actually affects the computation only if the corresponding

+ frer”? (31)

formal parameter v is needed in the body ﬁ[f] of function f according to rules (29)
and (30). Moreover call-by-name would be inadequate since the effective parameters
are evaluated only once. However this kind of implementation detail is omitted in
the mathematical description of the relational semantics where the behaviours of
the actual parameters, including the non-terminating ones, can be described prior
to describing the behaviour of the function call.

— The relational semantics ]E'EiE of a program qu;fﬁ = ﬁ[f] specifies that a call

of function f consists in evaluating the function body ﬁ[f] with formal parameters
bound to their actual values:

v ifrer? (33)

- (34)
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These rules are inductive since recursive function calls may occur in function bodies.
For the positive rule (33), this is an induction of the length of the computations: the
computations for the recursive calls, are included in the computation of the main
call, hence shorter. The basis of this induction is given by the axioms (28) and (29)
which involve a single step computation. This reasoning is no longer valid for non-
terminating calls, that is in the negative rule (34), since the main and recursive sub-
calls all involve infinite computations. Hence the induction involved in the negative
rules should be understood quite differently. One must imagine that the basis is
given by all infinite computations f(#) ~ L and that the rule eliminates those which
cannot be obtained by an evaluation of the function body f[f] where recursive calls
must correspond to non-terminating calls which are not yet eliminated. Repeating
this process ad infinitum, only the non-terminating behaviours will be left out.

Fzample 2. Let us consider f(x) = (x =0 — 1, £f(x — 1)). Starting with the basis
 ={f(n) ~ L | n e Z?} and applying the above rules to the function body
we derive that f(£2) ~ £2, f(0) ~ 1 and f(n) ~ L if n € Z, — {0} so that, by
elimination of the impossible infinite behaviour, we get f* = {(£2, £2), (0, 1)} U{(n,
1) |n € Z,—{0}}. Repeating this process, we discover that f(1) calls f(0) which has
no infinite behaviour so that the non-termination of f(1) is impossible. The second
approximation of f* is now {(2, 2)}U{(n, 1) |0 <n < 1}U{{n, L) | Z,.—{0,1}}.
After ¢ repetitions of this elimination process we get f* = {{£2, 2)} U {{n, 1} |0 <
n<iyU{(n, L) |Z,—{0,...,i—1}} so that passing to the limit we conclude that
=2, 2 u{{n, H|0<n}tU{{n, L) [ n<O0Vn=_1} O
More generally, such bi-inductive definitions can be given a precise meaning as spec-
ifications of fixpoints of monotone operators on complete lattices [CC92] which we
now illustrate for the relational semantics.

2.4 Fixpoint Presentation of the Relational Semantics

In order to capture the idea that terminating evaluations of recursive functions are
obtained inductively by construction from the terminating evaluation of recursive
calls while non-terminating evaluations are obtained destructively by elimination of
inaccessible recursive calls, let us introduce the partial order C* on F* together
with the corresponding least upper bound and greatest lower bound defined by:
1® 7o {1) (
T Lo re (
pC ¢ Z (pNTHC(ENTY) A (pN L") D (¢ N LY (
Wea®i = UiealpiNT®) U Nigalps N L*) (

Mea®i = Niealpi N T®) U Uealps N L)Y
FRE®, L® T® U™ M*) is a complete lattice. The pointwise extension to tuples of
relations F%(E%, R I:l'%, IZI'%) is also a complete lattice. Therefore we can define
the relational semantics f* of the program erf‘f{f = F[f] (where the body F[f]

of function f f is an expression) as the least fixpoint of a monotonic operator

1T This is for A # 0. As usual, U®0 = 1L® and NM*p = T,
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F* on this complete lattice F= (thus avoiding the difficulties resulting from the

~ .
non-existence of arbitrary upper bounds in cpos). This operator F* € F* B

corresponds to rule schemata (33) and (34) !8:
P de c” - = e - = -
2= F* 2 G [ 7 FUPIR] (39)

The operator ﬁ[f]§Ie c F* = F* 1s defined by induction on the syntax of the

expression f[f] constituting the body of function f according to the axiom and rule
schemata (28) to (34)!°:

K*[E] = ({7, k) | 7 € D7) (40)
v[F] E {7, F[v)) | 7 € D7} (41)
e*[g] = {7, ) |V & (7, 7)) € E]*[F]} (42)
be*[g] = e*[F] 0 b (43)
(e1 — €2, e3)*[¢] = {(#, L) | (7, L) € 7 [P} (44)
U {7, 2y | Fv e —{tt, fi}: (7, v) € eT[Z]}
U {7, v) | (7, tt) € e} [F] A (7, v) € e3[FT}
U {7, v) | (7, ) € F[B] A (7, v) € 5[]}
FErE] £ e8] glf) (45)

Ezample 3. For the program:
f(x)=x=0—0, (x<0—=1£(7(0)), £(x - 1)))

where {()} is the unit type and ?2(()) returns any nonnegative integer (so that the
nondeterminism is unbounded) the equation is:

FAAI8] = {(L, L), (2, 2),40, 00} U{(x, ) |« <OATn>0:(n, y) € F[/1}
U{{z, y) |2 >0A(z—1,y) € F[f]}
The transfinite iterates ¢ = ﬁ%[f]A(J_%) are:
o = 1% =7 x {1}
P = (L, 1),(€2, 92),00, 0} U{{e, L) | # 0}
o = {(L, L), (2, Q3u{{z, 0) |e <2} U{(z, L) |z <0Vae>2}

e ={(L, LY {(2, D} U{{z,0) |z <ntU{{z, L)|z<0Vae>n}

p = {(L, 1),(2, DU {(x, 0) |z € Z}U {{z, L) |2 <0}

w1

14 :{<J-’ J—>’<9’ Q)}U{(l‘, 0> |l‘EZ}
w42 w1
4 =
proving that the program returns 0 for all integer parameters. a

18 lfpfgﬂ is the least fixpoint of ¢ greater than or equal to & for partial ordering <.
1% The composition p o p' of two binary relations p € p(S x T) and p’' € p(T x U) is the
relation {(s, u) € Sx U |t €T : (s, t) € pA(t, u) €p'}.
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We observe that the semantics 1s well-defined:

el

=
"'=e

Lemma 10.

Icelp'lnelz] celg’]

IC”elglnele] T 18] (46)
Y L N

Proposition 11. If b* € ]P(ﬁm x D*) is a total binary relation for all basic oper-

ations b then a program defines a total binary relation®, that is Vf « f: f_‘m[f] €
P(D* x D*).

