
Abstract Interpretation: Past, Present and Future

Patrick Cousot
CIMS ∗, NYU, USA

s.t d.nc yo uc m eiu @ uop s

Radhia Cousot
CNRS Emeritus, ENS ∗∗, France

o @c t eo .snu frr s

Abstract
Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or ver-
ification of their combinatorial or undecidable properties. Devel-
oped in the late seventies, it has been since then used, implicitly
or explicitly, to many aspects of computer science (such as static
analysis and verification, contract inference, type inference, ter-
mination inference, model-checking, abstraction/refinement, pro-
gram transformation (including watermarking, obfuscation, etc),
combination of decision procedures, security, malware detection,
database queries, etc) and more recently, to system biology and
SAT/SMT solvers. Production-quality verification tools based on
abstract interpretation are available and used in the advanced soft-
ware, hardware, transportation, communication, and medical in-
dustries.

The talk will consist in an introduction to the basic notions of
abstract interpretation and the induced methodology for the sys-
tematic development of sound abstract interpretation-based tools.
Examples of abstractions will be provided, from semantics to typ-
ing, grammars to safety, reachability to potential/definite termina-
tion, numerical to protein-protein abstractions, as well as applica-
tions (including those in industrial use) to software, hardware and
system biology.

This paper is a general discussion of abstract interpretation, with
selected publications, which unfortunately are far from exhaustive
both in the considered themes and the corresponding references.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].

General Terms Algorithms, Languages, Reliability, Security,
Theory, Verification.

Keywords Abstract interpretation, Semantics, Proof, Verification,
Static Analysis.

1. Abstraction
No reasoning on complex systems, including computer systems,
can be done without abstracting the behavior, i.e. the semantics, of

∗ Work supported in part by the CMACS NSF award 0926166.
∗∗ Work supported in part by the European ARTEMIS project MBAT (grant
agreement No. 269335).
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM ACM 978-1-4503-2886-9/14/07. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603165

the system. Because reasoning on a system involves determining
or proving its properties, the central concept is the abstraction of
properties of the system, starting from the strongest one, as speci-
fied by the system semantics (and called the collecting semantics1).
This is the purpose of abstract interpretation (where “interpreta-
tion” stands both for “meaning” and “execution”). A few gentle
introductions to abstract interpretation [44, 79] can be consulted
for a first approach, including some publicly available on the web
(e.g. web.mit.edu/16.399/www/).

2. Scope
Abstract interpretation comprehends undecidable problems (hence
is also applicable to decidable but complex ones). This implies that
any tool (prover, checker, analyzer) designed by abstract interpre-
tation will fail on infinitely many counter-examples. For example
a finiteness or decidability hypothesis will only be applicable to a
very restricted class of programs with finite behavior, hence will
fail on infinitely many other ones. This is inherent to undecidable
problems hence inescapable. By failure we understand being un-
sound/incorrect, non-terminating, using a human oracle to assist
the computer, etc. Although abstract interpretation also applies to
these cases2, it is usually used for sound, terminating, and fully
automatic program analysis/verification, including the inference of
sound inductive arguments (like invariants) to deal with infinite re-
currences for unbounded/non-terminating executions, which makes
the problem particularly difficult, with a very high complexity.

3. Static analysis
The origin of abstract interpretation is in static program analysis
[50, 51] where reachable states are abstracted by local interval nu-
merical invariants understood as a generalization of type inference
[49, 54]. The abstraction from the collecting semantics was for-
malized by a Galois insertion and convergence acceleration of the
iterates by widening, later improved by narrowing. The main in-
novations at the time were to consider infinite non-Noetherian ab-
stractions of infinite systems and to prove rigorously the correct-
ness of the static analysis with respect to a formal semantics (see
more details in footnote 6).

1 The collecting (or static in [52]) semantics is the strongest property of the
standard semantics.
2 For example, some commercial products do consider only two iterations
in loops without widening, which is an under-approximation of an over-
approximating abstraction of program executions which can be formalized
by abstract interpretation theory. The theory also proves beyond doubt
that the result cannot be claimed to be a sound over-approximation of the
program behavior, a conclusion which is not always stated clearly enough
for practitioners to have a precise understanding of the scope of commercial
static analyzers.

http://cs.nyu.edu/~pcousot/
http://www.di.ens.fr/~rcousot/
http://cmacs.cs.cmu.edu/
http://www.nsf.gov/
http://www.artemis-ju.eu/home_page
https://www.mbat-artemis.eu/home/
http://dx.doi.org/10.1145/2603088.2603165
http://web.mit.edu/16.399/www/
web.mit.edu/16.399/www/

4. Acceleration of fixpoint iteration
The next step was to consider arbitrary fixpoints in ordered struc-
tures, order duality for approximations from above and below, as-
cending and descending iterations, as well as fixpoint iteration with
convergence acceleration from above and below with over- and
under-approximation using the following extrapolation operators
[39, Ch. 4], [52]

Extrapolation
operators

iteration
from below

iteration
from above

over-approximation widening narrowing

under-approximation dual narrowing dual widening

Chaotic [53] and asynchronous iterations [38, 39] (including at
higher-order [55, 149]) paved the way for demand-driven [203] and
parallel implementations of static analyzers [86]. Moreover this ap-
proach includes alternative, seemingly different, presentations of
static analysis (like constraint solving, deductive rules-based (type)
systems, etc which nicely generalize in the abstract [68]). The ex-
trapolation operators, which abstract the inference of an inductive
hypothesis in iteration are the more powerful, and difficult to de-
sign, aspects of abstract interpretation. The design of powerful ex-
trapolation operators pertinent to the degree of approximation of
an abstraction is still an art which remains to be much better under-
stood, formalized, and improved. Not enough work has be devoted
to the systematic design of extrapolation operators and the fact that
they cannot be increasing3 (a.o. [8, 21, 36, 63, 131, 169]). Simi-
larly non-iterative methods are just appearing for specific abstract
domains and programs such as exact widenings as in “abstract ac-
celeration” [145] and “policy iteration” [27, 117, 160, 212]4.

5. Semantics
Transition systems [39, 56] and recursive procedures [39, 55] (see
also [67]) departed from the initial consideration of flowcharts
understood as an intermediate program representation [49–51].
Backward and forward analyzes/proof methods become symmet-
ric by inversion of the transition system [39, 40, Ch. 3], [56] so
only one of them needs to be studied formally. Similarly for for-
ward/backward transformers and fixpoint duality (see the figure
on [52, page 241] prefiguring the µ-calculus). Which semantics
is to be preferred, small-step operational [39, 56], denotational
[148, 180], big-step natural [205], etc became subject to contro-
versies [206]. The solution was ultimately to relate all of them by
abstract interpretation.

Another alternative is to design a meta-language to define se-
mantics and to design a general purpose abstract interpreter taking
semantics as a parameter, either that of the program to be analyzed
or that of a programming language [42, 152, 168].

6. Hierarchies of semantics
The choice of a standard (or collecting) semantics may look fun-
damental in the design of abstract interpretations. On one hand,
the most concrete/collecting semantics dictates an initial specific
abstraction specifying the most precise expressible properties. If
the collecting semantics is too abstract, it has a limited expressive
power which also limits the scope of the static analysis/verification
methods that can be formally derived by abstract interpretation of
this collecting semantics. For example, with the big-step natural

3 Intuitively monotone/increasing operators would not be able to “jump”
over fixpoints.
4 Before [50], we tried to solve numerical interval equations by dichotomy,
but rapidly understood that the method would not be generalizable e.g. to
symbolic properties.

semantics [205], it is possible to abstract into a partial correct-
ness axiomatic semantics but not to reason on (non-)termination.
On the other hand, if the collecting semantics is too precise, then
further abstractions are more complex to express (in that they result
in more complex formulae in the Galois connection calculus [82]).

Nevertheless, the importance of the choice of a universal stan-
dard/collecting semantics should be greatly relativized. The reason
is that all known semantics are completely defined by an abstraction
of the concrete operational trace semantics and form a hierarchy
of semantics where all known semantics are recovered by abstrac-
tions [64] (some being Galois isomorphisms like between natural,
angelic, or respectively demonic denotational, relational, predicate
transformer, and axiomatic semantics). An abstraction based on any
semantics in the hierarchy will be comparable to any other abstrac-
tion based on a different semantics in the hierarchy by considering
the greatest lower bound in the hierarchy, which is the most abstract
semantics more precise than these two semantics.

This hierarchical semantic approach is valid for transition sys-
tems [46] (including transfinite behaviors [120]), grammars [80],
resolution-based languages like Prolog [61, 88], higher-order func-
tional languages [67, 78], etc.