[ N ST oY)

v : D® L Tf N def ]:m me” (ﬁm « 'D%)
= = def "
Y 0 ZH%U D% g® . gr i propll o(D* x D*)
éoafm fmzp('D%X'D%) DR mmE R
g‘a”f% : T% dZEf I_I‘fé‘)z"¢'§}e F : T .; T
k2] = (7, k) | 7 € D*}
2" [£] = (7, 7)) | ¥ € D*}
be™ 7] = er[g] o b”
(e1— e, ea)[F]1E {7, L) | (7, L) € T [3]}
U{(7, 2) |3 eT? — {tt, i} : (7, v) € I [F]}
U7, v) [ (7, tt) € T[] A (7, v) € 3 [F]}
U{(#, v) | (7, ff) € eT [T A (7, v) € e [Z]}
. = def _, - -
fe*Z] = ¢*[&] o A[f]
e*[3] =@, 7)) | Vo @ (7, 7'[o]) € E[*[B]}
1* LD x {1}
= L PR e
¢ C* e E(pnT*C(¢'NT*) A (mm (¢’ N L%)
detf
I_li‘ReA vi = U A(pl nT*) u (), calpi N L7)
= detf -
i = A3 [1;.7 FI*21
-, e =R — —
7= def 1pr Fr o= |_|A€® F* (1%
b(7)~v = (7, v) € bm given such that b* € F*
f@)~v = (7, v) € [PIS]
G, Ve~ v Lt (7, v) € e*[Z]
G prée~i = (7, 7)) ee[]

Fig. 1. Synopsis of the relational semantics of erff'if = F[f]

3 Forward Strictness Analysis by Abstract Interpretation

By applying Alan Mycroft’s approximation to the relational semantics, we find again
his dependence-sensitive strictness analysis method by mere calculus. In order to

20 Partial relations r are represented by a total relation R such that (7, 2) € R when
Vv €Yy (U, 2)&r.



111

avoid combinatorial explosion, we shortly explore dependence-free strictness analysis
methods and finally suggest a compromise using widenings.

3.1 Definition of Strictness

A function ¢ is strict in its parameters v € [ if the evaluation of ¢ cannot terminate
whenever that of its parameters v € I does not terminate, that is ¢(L) = L when ¢
has only one parameter. If we define f(z) = (0 — f(z), f(2)) then f(x) = §2 since
0 is not a boolean so that f is not strict. However, using Mycroft’s equations, we
conclude that f is strict. Hence differentiating between terminating errors and non-
termination is possible but would lead to a different strictness analysis algorithm.
Since we want to rediscover Mycroft’s algorithm, we can assume, by type checking,
that {2 never appears in positions where the abstract equations would differ (i.e.
essentially in boolean tests). This is not convincing, e.g. if we want to infer simul-
taneously type and strictness information. Another solution, as chosen by Mycroft,
consists in assimilating {2 and L in the semantics. Although commonly accepted,
we find that this reasoning is an approximation which should be made explicit. This
can be explained by assimilating {2 to L in the strictness analysis only, as follows:
Definition 12. ¢ € F* = IP(YS”e x D*) is strict in its parameters v € [ if and only
if for all # € D* and v € D*:

(Vvel:Ple{l, 2} A p(V)~v) = ve{l, 2}
Since relation ¢(7) ~ v is not effectively computable, Mycroft [Myc80, Myc81] uses
an approximation ¢’ of ¢ for the approzimation ordering C:
Proposition 13. For all p, ¢’ € F*, if ¢’ is sirict in its parameters v € I and
© C ¢ then o is strict in its parameters v € I.
Moreover this approximation ¢’ of ¢ can be effectively computed by abstract inter-
pretation.

3.2 Forward Dependence-Sensitive Strictness Analysis

Ala Mycroft Abstraction Mycroft’s original idea [Myc80, Myc81] is to approx-
imate functions ¢° € F° = D® — D? (where D? is Scott’s flat domain) by func-
tions o € Fl = D! — DI, Dl s the complete lattice {0, 1}(<, 0, 1, V, A) with
0 <0< 1<1. 0is the abstraction of L (and £2) and 1 that of any other value
ver:

D= (0,1} ol (v) =1 ifv#1Land v # 2
ol € P* — D! af (L)=0 (47)
au (Q) def 0

We only slightly deviate from his judicious choice in that instead of considering func-
tions we use a similar abstraction for relations ¢* € F*  using Galois connections.
A set is approximated by the most imprecise approximation of its elements:

def def
o (V) = V{ak(v) [veV) 1) = Y ek (V) <v} (48)
Proposition 14. If D}(<, V) is a complete lattice and of € D® — D then (48)
defines a Galois connection; If ag 15 surjective then it is a Galois surjection:
0
p(D*)(C) =5 D<) (49)

[0
D
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A set of vectors in D* is approximated componentwise (ﬁﬁ S HveﬁDﬁ is a
complete lattice for the componentwise ordering 7 < 7/ if and only if Vv e 7 : #v] <

7o)

o, (V) E ] ol (170] [ 7 € V) (50)
L) {7 € B | Vo 75 5'[2] € 4L (7))
Proposition 15. (49) and (50) imply:
v
- B o
p(DM)(C) =7 D) (51)
Lemma 16. If ozgr is surjective then (48) and (50) imply that:
vt e D3 e 4k (77) ol ({7)) = 7 (52)

The lifting (16) of a Galois connection to higher-order functional spaces for the
pointwise ordering can be generalized to relations as follows?!: 22: 23;

af(¢) Z Aol ({v | 37 € 4 () : (7, v) € 6}) = ok, o 67 0 7L

def — - 2 (53)
1) AT, vy [veqh opoal ({71} = opoal

We observe that af*(F*) C Dt 2 D since at(¢) = agj o ¢* o 735 is the composition
of monotonic functions and complete U-morphisms, hence monotonic. Therefore, we
define: i

Ft & prEs i (54)
which is a complete lattice F#(<, A7-0, AF+1, V, A) for the pointwise ordering o < ¢’
if and only if V&7 € D' : p(7) < ¢/(7). We have:
Proposition 17. (49), (51), (53) and (54) imply:

#

FHO) = FUS) (55)

Prop. 17 is independent of the particular definition of ozg. Taking (47) into account,
we have:

Proposition 18 Connection between the relational and strictness seman-
tics. If ozg is surjective (hence, in particular, if (47) holds) then:

Q) L FH(<) (56)

- @
A vector of relations in F* = qu;]:% is approximated componentwise in Fi

erf‘}"u as follows:
@$) Z T, 704 (S1f]) (@) E T 7 (LD (57)

2! The dmage of X C S by relation p € p(SxT)is p*(X) where p* € p(S) — p(T) is defined
by p*(X) = {t | 3s € X : (s, t) € p}. In particular for a total function ¢ € S — T,
" (X) ={e(s) | s € X}.

22 The projection ' € S+ T of ¢ € p(S) = T is defined by ¢*(s) = e({s}).

2 1If f € S+ p(T) then 9f is the relation {(s, t) | t € f(s)}.
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Proposition 19. (56) and (57) imply:
Q) = A (58)

Using Prop. 5, we lift this approximation to function spaces as follows:

-

al(§) Zdtod o P(F)E T o g ol (59)

Proposition 20. (58) implies:

Y.