7. Combinations of semantics
Sometimes, the collecting semantics cannot be expressed as a sin-
gle fixpoint but as a combination of fixpoints. An example in [39] is
the intersection of forward and backward reachability. In that case,
the best abstraction is not the trivial intersection of abstract forward
and abstract backward reachability but an iteration of forward and
backward abstract reachability analyzes [39, 61]. This generalizes
to more complex combinations of fixpoints as found e.g. in tem-
poral logic [94, 158, 159]. This point is not well understood when
reasoning on (abstract) models rather than on properties and their
different levels of abstraction.

8. Proof methods, verification and inference
Proof methods all consider an abstraction of the program seman-
tics and so can be explained by abstract interpretation using basic
induction principles such as fixpoint/post-fixpoint induction.

The essential difference between computer-aided verification
and static analysis is that in verification an inductive argument is as-
sumed to be provided by the end-user (e.g. loop invariants that must
be expressed in some logical language) whereas in static analysis,
this same inductive argument must be automatically inferred (and
expressed in some combination of abstract domains). Notice that
incompleteness in proof methods [41] follows from the abstraction
of the invariant expressible in the collecting semantics which may
be inexpressible in the abstract domain defined by the logical lan-
guage [91]. Inference is of course more difficult than verification,
for which the only problem is to prove implications, not to guess
what to prove. Nevertheless, verification has rapidly difficulties to
scale up when the size of the information to be provided by the
end-user is exponential in the size of the program [219].

9. Over- and under-approximation
The theory of abstract interpretation is usually only presented for
over-approximations. An over-approximation means that all execu-
tions (and maybe a few spurious ones) have to be considered. An
example is automatic reachability analysis with invariant inference
[52]. Right at the origin of the theory, under-approximation was
considered order or complement dual so there is no need to rephrase

the dual theory [52]5. An under-approximation means that some ex-
ecutions (and no spurious ones) have to be considered. However it
is significantly more difficult in practice. An example is the auto-
matic inference of necessary preconditions [83] (whereas an over-
approximation would yield sufficient preconditions).

10. Abstract domains
In abstract interpretation, properties are sets of objects with that
property [56]. For example, the collecting semantics is the single-
ton whose element is the standard semantics. So a concrete pro-
gram property is the set of its possible semantics. If executions are
traces, non-deterministic semantics are sets of traces, so properties
are sets of sets of traces (later called “hyper-properties”). So con-
crete properties can expressed as sets of sets of objects formalizing
the effect of an execution (e.g. traces). This point of view unifies
various versions of abstract interpretation which were first thought
to be different because they abstract different kind of semantics
(operational, denotational, predicate transformers, axiomatic).

Abstract domains encode a subset of the possible properties of a
program/system/etc. They are (pre-)ordered by a relation which en-
codes logical implication. Because of iteration/recursion, they must
also encode some notion of limit (of computations, including un-
bounded or infinite non-terminating ones). Such limits are often
expressed as least upper bounds of increasing chains for a compu-
tational order, which is often, but not always, the same as the log-
ical order. Strictness analysis [180] was the first example were the
logical and computational orders differ, but iterative fixpoint com-
putation and acceleration results extend naturally by considering
different ways of passing to the limit [66, 67].

It is quite remarkable that abstract domains are completely
determined by the concrete properties and a Galois connection.
This leads to the idea of a Galois connection calculus [82], which
allows to specify the essence of static analysis/verification methods
by defining the considered semantic domain and abstraction with a
single formula of the calculus. Another consequence is that abstract
domains are complete lattices since Galois connections preserve
existing least upper bounds.

11. Refinement of abstract domains
The refinement of an abstract domain consists in adding the mini-
mal new abstract properties to the domain so as to be able to express
exactly in the refined domain some of the concrete properties which
had to be strictly approximated in the original domain.

The first example was the disjunctive completion [56, Sect.
10.2], [116] of an abstract domain A: this is a refinement ℘(A)
of this abstract domain A adding to the disjunctive completion
℘(A) all the concrete disjunctions of elements of A originally
missing in A (hence which had to be strictly over-approximated
in A). It is the most abstract domain that is exact on disjunctions
of abstract properties in A. It was used in [56, Sect. 10.2] to prove
that the merge-over-all paths data flow analysis can be expressed
in fixpoint equational form 6. Similarly, the complementation [34]
adds complements that are missing in the abstract.

5 In [39, Ch. 4.1] both over- and under-approximations are explicitly con-
sidered to sandwich a fixpoint and it is stated that after Ch. 4.2 included,
dual results are to be left implicit.
6 At the time in data flow analysis, the merge-over-all paths, propagating
abstract properties along execution paths, was used as the concrete domain
to “justify” the abstract fixpoint data flow equations. This abstraction does
not loose information if and only if it is closed under disjunctive completion
[56, Sect. 10.2]. The correctness proof is therefore purely syntactic, not
related to the program semantics, hence essentially circular and unsound.
Using temporal logic to specify the data flow analysis does not help either
since it does link the data flow to the program syntax (flowchart) not to
its semantics [207]. For example, liveness is misinterpreted in [207] as

The transformer/fixpoint completion of an abstract domain is a
program-dependent refinement which minimally enriches this ab-
stract domain by adding to the abstract domain all the concrete
properties that would make the abstract transformer/fixpoint impre-
cise (so that all counter-examples are considered altogether [124])
[127]. Various weaker notions of transformer/fixpoint completion
can also be considered, e.g. ignoring termination [45], relative to
an observation of program behaviors [6], or complete with respect
to unification for resolution-based concrete semantics [128].

12. Combinations of abstract domains
The complex design of abstract domains/Galois connections is bet-
ter performed compositionally, starting from basic abstract do-
mains which are then refined (Sect. 11), combined (this Sect. 12),
and composed to get very expressive abstractions [56, Sect. 10],
[82]. This consists in defining a functor on abstract domains/Galois
connections than takes existing domains as parameter and creates a
new one.

The most popular abstract domain functor is certainly the re-
duced product [56, Sect. 10.1], and its numerous variants (such as
the more economical [33, 85]) and scope extensions [114, 215].
The reduced product functor creates a new domain out of existing
domains that essentially performs the conjunction of the informa-
tion carried by each domain by transferring commonly expressible
information between domains. It is the most abstract domain which
is more precise than the given domains. A recent example is the un-
derstanding of Nelson-Oppen combination of logical theories with
equality in SMT solvers as a reduced product [92, 96] where the
commonly expressible information between domains are uninter-
preted in/equalities between variables.

The reduced power functor [56, 125, Sect. 10.2] is used to ex-
press conditional abstract properties that rely upon abstract condi-
tions, as e.g. in an analysis by cases. The reduced power functor
has many more specific instances such as polyvariance for context-
sensitive analyzes [130] or trace partitioning [137, 202] where a
local invariant at a program point may depend upon an abstraction
of the history of computations reaching that point.

13. Equational design of abstract domains
The refinement (Sect. 11) and combination (Sect. 12) functors on
abstract domains can be used to recursively define abstract domains
equationally [115, 123, 209]. This has been exploited for semantics
[122] but remains to be exploited in static analysis e.g. in the
automatic design of static analyzers, which is the objective of the
Galois connection calculus [82].

14. Galois connections for best abstraction
If the concept of Galois connection is central to abstract interpre-
tation, it is equivalent to many other formalisms including clo-
sure operators [39, 56], Moore families and principal ideals, [56],
soundness/logical relations [182], topologies [55, 208], etc which

noted in [71]. Moreover the finiteness hypothesis to compute the solution
of the data flow equations using a fixpoint checker eliminate trivial infinite
but Noetherian analyses such as constant propagation. The correctness
argument in [151] is based upon a distributivity hypothesis not satisfied by
the main example of the paper which is constant propagation.
Other precursors [183, 184, 211] understood (non-relational) static analysis
as a specification calculus on non-standard values or (relational) static
analysis as recursive definitions [199] i.e. sound by definition. For example
the sign analysis in [211] is unsound in that negative 	 is interpreted as
< 0 and positive ⊕ as > 0 so that −1 × 0 = 0 is a counter-example

to the classical rule 	 × ⊕ = 	. 0 has no best abstraction and is handled
specifically in mathematics by simplification rules. Intuition is not always
right.

can express the concept of best abstraction: any concrete property
has a most precise approximation in the abstract [56]. An interest-
ing consequence is that the analysis/verification in the abstract is
completely determined by the collecting semantics and the abstrac-
tion (nothing else has to be invented apart from convergence ac-
celeration operators). This leads to the idea of calculational (even
automatic) design [44, 210], or at least automatic certification of
analyzers/verifiers (such as [44] and its extensions which has been
formally checked in Coq [18]).