- mé = - a = m = -

Pl PG = LA (60)
7

The same idea (19) can be applied to the approximation e! € & of the semantics

m 2

e® € £* of expressions e by defining & = Ft 22 ptmS phoand:
ol (2) Zaloeoqt 74 (e) = yloeoat (61)
Proposition 21. (61), (56) and (58) imply:

"
ENS) = &(S) (62)

In order to approximate the semantics &* of vectors & of expressions, we start by

approximating elements of p(ﬁ% X ﬁ*) by elements of the complete lattice pt ==
D! (é, -0, Ap-1, V, A) for the componentwise ordering @ < @ if and only if
Yo e 0 : glv] < F'[v] so that 0 =],.50. We define:

VEY

-

& = = = = = = nd =%
ol (¢) EAhal ({7 |37 €44 (7)1 (7, 7'} €4} =al 0§ o7}

(63)
A@ ELT, 7Y 17 e o Foal (7))} =6begeal
Proposition 22.
"
Se R S T
oD < DY) == B2 D) (64)

Finally the approximation &' € & of the semantics €* € £% of a vector & of
expressions is defined in P A QU ) RSN )& by:

Ozug_(E) = af oe o 'yg_(e) = 7o coal (65)

Proposition 23. (65), (61) and (64) imply:

7t
£

Q) = &2 (66)

ot

Approximation and Computational Orderings Observe that < is the abstrac-
tion of the approximation ordering C :

JAL
Ian

F<¢ o TP CTF) (67)
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The approximation and computational orderings differ in the concrete semantics
but coincide in the abstract semantics®? :

- -

$CH(P) & 65 () FEF@) & @) 5)
p<¢ e PR ET () <@ e P TP
An immediate consequence is that we have the following Galois surjections:
~B S oR ok =T
FHEY = FIS) FHE) = FIS) (69)

Forward Dependence-Sensitive Strictness Semantics The abstract semantics
of a program erf‘fﬁ' = F[f] is specified by f' which we would like to define such

S
that f* = lfpiEye F*® C F4(f"). Corollary 9 provides a method for refining this spec-
ification as ]Fu = ﬂunemﬁﬁ"(lu) by defining the infimum I d’ﬁ(lm), the in-
ductive join I:I'uiEAQEZ' e O_Zu(ljmieA:y'u(gEi)) and the semantics function ! such that

at o F® o éu F'. Observe that monotonicity and finiteness of the lattice im-
ply continuity and more precisely convergence below w in (8). We now simplify

these formulee in order to get the formal definition of J_:ﬁ, 0" and F!. The hand-
computation presents no difficulties. It is provided just to show that the method is
mathematically constructive. The strictness semantics, that is the formal specifica-
tion of the abstract interpreter for strictness analysis, 1s entirely determined by the
choice of the collecting semantics in Sec. 2.4 and the choice of the approximations
(58) and (69). The derivation of It 0" and F¥ is nothing else than a refinement
of this formal specification. This computation is certainly amenable to automation.
Moreover, the replacement/simplification/definition introduction strategies are very
similar for different abstract domains so that proof strategies should be definable for
a given relational semantics so as to guide the automatic derivation of the abstract
semantics.

- It = d’ﬁ(lm) by definition of It
= erf_aﬁ(lm[f]) by (57)
= erf‘au( _'f x{L}) by (35)
=1, AP0 ({v | 37 €44 (7%) : (7, v) € (T2 x {L})}) by (53)

{L]3re 735 (7H1 since ff £
(L]30 e{#/ €D* |Voed: 7' ] €4 (FHu])}}) by (50)
{L]37 eD* :Yoci: ] e{V| of (V') < UHul}}) by (48)

N~~~ o~ o~

= 2Avtal ({L by (47), choosing 7 = Av- L
fef g

= qu;)\ﬁ ot (1) by (48) and definition of lubs

= erf—/\ﬁ"-O by (47)

2% whereas in [CC77a] they also coincide in the semantics collecting invariance properties,
where non-termination is ignored, and therefore is obtained by further application of the

abstraction o(V) =V U{L} to D*.
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— Teads = @[ iea(80) by definition of
= \/uieAaﬁ('yﬁ(QBi)) since @ is a complete 0"-morphism by (69)
=Vhead; since &% o 7' is the identity by (69)

— For a program erf*f{)' = f[f], the abstract semantics function /£ is defined as

an upper approximation of @t o F 7. We have:

& o B o 7 = 2g-@ ([1, 7 FUPI(9)]) by (39)
=A¢-Hf€f—a”( 17 (8)]) by (57)
=G, pol (FIPIF] by (61)

This suggest the definition F! &' \z. erf 7[£1*[@] with the condition that for all
fe f, we have F[f]ﬁ > aug(F[f] ). This condition is obviously satisfied by general-

ization to all expressions as ef > aﬁg (e™). We proceed by structural induction on the
syntax of e. The basis corresponds to the cases when e is reduced to a constant & or
variable v:

o K] = ot (k™)[F] = of o k* o« F[F] = ' ({(7, k) | # € D*}) =
v e whY) = At \Hal (k) [ 7 €45 (7))} = AFF-1, by (61), (40), (5
(47) since k € T and 735 () is not empty.

o WG] = ol (vM)[F] = ot o 0™ o P[] = oH ({7, [ I) | 7 € D*}) by (61) and
(41). By (53) this is equal to AZ*- \/{ad (F[v]) | IV € ( ")}, hence, by (48) and
definition (50) of 733’ to AZt-\/{od (v) | v € 4L (F v ])} By (48), this is equal to
Aol (48 (FF[v])) = AZF-F[v] since, by (49), ! o 4} is the identity.

For the induction step, we must prove that e! > aﬁg (e®) where € is b, f€ or

Aol ({k |
3), (48) and

(e17 — €2, e3). We can assume, by induction hypothesis, that eg > ozng(e?), 1=1, 2,
3 and that for all v c &, €[v]! > ol (E[v]).

o We define e*[F!]i! = [, .- € [v]*[#]7 and first prove that the induction hypoth-
esis implies that &' > ozu_( ).

£

By (65), ad(€%) = al o &% o % = AGH. a”< "7
Aghal o (FHED o 7, = AFAT-al (&
this is equal to Ag?- AT [ «Ozﬁ {7'v] | 7 (5

VEV

1(@N]) which, by (63), equals
[F(EO) (44, 79)). By (50),
[F#(¢9])" (+,(7%)) }) = LHS. By
!

definition of the image *, 7/ € (&*[¥( _'ﬁ)]]) ( ' (7%)) is equivalent to 37 € 'yﬁ (7" :

(7, 7"y € e*[FHFY)] hence, by definition (42) of e* to AV € 'yﬁ (74) 1 Vo e é’ {7,

7'w]) € e[ (FH)] which, for all v ¢ & implies 37 € 'yfj( B (w, 7)) €

e[*I7H(EM]. By (49), ol is monotonic, whence LHS SAGEAT [, oo of ({77[v] |

3 € () (7, 7T]) € ERPIFHE)I). This is AGFATH [T, g0k ({v | 37 €
) -

(
( (7, vy € eWPFHEN]Y), if we let v be 7'[v]. By definition (53) of af,
thls is equal to AGFAFT], - of (€[w]*[7*(#")]) 7, hence by definition (61) of ol

VEY

to AGT AT T, .0 o (€[] [FY7 = [1, ez 0L (E[0]®) < < Tl,.s €[0]* = &* by induction
hypothesis and definition of €.

o If e is b€ then we must define b€ such that bet > of L(be€*). We do this by
formal hand-computation. This consists is expanding the term aof L(be™) in order
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to let appear the subterm aﬁg_(é'%). By (61), aﬁg(bé'%) is equal to af o bE® o A
= Aghat (be*[7H(#1)]). By (53), this is equal to AGF-at o (be*[YH(FH])* o 733
= Aghaztof ((be=[7(3H)])* ('yu 7'))). By definition (43) of be™, this is equal
to Agt At ozu (E*[FH(FH)] o 6™)* (7%, (7%))) and, since (p o Q)*(X) = ¢*(p* (X)),
to: AghApt aﬂ (O* (R[N (+ T )))) = LHS. By (51), v 75 0 0‘35 Is exten-
sive so that B ([ (FH (2% (7)) © b (41 (o, (74 ( PG ). More
over a! is monotonic so that LHS < Ag! )\yﬁ ozgj (b%*('yfj( EXFHENT o
733(17“))) = Agtavtal o b* o 'yﬁ (of (€ [[:y'ﬁ( FHDEY) by deﬁnltlon (63) of ot .
By (53), this is AgH. /\17ﬁ aﬁ(b*)(ai o &% o FH(Fh)FY), which, by (65), is equal to
/\gﬁﬁ-/\17”-aﬁ(b%)(aﬁg_(é'%)[[gﬁu]]ﬁﬁ) = LHS. This suggests to define b as a#(b*) but in

5<
(7
)

Y .

order to allow for further approximations, we assume that ! € Dt 2= Pl s such

that b* > of(b®). By definition of the pointwise ordering <*, it follows that LHS <ﬁ

/\gon At bﬁ(ozIi (@®[FHFY) < AGh AT (e[ BT by mductlon hypothesis & >

a! (%) and monotonicity of b'. We define b’ LG AT (EN S FY) so that we
i g ¢

have proved that &t > ai (be™).

o Ifeis fe, ozug(fé'%) :/\gﬁu-/\ﬁﬁ-au ((f 2SO (AH ( ))) as above. By defini-
tion (45) of f&®, this is: AGF-AT -l ((E*[FH(FH)] o THEHD (v LW #))). As above,
this is: /\gé'u-/\ﬁu-au(:y'"(gﬁﬁ)[f])(au (€®)[#*]7*"). By definition (57) of Y4 this is equal
to AGH ATl (YH(GHf]))(F ( )[[gou]]ﬁu) But of o ¥ is the identity, a characteris-
tic property of the Galois surJectlon (56). We get AGH AT G f](at ( m[Feh <t
AGE AT G f](EH[F]PY) by induction hypothesis &* S ang_(é'*) and monotonicity

of gI[f] € D! 2= 72 DI, We define et NG AT B F(E[F]F) so that we have
proved that fet > aﬁg(fe ).

o It eis (e5 — e, e3) then aﬁg((el — €2, e3)®) can be shown, as above, to
be equal to AGF-AFt-al (((e1 — eo, eg)m[['}'u(gé'n)]])*(’yfj (7%))). By definition (44) of
(e1 — ey, e3)®, this is:

(v, 1) e 6?[['7"(@”)

But (p U ¢)*(X) = p*(X) U ¢*(X) and by (49), ozgj is the lower adjoint of a Galois
connection, hence a complete U-morphism so that this is:

MG ok (7, L) | (7, 1) € SFHEDTV (A (7))
vay ({7, 2) |30 €77 — {t, ) : (7. v} € FIT(EN (0, (7))
Vo ({7, ) 7, ) € FTEOIA 7, ) € SIHE L)
Vab ({7, v) | (7, ) € S[FHE) A (7, v) € SIF (@O (7))
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By definition p*(X) = {v |37 € X : (#, v) € p}, this is LHS =

AGEATE b ({L]37 €44 (5Y) < (7, 1) € SFHED]))
\/aﬁv({(ﬂﬂ}/ E’yﬁ (17) v e T — {tt, I} : (7, V)Eéf[['y( )]]})
Vak ({v |37 € 455 : (7, t) € F[F(ED] A (7, v) € 3 [FH(E)]))
val ({v|37 67f<*>:<u,ﬂ>6e?EW(*hﬂA<v,v>66§nv<¢ )

We now examine each subterm of LHS in turn.

* In the subterm of ({L | C}), the condition C' = 37 € 'y (@Y (7, L) €
eF[7*(5")] is either true and, by (48) and (47), this is of ({L}) = aﬁr(J_) = 0 or else
C is false and this subterm is of P(0)=v0=0 We have 0V vt = vt since 0 is the

infimum of D so that this subterm can be eliminated from LHS.

* The situation is the same for term of ({2 |37 € 'yfj(ﬁﬁ) v ere—{t, ff} . (7,

V) € XIFHEON)) since ol () = 0.

* For the term 15 = of ({v | 37 € 735(17”) (7, ) € eR[YHEH] A @, v) €
eX[7H(#M)]}), we proceed by cases:

If €L[F1FY = 0 then ol (e})[F']F! = 0 since el > ol (e}) by induction hy-
pothesis. It follows, by (61), that au(e (FIF)) (@Y = 0, whence, by (53) that
of ({v |37 € 'yfs(ﬁﬁ) {7, v) € 2(FS'])}) = 0. From (47) and (48) we derive
that for all 7 € 735 (") such that (7, v) € eX(F[F*]), we have v € {1, 2} and
therefore v cannot be tt. In this case T5 = ozﬁD By =vid=0.

If eHgEﬁ]]ﬁ = 1 then, by monotonicity of af , we have Th < of ({v |37 € 'yfj (7" :
(7, v) € e3[7*(FM)]}) which, by (53) is equal to of (e3[7#(F%)])(#*) hence, by
(61) to of (e3)[Z!])71, < b [¢'])7 by induction hypothesis.

- We conclude that T3 < e![1]7! A eb[F!]7" which equals 0 when e! [3]7! = 0
and else is e} [¢1])7!

* The same way, we have of ({v | 37 € 'ygj(ﬁﬁ) {7, ) € F[FHED] A (7, v) €

es[7 (D) < ef[F°17 A 5155154

Taking all cases into account, (e; — ez, e3)! can be defined as (e} ! /\euz)\/( ! /\eg)
= eg /\(eﬁ2 \/63) Observe that this is not the best possible approximation smce for
example, by taking values into account, we could have: (true — es, 63)Ii = 62 and

(false — e, €3)F = eg.

e In conclusion, the definition of fﬁ is given at Fig. 2. According to Cor. 9, our
definition of f! is safe by construction:

Proposition 24 Connection of Mycroft’s forward dependence- sensitive strict-
ness semantics fﬁ with the relational semantics fye of program erf fv=

FIf].
7 - E® L o 2 2 =
Gy =at(fp P < fP=1p, P

Proposition 25 Safeness of Mycroft’s strictness analysis method. If vt =
[1,.:(v €T =0, 1) and f*[f]7* = 0 then f®[f] is strict in its parameters I.
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Comments on Mycroft’s Strictness Analysis Method One strength of My-
croft’s strictness analysis method is that it is dependence-sensitive and therefore can
detect dependencies between arguments. For example, if we define f(z,y,2) = (z —
y, z) then we find that f#(1, 0, 1) = 1 and f#(1, 1, 0) = 1 so that f is neither strict
in y nor in z but f#(1, 0, 0) = 0 so that it is jointly strict in y and 2. More precisely,
Sekar, Mishra and Ramakrishnan have proved [SMR91] that “Mycroft’s method will
deduce a strictness property for program P if and only the property is independent
of any constant appearing in any evaluation of P”. Hence the only way to improve
its power is to take values of variables into account.