15. In absence of best abstraction
It was recognized early that in many cases there is no best abstrac-
tion. For example in [95], there is no best/smallest, even no minimal
polyhedron enclosing a disk. Then only half of the Galois connec-
tion can be used [62], the most popular one being a concretization
function only [95]. Because Galois connection preserves arbitrary
joins the power set structure of concrete properties is preserved as
complete lattices in abstract domains. This is no longer the case in
absence of best abstraction, in which case joins/meets, even finite
ones may not exist (so e.g. [151, 221] are no longer applicable).
This can be compensated by using widening/narrowing7. Another
example is the abstraction of languages by grammars [69] or of
properties by a logical theory [91] where there is no best abstrac-
tion. In that case properties and fixpoint transformers may have in-
finitely many sound abstractions without a best/most precise one
and so arbitrary choices have to be made in the abstract.

16. Abstraction of syntax
The syntax of languages as described by grammars provide varied
examples of abstractions. Grammars can be given a fixpoint oper-
ational semantics of derivations which abstractions yield e.g. the
Chomsky-Schützenberger fixpoint characterization of the language
generated by the grammar, as well as top-down and bottom-up
parsers and numerous algorithms used in compilation [75, 77, 80].
This generalizes to resolution-based languages [88] where essen-
tially, text substitution is replaced by unification.

17. Syntactic abstractions
By syntactic abstraction we mean an abstraction of a collecting se-
mantics to a meta-formalism describing languages, such as regular
expressions, context-free grammars [69], or even theories in logic
[93]. Typically, for syntactic abstractions, unless a property is ex-
actly describable in the meta-formalism, there is no best abstrac-
tion. For example, if an over approximation of non-regular lan-
guage of finite unbounded strings on a finite alphabet is described
by a regular expression, there exists a sentence, of say length n, de-
riving from the regular expression which is not in the non-regular
language to be over-approximated. A better description of the non-
regular language consists in the regular expression enumerating the
finitely many sentences of length less than or equal to n, and over
approximating only those of greater length. There is no best and
even minimal abstraction since, at least in theory, n can be indefi-
nitely increased to get better and better abstractions. Of course the
description of the concrete collecting semantics must not be sub-
ject to such expressivity restrictions which explains that abstract
interpretation describe concrete domains using set/model theory
rather than proof theory for a given first-order logic. Category the-
ory would also be a mathematically reasonable choice, although it
might not help in practice and would considerably restrict the read-
ership [1].

7 which is the first use of widening/narrowing in [39, Ch. 4], the conver-
gence condition being later added [39, Ch. 5] to ensure termination of fix-
point iteration.

18. Abstraction of programs versus languages,
and the power of extrapolation operators

That verification/analysis formal method have to be designed for
programming languages and not for checking a given program (or
a given model) makes a significant difference by adding a universal
dependence on all programs of the language. So an abstract domain
collects the part of the abstraction which is common to all programs
and must be instantiated when analyzing a specific program.

A first example is set-based analysis which is often presented
as acting on an infinite domain, which is true for the language,
whereas a finite subset only is used for any given program. A conse-
quence is that the set-based constraint-solving methods turned out
to be mere finite fixpoint iterations in a finite domain [69].

A second example is on the use of Notherian/finite or non-
Notherian/infinite domains. The case of finite abstractions is easy
since always equivalent to predicate abstraction and reciprocally
[47]. On the contrary, abstract interpretation stresses infinite non-
Noetherian abstractions of infinitary properties. For a given pro-
gram, a complete finite abstraction does exist for proving any de-
sired property of this particular program [45]. In fact finding this
abstraction or the proof is mathematically equivalent (and unde-
cidable except e.g. for finite states). This is no longer the case
for programming languages, for which any finite abstraction, or fi-
nite refinement [94], will fail or not terminate on infinitely many
programs for which an infinite abstraction would have succeeded
[45, 60]. This means that the relevant abstraction can only be deter-
mined during the analysis, which is the rôle of extrapolation oper-
ators.

Moreover, in practice, a finitude hypothesis is not of much help,
since it does not prevent the combinatorial explosion of the set of
cases to be considered, so that extrapolation operators must be used
(or replaced by specific fixpoint computation methods when they
exist). Of course trivial extrapolation operators (like any execution
is to be over-approximated by chaos after a given number of steps)
lead to very poor results, which are inconclusive but of a finite
number of cases. Others like Milner’s idea that all instances of a
recursive procedure should be the same polymorphic type, which
is a widening [43, 177], is quite satisfactory in practice.

19. Temporal abstraction
Although initially designed for reachability analysis [51], abstract
interpretation applies sensu stricto to temporal properties, includ-
ing time-symmetric trace-based ones referring both to the past,
present, and future [71] (for which incompleteness results can be
proved even for finite systems [126]).

20. Languages
Almost all families of programming languages (imperative lan-
guages [52], functional languages [180], Prolog [13, 26, 104, 142,
178, 179], constraint logic programs [119, 142], constraint solvers
[189], database query languages [35], object-oriented languages
[154], multithreaded programs [112], byte code [12], machine code
[108, 109, 153, 222], etc), but also specification languages [129],
grammars [175], algebraic polynomial systems [70], graph rewrit-
ing systems [138], logics [5], games [141], synchronous languages
[135], continuous systems [37], hybrid automata [140], quantum
computing [190], etc have been subject to static analysis by abstract
interpretation.

21. Control-flow analysis
Besides data, static analysis by abstract interpretation should take
into account the control structure of programs.

Control-flow (closure, escape, binding-time, etc) analysis are an
abstract interpretation [165–167, 187].

22. Parallelism
Parallelism was considered early as a challenge to scalability [57,
58, 97]. One important aspect was which collecting semantics
should be considered, otherwise stated which semantic model and
proof methods should be abstracted. It turned out that the proof
methods known at the time were just different abstractions of the
same interleaving semantics [97]. Unfortunately the interest of
funding studies of parallelism faded in the late eighties because
the speed of sequential processors was progressing spectacularly.
But any exponential process must stop by exhaustion of resources,
which is the case nowadays, so the interest in parallelism is revived,
by necessity. Fortunately, principles are immutable, so that more
recent proof methods such as assume-guarantee, are also, like all
proof methods, abstract interpretations, which can serve as an ef-
fective basis for designing scalable analyzers of parallel programs
[172, 173]. Other aspects of parallelism are scheduling [132], par-
allelization of sequential or non-deterministic programs, where ab-
stract interpretation can be used to take semantic aspects into ac-
count [25, 217].

23. Types
Type theory that developed around operational semantics, subject
reduction, type inference by unification and typing rules, long ap-
peared hardly comparable to abstract interpretation. This is not
the case since [43] showed that polymorphic types and type in-
ference are abstract interpretations with widening (to exclude re-
cursive calls of functions with infinitely many different principle
types). The approach was based on a denotational semantics, which
was intentionally unusual but not surprising in the hierarchy of se-
mantics [46]. The same approach applies to other unification-based
analyzes [3].

24. Binary abstraction and hardware analysis
Binary abstractions abstract infinite sets of sequences with finite
elements, sometimes of bounded length hence finite but still very
large which requires widening for scalability [161, 171]. A trivial
abstraction where “0 or 1” cases are abstracted into > is used for
hardware analysis [223] and is one of the rare formal methods that
scales on complex hardware. A more sophisticated abstract domain
is in Astrée used to analyze integers and floats in their machine
representation [171].

25. Numerical abstractions
Numerical abstractions abstract infinite sets of numerical vectors of
finite dimension. There are numerous examples, including convex
abstractions such as the non-relational intervals [52], and the rela-
tional linear inequalities [95], linear interval inequalities [30, 31],
zonotopes [134] and a few non-convex abstractions such as linear
absolute value inequalities [32]. Very good compromises such as
octagons [170], pentagons [156], or parallelotopes [7] provide both
scalability and enough precision for most common situations (like
buffer-overrun checking in case the array bounds are symbolic).

26. Symbolic abstractions
Symbolic abstractions abstract infinite sets of in/finite functions,
graphs, etc as found in most programming languages such as arrays
[89], trees [162], infinitary relations [163], and heaps (like non-
sharing [54, 55] or shape analysis [29, 198]). This research area
where directly reusable mathematics essentially does not exist is
quite important and still in infancy (except in a few easier particular
cases, such as linear lists).

27. Simulations
(Bi-)simulations are abstract interpretations [194]. This new under-
standing has lead to more efficient simulation [196] and partition-
ing [195] algorithms.

28. Probabilistic abstractions
Probabilistic abstraction is another relatively underdeveloped ap-
plication domain of abstract interpretation [2, 96, 99, 176, 204].
The reasons are that probabilistic behaviors are often only known
with imprecision, that they mix with non-determinism on data, and
that inference for infinite systems is much more complex than enu-
meration in the finite case since very subtle extrapolations are re-
quested for precision.

29. Program transformation
The main applications of abstract interpretation beyond static anal-
ysis (e.g. to automatically infer loop invariants), are program trans-
formations such as partial evaluation [146], abstract debugging
[22, 40] abstract slicing [201], parallelization (see Sect. 22), com-
pilation [200], etc.

Program transformations can be formalized as an abstraction,
where a syntactic transformation of a source program is under-
stood as first performed on the source program semantics to get
a generally more efficient although equivalent transformed seman-
tics which is then abstracted into the object program [74]. This is
another example of syntactic abstraction (of the transformed se-
mantics into the object program). More examples include partial
evaluation [74], dead-end elimination [72], and refactoring [90].

30. Termination
Termination is an abstract interpretation [81] where the transfinite
variant functions abstract in each program state what remains to be
executed before potential or definite termination. This termination
abstraction yields known proof methods [59, 65, 97] while further
abstractions with widenings (e.g. piecewise linear [218] or ordinal-
valued [218]) or policy iteration ([160]) yield static analyzers auto-
matically inferring abstractions of variant functions. Another aspect
of time abstraction is the determination of bounds on the worst-case
execution times of programs [108, 109, 222].

31. Modularity
Static analyzers are complex programs, certainly much more com-
plex than compilers, so they must be modular and extensible. The
design by combination of abstractions is fundamental for scalabil-
ity and extensibility [85]. Another aspect is the modular analysis
of programs by parts [73]. The sound analyzers can be classified
into the ones that perform a global program analysis (like Astrée
[16, 17, 84]) which are precise but maybe costly and an analysis by
part (like cccheck [107]) where cheap analyzes can be performed
at compile time, but may require user-interaction to design code
contracts (an activity which may also be automatized [83]), but not
loop invariants which in all cases are inferred automatically.

32. Generalist versus domain-aware static
analyzers

Sound generalist analyzers like Polyspace Code Prover
TM 8, C

Global Surveyor [220], Checkmate [113], CodeSonar for machine
code [197], or Julia [188] produce good results for a large vari-
ety of codes in a given programming language. Most often they
lack extreme precision. Using heuristics to sort out proliferating

8 www.mathworks.com/products/polyspace-code-prover/

http://www.mathworks.com/products/polyspace-code-prover/
www.mathworks.com/products/polyspace-code-prover/

false alarms may be a fake commercial argument but does not have
the rigor necessary to verify very large safety or security critical
software.

This leads to the idea of analyzers aware of an application do-
main such as the precision of floating-point computations for Fluc-
tuat [102, 133], control-command for Astrée [16, 17, 84]. In ad-
dition to generalist abstractions, filters, integrators, relation of vari-
ables to the clock, etc must be handled with greater precision thanks
to specifically adapted abstract domains [110, 111]. Initially de-
signed for avionic software, Astrée [16, 17, 84] had to be extended
with a non-linear abstract domain to analyze precisely quaternions
used for satellite positioning [20].

33. Industrial applications
The use of a principled approach to static analysis based on abstract
interpretation allow for the rigorous and incremental design of
precise and scalable static analyzers, with very few false alarms.

Astrée [14, 16, 17, 48, 84, 85, 87, 150] is a static analyzer com-
mercialized by AbsInt and used in the medical, transportation, and
communications industry for analyzing the absence of runtime er-
rors in control command software, e.g. to control medical monitor-
ing equipment, planes or satellites. This is certainly one of the first
completely automatic tools based on formal methods that did scale
up with enough precision to allow, after avoiding a few potentially
catastrophic software failures, to become voluntarily mandatory in
the design of e.g. avionic safety critical systems (see [103, 213] for
reports on preliminary experiences).

cccheck [107, 155] is an example of general purpose, modular,
precise, and efficient analyzer relying on the use of abstract code
contracts. Being based on an intermediate language used by com-
pilers it is applicable to several different programming languages
that compile to this intermediate language. This is a possible ap-
proach to cope with the proliferation of programming languages.
Other complementary approaches include the implementation of
reusable libraries of abstract domains, like APRON [144] or the
Parma library [9] for numerical properties.

34. Security
Security is typical of computer science lack of responsibility with
respect to customers. One can leave a door open and take no
responsibility at all when a burglar comes in, whereas this would
be excluded by a restriction clause in any theft home insurance.
This situation cannot go on for ever, and the computer industry
will have to take responsibility for its provable errors. Such a proof
of error can be given by a counter-example. Better, a proof of
absence of error can be given by a tool proving the absence of
error, provided the tool is sound and precise (otherwise it could
be qualified of time-consuming and too restrictive, as for security
types). Fully automatic tools are already able to catch such security
bugs by taking values and objects into account (e.g. [216]), at least
the common ones, but this is not yet a current practice. Many
security properties cannot be checked at runtime so static analysis
and verification tools have an outstanding domain of application.

Other areas in security where the semantic-based approach of
abstract interpretation is much more powerful than syntactic match-
ing or type inference is abstract non-interference [121], steganog-
raphy [76], obfuscation [191, 192], and malware detection [193].

35. Unexpected applications
35.1 Biology
We anticipated in [39, Ch. 3] that basing abstract interpretation col-
lecting semantics on transition systems “is obviously very general.
It applies not only to computer systems but also to economic or
biological systems, provided that the model of the system to study

evolves according to discrete time steps.”. In biology, it took some
time before abstract interpretation was applied in practice in the
context of rule-based modeling of protein-protein interaction net-
works [28, 100, 101]. The widening for economy was a bit too
optimistic!

35.2 SAT and SMT solvers
The fact that SAT and SMT solvers are abstract interpretations of
the semantics of logics came more as an unanticipated surprise
[23, 24, 105, 106, 214]. This understanding yields new decision
algorithms [136, 214].

36. Conclusion
Any semantic based-program manipulation, analysis, and verifi-
cation in the scope of abstract interpretation theory can also be
designed in the form of a specific paradigm/method/algorithm,
illustrated by examples, and justified by an informal reasoning.
This is the usual problem-specific approach of computer science
which leads to a proliferation of disparate results lacking a uni-
fying point of view. The consequence is that only one or two
paradigms/methods/algorithms/examples are taught, remembered,
and later extended, which completely inhibits the creative power.
This empirical approach will certainly disappear over a long pe-
riod of time in favor of more abstract foundations. This took cen-
turies in mathematics were, by combining fundamental ideas, one
reaches a definite result. This is indispensable to make computer
science teachable beyond tricky know-how rapidly becoming out-
dated in the short term. In particular, it is not possible to assimilate,
understand, and compare thousand of approaches to verification or
inference in static analysis without a reduction to a few abstract
concepts, explaining concisely how they can be (re-)designed. This
is the objective of abstract interpretation, and requires a perpetual
evolution, renewal, and rethinking of the foundations and practice,
with very few basic principles remaining stable. Principled com-
puter science is the only path to cost-effective safety and security.

Acknowledgments
Our acknowledgments go to the many contributors to abstract in-
terpretation including those who are not referenced here by obvi-
ous lack of exhaustivity. They also go to Roberto Giacobazzi and
Francesco Ranzato for their comments.

References
[1] S. Abramsky. Abstract interpretation, logical relations and kan exten-

sions. J. Log. Comput., 1(1):5–40, 1990.
[2] A. Adjé, O. Bouissou, J. Goubault-Larrecq, E. Goubault, and S. Putot.

Static analysis of programs with imprecise probabilistic inputs. E. Co-
hen and A. Rybalchenko, editors, VSTTE, volume 8164 of Lecture
Notes in Computer Science, 22–47. 2013.

[3] A. Aiken. Introduction to set constraint-based program analysis. Sci.
Comput. Program., 35(2):79–111, 1999.

[4] M. Alpuente and G. Vidal, editors. Static Analysis, 15th International
Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceed-
ings, volume 5079 of Lecture Notes in Computer Science. 2008.

[5] G. Amato and G. Levi. Abstract interpretation based semantics of
sequent calculi. Palsberg [186], 38–57.

[6] G. Amato and F. Scozzari. Observational completeness on abstract
interpretation. Fundam. Inform., 106(2-4):149–173, 2011.

[7] G. Amato and F. Scozzari. The abstract domain of parallelotopes.
Electr. Notes Theor. Comput. Sci., 287:17–28, 2012.