In practice, two methods have been proposed in [CCT77¢] for solving iteratively
the system of equations erf‘ f[f] Iy = ﬁﬁ(fﬁ)[f]ﬁ which are more efficient than the

naive Jacobi iteration _ﬁﬂn(lﬁ)’ n>0:

(a) We can use first-order chaotic iterations [CC77b] for ft= ﬁﬂ(fﬂ) (using a
tabular representation of functions fﬁ or a symbolic representation by e.g. BDDs
[Bry86]); This method is expensive since f![f](v1, ..., v,) is computed for all
fef.vie{0,1}andi € {1, ..., n} so that there are [Dom f].2" possibilities®.

(b) Tt is preferable to use second-order chaotic iterations introduced in [CCT7c],
page 265%° to compute the subset of ]‘?ﬁ [f']7' satisfying fﬁ ([P = ﬁn(fﬁ)[f’]ﬁ’
which are needed to answer a given strictness question j?ﬁ [f]7 = 0. Again sets
of arguments can be represented using BDDs [Bry86] and their refinements.

However, in both cases, exponential worst cases cannot be avoided since Hudak and
Young have proved a conjecture due to Albert Meyer stating that “the problem of
first-order strictness analysis is complete in deterministic exponential time” [HY86].

3.3 Forward Dependence-Free Strictness Analysis

Thomas Johnsson proposed a backward dependence-free strictness analysis method
[Joh81], which was recognized by John Hugues to be considerably more efficient than
Mycroft’s forward analysis [Hug88]: “there are grounds for believing that backward
analysis will be considerably more efficient than forward analysis ... Every context
function has only one argument”. The difference of forward or backward direction of
analysis 1s a specious explanation of efficiency. Efficiency comes from the idea of de-
pendence-free strictness analysis which can be applied independently of the direction
of analysis.

A la Johnsson’s Abstraction As shown in example 6.2.0.2 of [CCT9b], a de-
pendence-sensitive abstract interpretation can always be transformed into an de-
pendence-free one to make the method less expensive by being less precise. For
Myecroft’s strictness analysis method, the approximation of F! = Pt 25 i by

2% |8 is the cardinality of set S

26 This technique was latter popularized by Jones and Mycroft [JM86] as minimal function
graphs understood as a denotational semantics collecting the needed subcalls for a main
call (although the corresponding naive Jacobi iteration is inefficient).
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&' [elv = [1,.- e[)[¢]7

THET, 280
P E g, er AL E

def Phn, T
JEE U T = g PP (L)

Fig. 2. Synopsis of the forward dependence-sensitive strictness semantics of Hf ~fi= F[f]

f
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g, f%: FFE], 7 FroopwmE g
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== erf”Hvev Av+0
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e lfpf_x %= \/nem F""(J.")

Flf

Fig. 3. Synopsis of the forward dependence-free strictness semantics of erf

[1,.:(D* == D) where D* = D! = {0, 1}*7 with 0 < 0 < 1 < 1 is the following®
W)= el — o) 250) =30 AsBleb) o)

FErample 4. The dependence-free abstraction of the dependence-sensitive strictness
analysis f¥(z, y, z) = = A (y V 2) of function f(z, y, ) =(z — y, 2) is f* such that

2T We use the double sharp symbol * to denote the upper approximation of the sharp symbol
ft

28 For all v’ ¢ 7 such that v’ # v, we have I[v — v][v'] = 1 and I[v — v][v] = ».
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FEe] = Awex, f2y] = Ay-1 and f*[z] = Az-1. Its concrete form is p(z, y, z) = @ so
that one can no longer handle f(x, y, z) nicely. a

Observe that if ¢ € F! = D! =5 DF and o¥(p )[ ](1) = 0 then, by (70), ¢(I[v — 1])
= @(T) = 0 so that, by monotonicity, V&' € Dt ¢(V) = 0 proving that Yo' ¢ ¢ :
Vv € D* 1 a®(p)[v')(v) = @(I[v" — v] = 0. Let us now consider the expression LHS =
res 03 (@0 — )] = a*(@)l(v) A MaF(@)I(1) | 0/ < TA # o). I all
a®(p)[v'](1) are equal to 1 then LHS = a®(¢)[v](v). Else, there exists some v’ ¢ #'such
that o®(¢)[¢v'](1) = 0. Then o®(p)[v](v) = 0 and once again LHS = o*(¢)[v](v).
Intuitively, if the dependence-free strictness analysis shows non-termination of a
function for all values v of its parameter v, this conclusion is drawn without knowing
the other parameters v’ so that in the analysis the proof of non-termination of
this function cannot depend on any of its parameters. This leads to the following
definition:

fXdef{qSEH px s = D¥) | Vv e ¥ : Ave /\ff’ TU%V][U/]):¢[U]} (71)

ved vled

Proposition 26 Connection between the dependence-sensitive and depen-
dence-free strictness semantics.

X
Fi<) = 75D
(o3
For a program erf‘fﬁ' = ﬁ[f], Fi = erf‘fn is approximated componentwise by
oy def e .
FE = erf F* as follows:

A3 = 753 -
@) =7 GU) T =1 E)

Forward Dependence-Free Strictness Semantics The forward dependence-free

strictness semantics j?x = lfpf__x F* of a program erf‘f{f = ﬁ[f] is given at Fig. 3.

The equations which have been proposed by guesswork in the literature are not
always optimal. For example in [Joh81] x is needed in £(x) = £(x) but not in
£(x) = £(1). In both cases, the algorithm of Fig. 3 leads to the conclusion that f is
strict in x (because it is non-terminating). Analogously, for the program: £(x, y) =
(x — vy, £(y, %)) the equations: f*[x]e = x and f*[yly = yV f*[y]l proposed by
[Hug88] have the least solution: f*[x]0 = 0 and f*[y]0 = 1 whereas the equations of
Fig. 3: f¥[x]e = = and f¥[yly = y V ([*[x]y A f¥]y]l) are correct and lead to better
results: f*[x]0 = 0 and f*[y]0 = 0.

The forward dependence-free strictness semantics of Fig. 3 has been obtained
constructively by a formal hand-computation, using the abstract mterpretatlon (72)

of Mycroft’s dependence-sensitive strictness semantics fﬁ = lfp Fn given at Fig. 2
and applying Cor. 9, whence it is correct:

Proposition 27 Connection of the forward dependence-free strictness se-
mantics with the dependence-sensitive semantics.

<%

G (7)) = @@ (65, ) 2 @5 (7 = (i, 7 2 Fr =1, F
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Proposition 28 Safeness of the dependence-free strictness analysis method.
If f2[f][v]0 = 0 then funclion f is strict in ils parameter v.

But for suboptimality and the use of different notations, it is interesting to note
that the forward equations of Fig. 3 resemble the backward equations proposed by
[Joh81], [Hug88] and [DW90]. T. Johnsson [Joh81] uses the dual notations T', F,
V, & instead of 0, 1, A, V. His equations define fx[f][v]o directly. When needed,

FEIf][v]1 is approximated by 1 which is suboptimal. J. Hughes [Hug88] uses the no-

def

tations S, L, &, U instead of 0, 1, A, V. The handling of parameters as fe*[Z][v]y =
LA (E[W]*[F][v]v) instead of fEX[F][v]r = A,z FLFE W F[F]0]v) is sub-
optimal. The equations of the “new low-fidelity first-order forward strictness anal-
ysis technique” of [DW90] directly provide f#(v1, ..., vn) = Al_, f¥[vi]y; so that
fEwilys = f1(IJve; — v4]). Forward and backward strictness analysis lead to iso-
morphic equations hence to isomorphic analysis algorithms. The only difference is
between the dependence-sensitive and dependence-free strictness semantics.

3.4 On the Use of Widenings to Mix Dependence-Free and
Dependence-Sensitive Forward Strictness Analyses

Since Mycroft’s dependence-sensitive strictness analysis is powerful but sometimes
expensive and Johnsson’s dependence-free strictness analysis is cheaper but less pre-
cise, we can attempt a compromise using widenings. One idea is to avoid the com-
binatorial explosion due to the computation of f¥(vy, ..., v,) with v; € {0, 1} for
all 7 € {1, ..., n} by limiting the number of allowed 0 to a bound x which can be
fixed arbitrarily. For k = co we would obtain Mycroft’s dependence-sensitive strict-
ness analysis whereas with x = 1 we would obtain the dependence-free strictness
analysis. The value of k¥ would have to be fixed experimentally or could be left to
the user as a way to adjust the compromise between his available time and comput-
ing power resources or could vary during the analysis from co down to 1 so as to
avoid exponential analysis times. Calls f!7 where 7 = (vy, ..., v,) has less than &
0-valued v; (that is (3, ., ~¢[v]) < & where =0 = 1 and =1 = 0) would be evaluated
by Mycroft’s method as given at Fig. 2. Calls f#7 with (3_,_, —v[v]) > x would
be subject to a widening which consists in applying the dependence-free method
so that f'7 would be over-estimated by A{f!(I[v — 0]) | v « # AZ[v] = 0}. A
less drastic approximation of f!7 would be A{ft7’ | 7' > 7 A(Y,., ~P'[v]) = }
which consists in approximating f!(vi, ..., v,) with more than & 0-valued v; us-
ing the dependence-sensitive method with upper approximations having exactly &
zero-parameters.

4 Conclusion

We have shown that Mycroft’s seminal dependence-sensitive [Myc80, Myc81] and
Johnsson’s dependence-free [Joh81] strictness analyses can be constructed by formal
hand-derivation from a relational semantics [CC92] within the Galois connection
based abstract interpretation framework [CC77a, CC79b]. This was hardly consid-
ered to be possible (e.g. [AH8T7], page 25) and shows that the difficulties that have
been encountered with the formalization of strictness analysis [MN83, Nie88] are not
intrinsic but mainly due to denotational semantics. Our methodology for designing
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an abstract interpreter is constructive and this should be opposed to empirical design
methods with a posteriori safeness verification using e.g. logical relations [MJ86].

Abstract interpretation is often opposed to dataflow analysis as being intrinsically
costly. This is misunderstanding that widening operators can always be used as a
practical compromise between efficiency and precision. For the strictness analysis
example, we have suggested a good compromise between efficiency of dependence-
free and the precision of the dependence-sensitive strictness analysis algorithms using
a user-adjustable threshold for taking partial-dependencies into account.

Acknowledgement We would like to thank Alan Mycroft for numerous judicial com-
ments on the first April 27, 1992 draft of this paper.
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Proofs

o

» Proof of Prop. 2 By (1), F(L)=1C Fl(J_). Assume, by hypothesis, that
YA < N FA(J_) C FAI(J_). It A = B+ 1 is a successor ordinal then in particular
r’ (LHC o (L) so that transitivity (1) and monotonicity (2) imply Jae (LHC 7 (1)
— PN = F(FP (L) C F(F (L) = FY (L), Tt follows that YA < X 4+ 1 :
FA(J_) C FAIH(J_). If X is a limit ordinal then FAI(J_) = [en FA(J_) so that
VA< N r (L) E P (L) by (1) and definition of least upper bounds. By transfinite
induction on X, we conclude YA < X' : FA(L) C FAI(J_).

We have FD(J_) =1 <yhH = 7(FﬂD(J_ﬁ)) by (5). Assume, by hypothesis, that
F' (L) < y(F¥'(L1)). Then (6) implies FM'(L) = F(F" (L)) < y(FH(FF (L1))
= 7(Fﬁx+1(_l_u)). By (7) this remains true for limit ordinals. Hence, by transfinite
induction induction, VA € O : FA(J_) < 'y(FﬁA(J_ﬁ)).

Now (1) and (2) imply (3), which, together with (7) for A = O, imply lfpfF =
Lheo F7 (1) < 7(Wseo F*(LH).
« Proof of Prop. 3 By (15), a1 0 @ 0 7o <' ¥ implies Yoo € F} : a1 (D(70(p))) <!
¥ () whence Yo € FL : ®(70()) < 71(¥(p)) by (14). In particular for ¢ = ag(¢),
we have V¢ € Fy : D(vo(ao(¢))) < 11(P(an(¢))). But (14) implies V¢ € Fy
¢ < yo(ao(d)) so that Yo € Fo : B(6) < D(yo(vo(¢))) since & € Fy == F;. By
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transitivity (9), we conclude Y¢ € Fy : &(¢) < y1(¥(an(¢))) that is @ < y1 0 ¥ o ag
by (15).
Reciprocally, if @ < 71 o ¥ o g that is V¢ € Fy : @(¢) < 11 (¥(ao(¢))) then
Yo € Fo : ar1(P(¢)) < ¥(ao(4)) by (14). In particular for ¢ = yo(p), Yo € .
a1 (P(7o(p))) <F W(OZO(’YO( )))- But ao(yo(p)) <* ¢ by (14) so that ¥(ao(yo
U(p)since ¥ € ]:ﬂ s }"u By transitivity (10), we conclude Vo € }"u a1(P
<V W(p) that is a; o @ o v <! ¥ by (15).

» Proof of Cor. 4 The proof of (18) is similar to that of Prop. 3, except that in

the reciprocal, we have ¥(ao(70())) = ¥(p) by (17) hence ¥(ag(70(p))) <F ¥(yp)
by (10).

<t
= Proof of Cor. 5 If we consider a monotone abstract function ¥ € ]-"g 2y }"f

then v1 o ¥ o g € Fy N 1 since it 1s the composition of monotonic functions and
its abstraction aq o 71 o ¥ o g o g 18 ¥ since «g o 7o and «ag o 77 are the identity,
proving the Galois surjection property (19).
» Proof of Prop. 6 By (21), L >! a(L) whence y(L*}) > L by (14) proving (5).
If o < 7(¢") then a(F(p)) <! a(F(v(¢"))) since F' and a are monotonic by
(20) and (14). It follows that a(F(p)) <* Fi(¢") by (22), (15) and transitivity (10)
whence F(p) < y(F'(¢")) by (14) proving that (6) holds.
FV8 < B <At ps C oo Ay < 7(6f) then aps) <F ¢f by (14) so that

NS : b
a(EIZIA goﬁ) < ﬁ|—<|)\¢ﬂ by (23), proving ﬁ|z|/\ s < 7(ﬁ|2|A¢ﬂ) by (14) whence (7).

~ =

By Prop. 2, we conclude that lprE_F <! 'y(l_ltI i (J_ﬁ)).
A€0

« Proof of Lem. 7 By (1), we have 1 C (L") whence a(L) C* L' by (25) and
therefore a( L) = Lt by (24) By (25), (1) and (24), « is a complete |l-morphism so

that O‘Qzlo 1(ed)) = |_l a(y(el)) = Alzlﬁ) wf by (25).