[8] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for
powerset domains. STTT, 9(3-4):413–414, 2007.

[9] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci.
Comput. Program., 72(1-2):3–21, 2008.

[10] H. E. Bal, editor. Proceedings of the IEEE Computer Society 1994
International Conference on Computer Languages, May 16-19, 1994,
Toulouse, France. IEEE Computer Society, 1994.

http://www.absint.com/astree/index.htm

[11] A. Banerjee, O. Danvy, K.-G. Doh, and J. Hatcliff, editors. Seman-
tics, Abstract Interpretation, and Reasoning about Programs: Essays
Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birth-
day, Manhattan, Kansas, USA, 19-20th September 2013, volume 129
of EPTCS, 2013.

[12] R. Barbuti, N. D. Francesco, and L. Tesei. An abstract interpretation
approach for enhancing the Java bytecode verifier. Comput. J., 53(6):
679–700, 2010.

[13] R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for
semantics-based bottom-up abstract interpretation of logic programs.
ACM Trans. Program. Lang. Syst., 15(1):133–181, 1993.

[14] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
and X. Rival. Static analysis by abstract interpretation of embedded
critical software. ACM SIGSOFT Software Engineering Notes, 36(1):
1–8, 2011.

[15] D. Bjørner, M. Broy, and I. V. Pottosin, editors. Formal Methods
in Programming and Their Applications, International Conference,
Akademgorodok, Novosibirsk, Russia, June 28 - July 2, 1993, Pro-
ceedings, volume 735 of Lecture Notes in Computer Science. 1993.

[16] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embed-
ded software. T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough,
editors, The Essence of Computation, volume 2566 of Lecture Notes
in Computer Science, 85–108. 2002.

[17] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. R. Cytron and R. Gupta, editors, PLDI, 196–207. 2003.

[18] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal verifi-
cation of a C value analysis based on abstract interpretation. Logozzo
and Fähndrich [157], 324–344.

[19] H.-J. Boehm and C. Flanagan, editors. ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013. 2013.

[20] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal,
E. Goubault, D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival,
and M. Turin. Space software validation using abstract interpretation.
Proc. of the Int. Space System Engineering Conf., Data Systems in
Aerospace (DASIA 2009), volume SP-669, 1–7, Istambul, Turkey,
May 2009. ESA.

[21] F. Bourdoncle. Abstract interpretation by dynamic partitioning. J.
Funct. Program., 2(4):407–423, 1992.

[22] F. Bourdoncle. Semantic analysis of interval congruences. Bjørner
et al. [15], 128–141.

[23] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening.
Interpolation-based verification of floating-point programs with ab-
stract CDCL. Logozzo and Fähndrich [157], 412–432.

[24] M. Brain, V. D’Silva, L. Haller, A. Griggio, and D. Kroening. An
abstract interpretation of DPLL(T). Giacobazzi et al. [118], 455–475.

[25] F. Bueno, M. J. G. de la Banda, and M. V. Hermenegildo. Effectivness
of abstract interpretation in automatic parallelization: A case study in
logic programming. ACM Trans. Program. Lang. Syst., 21(2):189–
239, 1999.

[26] F. Bueno, P. López-Garcı́a, and M. V. Hermenegildo. Mul-
tivariant non-failure analysis via standard abstract interpretation.
Y. Kameyama and P. J. Stuckey, editors, FLOPS, volume 2998 of Lec-
ture Notes in Computer Science, 100–116. 2004.

[27] T. Bultan and P.-A. Hsiung, editors. Automated Technology for Ver-
ification and Analysis, 9th International Symposium, ATVA 2011,
Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of
Lecture Notes in Computer Science. 2011.

[28] F. Camporesi, J. Feret, and J. Hayman. Context-sensitive flow analy-
ses: A hierarchy of model reductions. A. Gupta and T. A. Henzinger,
editors, CMSB, volume 8130 of Lecture Notes in Computer Science,
220–233. 2013.

[29] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis.
G. C. Necula and P. Wadler, editors, POPL, 247–260. 2008.

[30] L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An
abstract domain to infer interval linear relationships. J. Palsberg
and Z. Su, editors, SAS, volume 5673 of Lecture Notes in Computer
Science, 309–325. 2009.

[31] L. Chen, A. Miné, J. Wang, and P. Cousot. An abstract domain to
discover interval linear equalities. G. Barthe and M. V. Hermenegildo,
editors, VMCAI, volume 5944 of Lecture Notes in Computer Science,
112–128. 2010.

[32] L. Chen, A. Miné, J. Wang, and P. Cousot. Linear absolute value
relation analysis. G. Barthe, editor, ESOP, volume 6602 of Lecture
Notes in Computer Science, 156–175. 2011.

[33] A. Cortesi, G. Costantini, and P. Ferrara. A survey on product opera-
tors in abstract interpretation. Banerjee et al. [11], 325–336.

[34] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
Complementation in abstract interpretation. Mycroft [181], 100–117.

[35] A. Cortesi and R. Halder. Abstract interpretation of recursive queries.
C. Hota and P. K. Srimani, editors, ICDCIT, volume 7753 of Lecture
Notes in Computer Science, 157–170. 2013.

[36] A. Cortesi and M. Zanioli. Widening and narrowing operators for
abstract interpretation. Computer Languages, Systems & Structures,
37(1):24–42, 2011.

[37] G. Costantini, P. Ferrara, and A. Cortesi. Linear approximation
of continuous systems with trapezoid step functions. R. Jhala and
A. Igarashi, editors, APLAS, volume 7705 of Lecture Notes in Com-
puter Science, 98–114. 2012.

[38] P. Cousot. Asynchronous iterative methods for solving a fixed point
system of monotone equations in a complete lattice. Res. rep. R.R. 88,
Laboratoire IMAG, Université scientifique et médicale de Grenoble,
Grenoble, France, Sep. 1977. 15 p.

[39] P. Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémanti-
que de programmes (in French). Thèse d’État ès sciences mathémati-
ques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

[40] P. Cousot. Semantic foundations of program analysis. S. Muchnick
and N. Jones, editors, Program Flow Analysis: Theory and Appli-
cations, chapter 10, 303–342. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981.

[41] P. Cousot. Methods and logics for proving programs. Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semat-
ics (B), 841–994. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, 1990.

[42] P. Cousot. Abstract interpretation based static analysis parameterized
by semantics. Hentenryck [139], 388–394.

[43] P. Cousot. Types as abstract interpretations. P. Lee, F. Henglein, and
N. D. Jones, editors, POPL, pages 316–331. ACM Press, 1997.

[44] P. Cousot. The calculational design of a generic abstract interpreter.
M. Broy and R. Steinbrüggen, editors, Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

[45] P. Cousot. Partial completeness of abstract fixpoint checking. B. Y.
Choueiry and T. Walsh, editors, SARA, volume 1864 of Lecture Notes
in Computer Science, 1–25. 2000.

[46] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theor. Comput. Sci., 277
(1-2):47–103, 2002.

[47] P. Cousot. Verification by abstract interpretation. N. Dershowitz, edi-
tor, Proc. Int. Symp. on Verification – Theory & Practice – Honoring
Zohar Manna’s 64th Birthday, pages 243–268, Taormina, Italy, June
29 – July 4 2003. c© Springer-Verlag, Berlin, Germany.

[48] P. Cousot. Formal verification by abstract interpretation. A. Good-
loe and S. Person, editors, NASA Formal Methods, volume 7226 of
Lecture Notes in Computer Science, 3–7. 2012.

[49] P. Cousot and R. Cousot. Static verification of dynamic type properties
of variables. Res. rep. R.R. 25, Laboratoire IMAG, Université scien-
tifique et médicale de Grenoble, Grenoble, France, Nov. 1975. 18
p.

[50] P. Cousot and R. Cousot. Vérification statique de la cohérence dyna-
mique des programmes. Res. rep. Rapport du contrat IRIA SESORI
No 75-035, Laboratoire IMAG, Université scientifique et médicale de
Grenoble, Grenoble, France, 23 Sep. 1975. 125 p.

[51] P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. Proceedings of the Second International Symposium on
Programming, 106–130. Dunod, Paris, France, 1976.

[52] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. R. M. Graham, M. A. Harrison, and R. Sethi, editors,
POPL, 238–252. 1977.

[53] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant
assertions: mathematical foundations. ACM Symposium on Artificial
Intelligence & Programming Languages, Rochester, NY, ACM SIG-
PLAN Not. 12(8):1–12, Aug. 1977.

[54] P. Cousot and R. Cousot. Static determination of dynamic properties
of generalized type unions. ACM Symposium on Language Design for
Reliable Software, Raleigh, North Calorina, ACM SIGPLAN Notices
12(3):77–94, 1977.