= Proof of Lem. 8 If V) € O : a(p,) <! ¢! then VA € O : alp,) C* ¢} since <!
= ! and therefore |_|ﬁ alp,) CF |_|ﬁ #! by (24) and definition of lubs. But (1), (24)
A€O AED

and (25) imply that « is a complete U-morphism, a property of Galois connections:
i i i i i

L oz(gok):a( L @A).Wegeta( L gpk) Eu L ¢B Whencea( L gok) Su L qﬁf

AEOD A€EOD AEOD AEOD AED A€EOD

since <! = C*.

= Proof of Cor. 9 By Lem. 7, we have (26) hence a(L) > 1! by (24) and <! =
C!. By Lem. 8, we have (23). We conclude by Prop. 6 that (8) holds.

=« Proof of Prop. 13 If Vo € I : /[v] € {L, 2} and ¢(¥) ~ v then (V/, v) € ¢
whence (U, V) € ¢’ since ¢ C ¢’ that is ¢'(¥) ~ v so that v € {L, 2} since ¢ is
strict in its parameters v € I proving that ¢ is strict in v € 1.
= Proof of Prop. 14 By (48), o} (V) < vis equivalent to \/{of (v/) | v/ € V} < v,
that is, by definition of lubs to V/ € V' : o (/) < v and to V C {v/ | o (/) < v},
which by (48) is equivalent to V' C 'yfj (v).

If o} is surjective then Vo4 € D! : Jv € D : ol (v) = 1! so that of ({v}) = vF by
(48) proving that aﬁ) Is surjective.
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« Proof of Prop. 15 By (50) and definition of the componentwise ordering é,
anﬁ(V) < 7Uis equivalenE to Vo « 0 : of ({F[v] | 7 E_’V}) < F[v], hence by (49)
to Vo ¢ o : {F[v] | 7 € V} C Ak (F[v]) and to Vi € V : Vv « ¥ : T[v] € 4} (F[])
that is V C {7/ € D* | Vv « 7 : 7'[v] € 7! (Z[v])} which, by (50), is equivalent to
1% C 735 (7). By (50), auﬁ is surjective since, by (49), ozgj Is surjective.

« Proof of Prop. 16 If ozg is surjective then Vot € DV : Jv € T ag (v) = v
whence ozg(y) < v proving by definition (48) that Vvf € D' : Jv € ’yf}(vﬁ) :
ol ({v}) = vi. It follows that Vit € D37 (Vo ev: o] € 'ygs(ﬁﬁ[v])) A Vv et
aﬁ ({#[v]}) = 7*[v]) so that we conclude by (50).

=1

» Proof of Prop. 17 By definition of the pointwise ordering <, af(¢) < ¢ is
equivalent to Vi € D! 1ol (¢)(7) < () hence, by (53) to V7 € Dt aﬁ ( D_ 17) )
< (V) thus, by definition of * and (48) to V& € Dt (V{cd ({v}) | T7 'y (7):
(v, v) € ¢>}) < (7) and, by definition of lubs, to V& € D! Vv € D* : (3_" €
735 (7) (P, v) € d)) (au {v}) < go(ﬁ)), which can also be written as Vi € D! :
Vv e DRV e DR (7, v) € ¢) = ({7} C 1L (7) = (oh ({v}) < ¢(7)). By the
Galois connection properties (49) and (51), this is equivalent to LHS = [V# € D* :
Vo eD* Vi e D (7, v) € 6) = ((aL(17) 2 7) = (Iv} C aL(e(@))].
Observe that in this formula, we have {v} C 4% (ga(agj({ﬁ’}))) for 7 = agj({ﬁ’}).
reciprocally, if {v} C yub(go(ags({ﬁ’}))) then of, ({17’}) <7, o€ F (54) and (49)
imply 'yuD(ga(ozgi({ﬁ’}))) C 75}(30( )) by monoton1c1ty, whence {v} C 'yﬁ ((7)) by
transitivity. It follows that LHS is equivalent to Vv € D*® : V' € D= (
v)€¢) = ({r} Cvh o poak ({7})), thatisto é C {(#',v) | v € 7L (p(a, ( ')))}
hence by definition of ¢ and (53), to ¢ C y*(¢).

« Proof of Prop. 18 Let ¢ € F! = Pt =5 D oand o ={{W,v) |V €
D*Av € ’ygj(ga(auﬁ({ﬁ})))} We show that aﬁ(é) = . By definition, we have
al(g) = At ok ({v}) | 37 € 735(17“) tv €Y (pla 75({1/})))} which is equal
10 A1V, s i Vb (7)) | v € 35 (p(oL, (1))} By (49), o, is o complete
U-morphism so that af(¢) = AiFt- \/1767:5(17“) o (1 (go(ozgj({y})))) since of (V) =
V{et ({v}) | v € V}. By (49), af o 4! is the identity so that of(¢) is equal
to )\ﬁu-\/ﬁ@%(ﬂ)@(ag({ﬁ})). v e ’yfﬁ(ﬁﬁ) implies {7} C 'yfj(ﬁﬁ) hence by (51),
aﬁﬁ({ﬁ}) < 7! proving, by monotonicity and definition of lubs, that ot (o) (71 <

©(7"). Moreover, by (52) and definition of upper bounds, ¢(7*) < af(¢) proving, by
antisymmetry that we have af(¢) = ¢ hence af is surjective.

« Proof of (67) The approximation ordering is defined componentwise so that
(53) implies that 7(3) C (') is equivalent to {(7, v) | v € ¥} o F[f] o
WL (P} C 47, v) | v € 7% o @1 o ol (17D}, that is to say Vf « f: W7 €
D* . 74 o Blf] o aﬁj({ﬁ}) Cl o @'[f]o agj({ﬁ}) hence, by definition of the Galois
surjection (49) to Vf « fivieD*: of o yE o F[f] o aﬁﬁ({ﬁ}) < @G'[f] o ozgj({ﬁ}).
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(49) is a Galois surjection so ozgj 0 'yf} is the identity and therefore this is equivalent
to Vf f: Vi € D*® : Blf] o ozgi({ﬁ}) < B'[f] o 0‘55({’7}) which implies, by (52),
that Vf « f: vt e Dt SLAEY < F'[f1(FY) that is & < @’ componentwise and
pointwise. Reciprocally, 7% is monotonic by (58).
» Proof of (68) — Assume ¢ C* 7¥(yp) or equivalently, by (37), (¢ N T*) C
(P e)NT*) A (6NL7) D (v#(p) NL*). By (53), we have 7% () = {{7, v) | v €7} o
o agj({ﬁ})} By (47) and (48), Vv! € DF : L € v4 (V') so that L*® C v*(p) whence
® C (¢ N L*) and therefore L* C ¢. It follows that ¢ C® v¥(¢) is equivalent to
(6NT*) C (+¥(¢)NT*) that is ¢ C () since ¢ = L*U(¢NT™) C L*U(yH(¢)NT™)
= (vM(e) N L®) U (¥ () N T®) = v#(p). The componentwise extention is obvious.
— For the computational ordering, we have 7#(J) c” (@) < (@) C (g o
¢ < @' by (67).
«  Proof of (69) By (68) and (56), we have o C* 4 (p ) & ¢ CyHe) & al(g) <
(). Likewise by (68) and (58), we have ¢ F(F) & ¢ C7 WP) & d’ﬁ(qf;) <(@).
»  Proof of Prop. 24 (1) holds since f“(g%) is a complete lattice. < is defined
pointwise and fﬁ(é) is a complete lattice so that (2), (10), (24) and (15) hold.
C is a partial order on F* so that (9) holds. (14) follows from (58). (20) that is
F® ¢ F* =5 = follows from (46). (22) that is Ft S ato F® 7' has been proved
above. (25) follows from (69). Finally, < _ﬁ iu = <. We conclude by Cor. 9.