[55] P. Cousot and R. Cousot. Static determination of dynamic properties
of recursive procedures. E. Neuhold, editor, IFIP Conf. on Formal
Description of Programming Concepts, St-Andrews, N.B., CA, 237–
277. North-Holland, 1977.

[56] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. A. V. Aho, S. N. Zilles, and B. K. Rosen, editors, POPL,
269–282. ACM Press, 1979.

[57] P. Cousot and R. Cousot. Semantic analysis of communicating se-
quential processes (shortened version). J. W. de Bakker and J. van

Leeuwen, editors, ICALP, volume 85 of Lecture Notes in Computer
Science, 119–133. 1980.

[58] P. Cousot and R. Cousot. Invariance proof methods and analysis tech-
niques for parallel programs. A. Biermann, G. Guiho, and Y. Ko-
dratoff, editors, Automatic Program Construction Techniques, chap-
ter 12, 243–271. Macmillan, New York, New York, United States,
1984.

[59] P. Cousot and R. Cousot. Sometime = always + recursion = always
on the equivalence of the intermittent and invariant assertions methods
for proving inevitability properties of programs. Acta Inf., 24(1):1–31,
1987.

[60] P. Cousot and R. Cousot. Comparison of the Galois connec-
tion and widening/narrowing approaches to abstract interpretation.
JTASPEFT/WSA, 107–110, 1991.

[61] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. J. Log. Program., 13(2&3):103–179, 1992.

[62] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511–547, 1992.

[63] P. Cousot and R. Cousot. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract interpretation.
M. Bruynooghe and M. Wirsing, editors, PLILP, volume 631 of Lec-
ture Notes in Computer Science, 269–295. 1992.

[64] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretation. R. Sethi, editor, POPL, 83–94. ACM Press, 1992.

[65] P. Cousot and R. Cousot. ”a la Burstall” intermittent assertions induc-
tion principles for proving inevitable ability properties of programs.
Theor. Comput. Sci., 120(1):123–155, 1993.

[66] P. Cousot and R. Cousot. Galois connection based abstract interpre-
tations for strictness analysis (invited paper). Bjørner et al. [15], 98–
127.

[67] P. Cousot and R. Cousot. Invited talk: Higher order abstract interpreta-
tion (and application to comportment analysis generalizing strictness,
termination, projection, and PER analysis). Bal [10], 95–112.

[68] P. Cousot and R. Cousot. Compositional and inductive semantic
definitions in fixpoint, equational, constraint, closure-condition, rule-
based and game-theoretic form. P. Wolper, editor, CAV, volume 939
of Lecture Notes in Computer Science, 293–308. 1995.

[69] P. Cousot and R. Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. FPCA,
170–181, 1995.

[70] P. Cousot and R. Cousot. Abstract interpretation of algebraic polyno-
mial systems (extended abstract). M. Johnson, editor, AMAST, volume
1349 of Lecture Notes in Computer Science, 138–154. 1997.

[71] P. Cousot and R. Cousot. Temporal abstract interpretation. M. N.
Wegman and T. W. Reps, editors, POPL, 12–25. 2000.

[72] P. Cousot and R. Cousot. A case study in abstract interpretation based
program transformation: Blocking command elimination. Electr.
Notes Theor. Comput. Sci., 45:41–64, 2001.

[73] P. Cousot and R. Cousot. Modular static program analysis. R. N.
Horspool, editor, CC, volume 2304 of Lecture Notes in Computer
Science, 159–178. 2002.

[74] P. Cousot and R. Cousot. Systematic design of program transforma-
tion frameworks by abstract interpretation. J. Launchbury and J. C.
Mitchell, editors, POPL, pages 178–190. 2002.

[75] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar
semantics. Theor. Comput. Sci., 290(1):531–544, 2003.

[76] P. Cousot and R. Cousot. An abstract interpretation-based framework
for software watermarking. Jones and Leroy [147], 173–185.

[77] P. Cousot and R. Cousot. Grammar analysis and parsing by abstract
interpretation. T. W. Reps, M. Sagiv, and J. Bauer, editors, Program
Analysis and Compilation, volume 4444 of Lecture Notes in Com-
puter Science, 175–200. 2006.

[78] P. Cousot and R. Cousot. Bi-inductive structural semantics. Inf.
Comput., 207(2):258–283, 2009.

[79] P. Cousot and R. Cousot. A gentle introduction to formal verification
of computer systems by abstract interpretation. J. Esparza, B. Spanfel-
ner, and O. Grumberg, editors, Logics and Languages for Reliability
and Security, volume 25 of NATO Science for Peace and Security Se-
ries - D: Information and Communication Security, 1–29. IOS Press,
2010.

[80] P. Cousot and R. Cousot. Grammar semantics, analysis and parsing
by abstract interpretation. Theor. Comput. Sci., 412(44):6135–6192,
2011.

[81] P. Cousot and R. Cousot. An abstract interpretation framework for
termination. J. Field and M. Hicks, editors, POPL, 245–258. 2012.

[82] P. Cousot and R. Cousot. A Galois connection calculus for abstract
interpretation. Jagannathan and Sewell [143], 3–4.

[83] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic
inference of necessary preconditions. Giacobazzi et al. [118], 128–
148.

[84] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The Astrée analyzer. S. Sagiv, editor, ESOP, volume
3444 of Lecture Notes in Computer Science, 21–30. 2005.

[85] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Combination of abstractions in the Astrée static
analyzer. M. Okada and I. Satoh, editors, ASIAN, volume 4435 of
Lecture Notes in Computer Science, 272–300. 2006.

[86] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Why does Astrée scale up? Formal Methods in System Design, 35(3):
229–264, 2009.

[87] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux,
and X. Rival. Varieties of static analyzers: A comparison with Astrée.
TASE, 3–20. IEEE Computer Society, 2007.

[88] P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of
resolution-based semantics. Theor. Comput. Sci., 410(46):4724–4746,
2009.

[89] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. T. Ball
and M. Sagiv, editors, POPL, 105–118. 2011.

[90] P. Cousot, R. Cousot, F. Logozzo, and M. Barnett. An abstract
interpretation framework for refactoring with application to extract
methods with contracts. G. T. Leavens and M. B. Dwyer, editors,
OOPSLA, pages 213–232. 2012.

[91] P. Cousot, R. Cousot, and L. Mauborgne. Logical abstract domains
and interpretations. S. Nanz, editor, The Future of Software Engineer-
ing, pages 48–71. 2010.

[92] P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of ab-
stract domains and the combination of decision procedures. M. Hof-
mann, editor, FOSSACS, volume 6604 of Lecture Notes in Computer
Science, 456–472. 2011.

[93] P. Cousot, R. Cousot, and L. Mauborgne. Theories, solvers and static
analysis by abstract interpretation. J. ACM, 59(6):31, 2012.

[94] P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction
refinements. Nielson and Filé [185], 333–348.

[95] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. A. V. Aho, S. N. Zilles, and T. G.
Szymanski, editors, POPL, 84–96. ACM Press, 1978.

[96] P. Cousot and M. Monerau. Probabilistic abstract interpretation.
H. Seidl, editor, ESOP, volume 7211 of Lecture Notes in Computer
Science, 169–193. 2012.

[97] R. Cousot. Fondements des méthodes de preuve d’invariance et de fa-
talité de programmes parallèles (in French). Thèse d’État ès sciences
mathématiques, Nancy, Institut national polytechnique de Lorraine,
15 November 1985.

[98] R. Cousot, editor. Static Analysis, 10th International Symposium, SAS
2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, volume
2694 of Lecture Notes in Computer Science. 2003.

[99] S. Crafa and F. Ranzato. Bisimulation and simulation algorithms
on probabilistic transition systems by abstract interpretation. Formal
Methods in System Design, 40(3):356–376, 2012.

[100] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Abstracting
the differential semantics of rule-based models: Exact and automated
model reduction. LICS, 362–381. IEEE Computer Society, 2010.

[101] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation
of cellular signalling networks. F. Logozzo, D. Peled, and L. D. Zuck,
editors, VMCAI, volume 4905 of Lecture Notes in Computer Science,
83–97. 2008.

[102] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
F. Védrine. Towards an industrial use of fluctuat on safety-critical
avionics software. M. Alpuente, B. Cook, and C. Joubert, editors,
FMICS, volume 5825 of Lecture Notes in Computer Science, 53–69.
2009.

[103] D. Delmas and J. Souyris. Astrée from research to industry. Nielson
and Filé [185], 437–451.

[104] G. Delzanno, R. Giacobazzi, and F. Ranzato. Static analysis, ab-
stract interpretation and verification in (constraint logic) program-
ming. A. Dovier and E. Pontelli, editors, 25 Years GULP, volume
6125 of Lecture Notes in Computer Science, 136–158. 2010.

[105] V. D’Silva, L. Haller, and D. Kroening. Abstract conflict driven
learning. R. Giacobazzi and R. Cousot, editors, POPL, 143–154.
2013.

[106] V. D’Silva, L. Haller, and D. Kroening. Abstract satisfaction. Jagan-
nathan and Sewell [143], 139–150.

[107] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. B. Beckert and C. Marché, editors, FoVeOOS, volume
6528 of Lecture Notes in Computer Science, 10–30. 2010.

[108] C. Ferdinand, R. Heckmann, and R. Wilhelm. Analyzing the worst-
case execution time by abstract interpretation of executable code.
M. Broy, I. H. Krüger, and M. Meisinger, editors, ASWSD, volume
4147 of Lecture Notes in Computer Science, 1–14. 2004.

[109] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior
prediction by abstract interpretation. Sci. Comput. Program., 35(2):
163–189, 1999.

[110] J. Feret. Static analysis of digital filters. D. A. Schmidt, editor, ESOP,
volume 2986 of Lecture Notes in Computer Science, 33–48. 2004.

[111] J. Feret. The arithmetic-geometric progression abstract domain.
R. Cousot, editor, VMCAI, volume 3385 of Lecture Notes in Com-
puter Science, 42–58. 2005.

[112] P. Ferrara. Static analysis via abstract interpretation of the happens-
before memory model. B. Beckert and R. Hähnle, editors, TAP,
volume 4966 of Lecture Notes in Computer Science, 116–133. 2008.

[113] P. Ferrara. Checkmate: A generic static analyzer of Java multithreaded
programs. D. V. Hung and P. Krishnan, editors, SEFM, 169–178.
IEEE Computer Society, 2009.

[114] P. Ferrara. Generic combination of heap and value analyses in abstract
interpretation. McMillan and Rival [164], 302–321.

[115] G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view of abstract
domain design. ACM Comput. Surv., 28(2):333–336, 1996.

[116] G. Filé and F. Ranzato. The powerset operator on abstract interpreta-
tions. Theor. Comput. Sci., 222(1-2):77–111, 1999.

[117] T. M. Gawlitza, H. Seidl, A. Adjé, S. Gaubert, and E. Goubault.
Abstract interpretation meets convex optimization. J. Symb. Comput.,
47(12):1416–1446, 2012.

[118] R. Giacobazzi, J. Berdine, and I. Mastroeni, editors. Verification,
Model Checking, and Abstract Interpretation, 14th International Con-
ference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceed-
ings, volume 7737 of Lecture Notes in Computer Science. 2013.

[119] R. Giacobazzi, S. K. Debray, and G. Levi. Generalized semantics and
abstract interpretation for constraint logic programs. J. Log. Program.,
25(3):191–247, 1995.

[120] R. Giacobazzi and I. Mastroeni. Non-standard semantics for program
slicing. Higher-Order and Symbolic Computation, 16(4):297–339,
2003.

[121] R. Giacobazzi and I. Mastroeni. Abstract non-interference: parame-
terizing non-interference by abstract interpretation. Jones and Leroy
[147], 186–197.

[122] R. Giacobazzi and I. Mastroeni. Transforming semantics by abstract
interpretation. Theor. Comput. Sci., 337(1-3):1–50, 2005.

[123] R. Giacobazzi and I. Mastroeni. Transforming abstract interpretations
by abstract interpretation. Alpuente and Vidal [4], 1–17.

[124] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples,
and refinements in abstract model-checking. P. Cousot, editor, SAS,
volume 2126 of Lecture Notes in Computer Science, 356–373. 2001.

[125] R. Giacobazzi and F. Ranzato. The reduced relative power operation
on abstract domains. Theor. Comput. Sci., 216(1-2):159–211, 1999.

[126] R. Giacobazzi and F. Ranzato. Incompleteness of states w.r.t. traces
in model checking. Inf. Comput., 204(3):376–407, 2006.

[127] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpre-
tations complete. J. ACM, 47(2):361–416, 2000.

[128] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract domains
condensing. ACM Trans. Comput. Log., 6(1):33–60, 2005.

[129] F. Giannotti and D. Latella. Gate splitting in LOTOS specifications
using abstract interpretation. Sci. Comput. Program., 23(2-3):127–
149, 1994.

[130] T. Gilray and M. Might. A survey of polyvariance in abstract inter-
pretations. J. McCarthy, editor, Trends in Functional Programming,
volume 8322 of Lecture Notes in Computer Science, 134–148. 2013.

[131] D. Gopan and T. W. Reps. Lookahead widening. T. Ball and R. B.
Jones, editors, CAV, volume 4144 of Lecture Notes in Computer
Science, 452–466. 2006.

[132] E. Goubault. Schedulers as abstract interpreter of higher dimensional
automata. N. D. Jones, editor, PEPM, 134–145. ACM Press, 1995.

[133] E. Goubault and S. Putot. Static analysis of numerical algorithms.
K. Yi, editor, SAS, volume 4134 of Lecture Notes in Computer Sci-
ence, 18–34. 2006.

[134] E. Goubault, S. Putot, and F. Védrine. Modular static analysis with
zonotopes. Miné and Schmidt [174], 24–40.

[135] N. Halbwachs. About synchronous programming and abstract inter-
pretation. Sci. Comput. Program., 31(1):75–89, 1998.

[136] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-
point logic with systematic abstraction. G. Cabodi and S. Singh,
editors, FMCAD, 131–140. IEEE, 2012.

[137] M. Handjieva and S. Tzolovski. Refining static analyses by trace-
based partitioning using control flow. G. Levi, editor, SAS, volume
1503 of Lecture Notes in Computer Science, 200–214. 1998.

[138] C. Hankin. Graph rewriting systems and abstract interpretation. G. L.
Burn, S. J. Gay, and M. Ryan, editors, Theory and Formal Methods,
Workshops in Computing, 27–36. 1993.

[139] P. V. Hentenryck, editor. Static Analysis, 4th International Sympo-
sium, SAS ’97, Paris, France, September 8-10, 1997, Proceedings,

volume 1302 of Lecture Notes in Computer Science. 1997.
[140] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation

strategies for hybrid automata. P. J. Antsaklis, W. Kohn, A. Nerode,
and S. Sastry, editors, Hybrid Systems, volume 999 of Lecture Notes
in Computer Science, pages 252–264. 1994.

[141] T. A. Henzinger, R. Majumdar, F. Y. C. Mang, and J.-F. Raskin.
Abstract interpretation of game properties. Palsberg [186], 220–239.

[142] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a. In-
tegrated program debugging, verification, and optimization using ab-
stract interpretation (and the Ciao system preprocessor). Sci. Comput.
Program., 58(1-2):115–140, 2005.

[143] S. Jagannathan and P. Sewell, editors. The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. 2014.

[144] B. Jeannet and A. Miné. Apron: A library of numerical abstract
domains for static analysis. A. Bouajjani and O. Maler, editors, CAV,
volume 5643 of Lecture Notes in Computer Science, 661–667. 2009.

[145] B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract acceler-
ation of general linear loops. Jagannathan and Sewell [143], 529–540.

[146] N. D. Jones. Combining abstract interpretation and partial evaluation
(brief overview). Hentenryck [139], 396–405.

[147] N. D. Jones and X. Leroy, editors. Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, Venice, Italy, January 14-16, 2004. 2004.

[148] N. D. Jones and F. Nielson. Abstract interpretation: a semantics-
based tool for program analysis, 527–636. Oxford University Press,
1995.

[149] N. D. Jones and M. Rosendahl. Higher-order minimal function
graphs. Journal of Functional and Logic Programming, 1997(2),
1997.

[150] D. Kästner, C. Ferdinand, S. Wilhelm, S. Nenova, O. Honcharova,
P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival,
and É.-J. Sims. Astrée: Nachweis der Abwesenheit von Laufzeit.
Softwaretechnik-Trends, 29(3), 2009.

[151] G. A. Kildall. A unified approach to global program optimization.
P. C. Fischer and J. D. Ullman, editors, POPL, pages 194–206. ACM
Press, 1973.

[152] T. Lev-Ami, R. Manevich, and S. Sagiv. TVLA: A system for gener-
ating abstract interpreters. R. Jacquart, editor, IFIP Congress Topical
Sessions, pages 367–376. Kluwer, 2004.