« Proof _(?f Prop. 25 If f [f]7! = 0 then by proposition 24, O_Zﬁ(jjg’?)[f]li'Ii <0
hence of (f*[f])7* < 0 by (57) which implies of ({v | 37 € ’yfj(ﬁﬁ) (U, v) €
f%[f]}) < 0 by equation (53). By (49), (48) and (47), {v | 7 € ’ygs(ﬁﬁ) 2 (7,
v) € f2[f]} € {2, L}. By definition of 7% and (50), v (%) = {7 € D* | Vv €
I:7[v] € {2, L}}. We get Vv € D® : Vi € D* : (Vo e I:7[v] € {2, L} A (7,
vy € j?%[f]) = v € {{2, L} proving, by Def. 12, that j?%[f] Is strict in 1.

= Proof of Prop. 26 — Assume that o®(p) < ¢ then, by (70), for all v ¢ 7 and

v € D we have p(I[v — v]) < ¢[v](v). For all 7 in 'Du and v ¢ ¥/, we have I
< T[v — U[v]], hence, by monotonicity and transitivity, ¢(7) < gp(T[v — 7)) <
¢[v](7[v]) whence o(7) < A, 5 ¢[](7[v]) = ¥¥(6)(7).

— Reciprocally, if for all 7 € D! we have e(V) < ¥%(9)(¥) = N\, .z ¢[v](F[v]) then

for all v e v and v € DY, if we let 7 = l[v «— v] then go(f[v —v)) < v,ﬂ.).(b[v’](f[v —
AIY]) < 6[e)(v) proving that a*(¢) £ 6.

= We have a%(2%(6)) = [] Wr*(@)(Tlo — 1) = [L v+ A ol)(Tlo — )] by

(70). By (71), this is equal to [] ¢[v] = ¢.

veT

=« Proof of Prop. 27 — The infimum is Ix d”‘(lu), which by definition of &%
and L' can be simplified into Hf f-oﬁ‘(J_ 1) = erf‘ozx(/\ﬁ-O) By definition of a®,

this is equal to erf‘Hveﬁ Av-Av-0(1 [v —v]) = erf‘Hveﬁ/\V 0.

—  We define the inductive join \/zEA g = &x(vZeA ¥*(Z4)) which by (72) is equal
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to erfax((\/ng'y g ))[ ]) erf (\/zeA 73(93 [f])) By (70) this is equal to
[ oer Ao Viea Apre Gl 110w — V)0 = T4 1o Viea @ilfllv] by (71).

X def

—  We define F* as an upper approximation of @* o Fro ¥¥ by lettlng F o=
)\QB'Hf {)F[f [#] and by defining e*[3] > o*(e![7#(&)]) for all @ in Fx, We

proceed by case analysis on the expression e:

o FIF] = aFHFHE)D) = 05 (A7+1) = [, M1,

o 7] = o* (TP = oF(AFF[0]) = [Tyrep Av- 11" — v]e].

* Assume, by induction hypothesis, that we have ETFIE] = o* ([T T*(E)])
for all g € F* and v’ ¢ €. Then aF (b [FHP)]) = aF (A7 bﬁ( Hy*(@)]17)) =
(A7 B (T],z €0 TITHE)P)) < (A7 b (T]yrez 7 (@F(EWTITHE)D)P)) = T

since ¥*¥ o a® is extensive, b¥ and o® are monotonic. By induction hypothesis
and monotonicity, T' < a* (AT T],:.2 v (€[v']*[¢])7)) which, by definition (70)
of o* is [,z Av-b' ([T, .2 Y*(E[v']* IIQE]])#[U — v]). By definition (70) of 4*, this
is [T, .5 Av-bf (Hv oz Norea €0V TFIST" (L I[v — v][v"])). According to (71), this can
be simplified as [], 5 Av-b4(T],..» €[v']*[#][v]v). This is [],.; Av-b*(€*[F][v]v) b
defining &*[&][v]v et = e ETFIEN0]Y so that be*[F][v]y = b (EX[F][e]v).

e Assume that e*[G] > o(e; [[ %(3)]) for all @ € F* and i = 1, 2, 3. We have
ax((el — es, ea) [T(P)]) = o* (L [THEA (LT (@) Vb [7(8)])) = T- By Prop.
26, a® is a complete V-morphism, hence monotonic whence T < ax(eg [¥*(&)]) A
(c (62[[’)/ (@)DHV* (63[[’)/ (&)]). By induction hypothesis, this is less than or equal

to (e1 — e2, e3)*[F] = eF[F] A (5[F] V 3[£]).-

e Assume, by induction hypothesis, that &[v/]*[7] > o*(e[v']'[7#(Z)]) for all
F € F¥ and v/ ¢ & Then o*(fE[FH@)]) = ¥ A7 -7¥(E)[IEFH($)]F)) =
¥ (A7 X (GDENTH(P)]P)) = a* (A7 Ny g ELAIV) (T ywez € FITHE)IZ)0]))
(A7 Nz B (E 0 ]Ii[[ ( 5)]7)) = T. By (70), o® o v* is extensive, so that
by monoton1c1ty T < o*(AT- N\, LA (* (E ) [FH(E)])7)) = T'. By in-
duction hypothe51 T < oF (AT N,z CLAN (7 (Ev ’]x[[gﬁ]])ﬁ)) By definition of
1%, we get %O A,z SN Agnes € FIZIEZ[07]))), which, by definition
of 7%, is equal 10 %\ A,y STV, ey S LF10" 17 (")), henee, by (70)
to Hmy A AT Nyrg G N A EX[E ] [0 D] (1o — v]). This simplifies
nto [, Avs Ayrcg G AN Ay € [FI0" 110 — v][v"])

[v']) by passing the pa-
Ex[Z1vlv[v’]), which, by defini-
*

5Lf
rameters 7. By (70), this i 11, ox Av- Ao S5
E/ (€lv ] [[30]][ ]I/) = fe Z]. By eliminating the

tion of €% is [], - A vrer PLAR]
conjunctions A{G[fI[V'1(E[V'*[E][v]v) | v' « T AV # v} we get the suboptimal ex-
pression: [[, . Av-@[f][v](€[v]*[£][v]r) which can be used to obtain the equations
for the examples given in [Hug88].
« Proof of Prop. 28 If f*[f][v]0 = 0 then a*(f )[f][v]O = 0 by Prop. 27 whence
o*(FHfD[v]0 = 0 by (72) which implies fﬁ[f](f[ — 0]) = 0 by (70) so that, by
Prop. 25, function f is strict in its parameter v.
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