[153] J. Lim and T. W. Reps. TSL: A system for generating abstract
interpreters and its application to machine-code analysis. ACM Trans.
Program. Lang. Syst., 35(1):4, 2013.

[154] F. Logozzo. Class-level modular analysis for object oriented lan-
guages. Cousot [98], 37–54.

[155] F. Logozzo, M. Barnett, M. Fähndrich, P. Cousot, and R. Cousot. A
semantic integrated development environment. G. T. Leavens, editor,
SPLASH, 15–16. 2012.

[156] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational ab-
stract domain for the efficient validation of array accesses. Sci. Com-
put. Program., 75(9):796–807, 2010.

[157] F. Logozzo and M. Fähndrich, editors. Static Analysis - 20th Interna-
tional Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.
Proceedings, volume 7935 of Lecture Notes in Computer Science.
2013.

[158] D. Massé. Combining forward and backward analyses of temporal
properties. O. Danvy and A. Filinski, editors, PADO, volume 2053 of
Lecture Notes in Computer Science, 103–116. 2001.

[159] D. Massé. Abstract domains for property checking driven analysis
of temporal properties. C. Rattray, S. Maharaj, and C. Shankland,
editors, AMAST, volume 3116 of Lecture Notes in Computer Science,
349–363. 2004.

[160] D. Massé. Policy iteration-based conditional termination and ranking
functions. McMillan and Rival [164], 453–471.

[161] L. Mauborgne. Abstract interpretation using typed decision graphs.
Sci. Comput. Program., 31(1):91–112, 1998.

[162] L. Mauborgne. An incremental unique representation for regular trees.
Nord. J. Comput., 7(4):290–311, 2000.

[163] L. Mauborgne. Infinitary relations and their representation. Sci.
Comput. Program., 47(2-3):121–144, 2003.

[164] K. L. McMillan and X. Rival, editors. Verification, Model Checking,
and Abstract Interpretation - 15th International Conference, VMCAI
2014, San Diego, CA, USA, January 19-21, 2014, Proceedings, vol-
ume 8318 of Lecture Notes in Computer Science. 2014.

[165] J. Midtgaard. Control-flow analysis of functional programs. ACM
Comput. Surv., 44(3):10, 2012.

[166] J. Midtgaard, M. D. Adams, and M. Might. A structural soundness
proof for shivers’s escape technique - a case for Galois connections.
Miné and Schmidt [174], 352–369.

[167] J. Midtgaard and T. P. Jensen. Control-flow analysis of function calls

and returns by abstract interpretation. Inf. Comput., 211:49–76, 2012.
[168] M. Might. Abstract interpreters for free. R. Cousot and M. Martel,

editors, SAS, volume 6337 of Lecture Notes in Computer Science,
407–421. 2010.

[169] B. Mihaila, A. Sepp, and A. Simon. Widening as abstract domain.
G. Brat, N. Rungta, and A. Venet, editors, NASA Formal Methods,
volume 7871 of Lecture Notes in Computer Science, pages 170–184.
2013.

[170] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[171] A. Miné. Abstract domains for bit-level machine integer and floating-
point operations. J. D. Fleuriot, P. Höfner, A. McIver, and A. Smaill,
editors, ATx/WInG@IJCAR, volume 17 of EPiC Series, 55–70. Easy-
Chair, 2012.

[172] A. Miné. Static analysis of run-time errors in embedded real-time
parallel C programs. Logical Methods in Computer Science, 8(1),
2012.

[173] A. Miné. Relational thread-modular static value analysis by abstract
interpretation. McMillan and Rival [164], 39–58.

[174] A. Miné and D. Schmidt, editors. Static Analysis - 19th International
Symposium, SAS 2012, Deauville, France, September 11-13, 2012.
Proceedings, volume 7460 of Lecture Notes in Computer Science.
2012.

[175] U. Möncke and R. Wilhelm. Grammar flow analysis. H. Alblas and
B. Melichar, editors, Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, 151–186. 1991.

[176] D. Monniaux. Abstract interpretation of probabilistic semantics. Pals-
berg [186], 322–339.

[177] B. Monsuez. Polymorphic typing by abstract interpretation. R. K.
Shyamasundar, editor, FSTTCS, volume 652 of Lecture Notes in Com-
puter Science, 217–228. 1992.

[178] S. Muñoz-Hernández, J. J. Moreno-Navarro, and M. V. Hermenegildo.
Efficient negation using abstract interpretation. R. Nieuwenhuis and
A. Voronkov, editors, LPAR, volume 2250 of Lecture Notes in Com-
puter Science, 485–494. 2001.

[179] K. Muthukumar and M. V. Hermenegildo. Combined determination
of sharing and freeness of program variables through abstract inter-
pretation. K. Furukawa, editor, ICLP, 49–63. MIT Press, 1991.

[180] A. Mycroft. The theory and practice of transforming call-by-need
into call-by-value. B. Robinet, editor, Symposium on Programming,
volume 83 of Lecture Notes in Computer Science, 269–281. 1980.

[181] A. Mycroft, editor. Static Analysis, Second International Symposium,
SAS’95, Glasgow, UK, September 25-27, 1995, Proceedings, volume
983 of Lecture Notes in Computer Science. 1995.

[182] A. Mycroft and N. D. Jones. A relational framework for abstract
interpretation. H. Ganzinger and N. D. Jones, editors, Programs as
Data Objects, volume 217 of Lecture Notes in Computer Science,
pages 156–171. 1985.

[183] P. Naur. The design of the GIER ALGOL compiler. BIT, 3:124–140
and 145–166, 1963.

[184] P. Naur. Checking of operand types in ALGOL compilers. BIT, 5:
151–163, 1965.

[185] H. R. Nielson and G. Filé, editors. Static Analysis, 14th Interna-
tional Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-
24, 2007, Proceedings, volume 4634 of Lecture Notes in Computer
Science. 2007.

[186] J. Palsberg, editor. Static Analysis, 7th International Symposium, SAS
2000, Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceedings,
volume 1824 of Lecture Notes in Computer Science. 2000.

[187] J. Palsberg and M. I. Schwartzbach. Binding-time analysis: Abstract
interpretation versus type inference. Bal [10], 277–288.

[188] É. Payet and F. Spoto. Static analysis of Android programs. Informa-
tion & Software Technology, 54(11):1192–1201, 2012.

[189] M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint
solver based on abstract domains. Giacobazzi et al. [118], 434–454.

[190] S. Perdrix. Quantum entanglement analysis based on abstract inter-
pretation. Alpuente and Vidal [4], 270–282.

[191] M. D. Preda and R. Giacobazzi. Semantics-based code obfuscation by
abstract interpretation. Journal of Computer Security, 17(6):855–908,
2009.

[192] M. D. Preda, I. Mastroeni, and R. Giacobazzi. A formal framework
for property-driven obfuscation strategies. L. Gasieniec and F. Wolter,
editors, FCT, volume 8070 of Lecture Notes in Computer Science,
133–144. 2013.

[193] M. D. Preda, I. Mastroeni, and R. Giacobazzi. Analyzing program
dependencies for malware detection. S. Jagannathan and P. Sewell,
editors, PPREW@POPL, page 6. 2014.

[194] F. Ranzato and F. Tapparo. Generalized strong preservation by ab-
stract interpretation. J. Log. Comput., 17(1):157–197, 2007.

[195] F. Ranzato and F. Tapparo. Generalizing the Paige-Tarjan algorithm

by abstract interpretation. Inf. Comput., 206(5):620–651, 2008.
[196] F. Ranzato and F. Tapparo. An efficient simulation algorithm based

on abstract interpretation. Inf. Comput., 208(1):1–22, 2010.
[197] T. W. Reps, J. Lim, A. V. Thakur, G. Balakrishnan, and A. Lal. There’s

plenty of room at the bottom: Analyzing and verifying machine code.
T. Touili, B. Cook, and P. Jackson, editors, CAV, volume 6174 of
Lecture Notes in Computer Science, 41–56. 2010.

[198] T. W. Reps, M. Sagiv, and R. Wilhelm. Shape analysis and applica-
tions. The Compiler Design Handbook, 2nd ed., page 12. CRC Press,
2007.

[199] J. C. Reynolds. Automatic computation of data set definitions. IFIP
Congress (1), 456–461, 1968.

[200] X. Rival. Certification of compiled assembly code by invariant trans-
lation. STTT, 6(1):15–37, 2004.

[201] X. Rival. Abstract dependences for alarm diagnosis. K. Yi, editor,
APLAS, volume 3780 of Lecture Notes in Computer Science, 347–
363. 2005.

[202] X. Rival and L. Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), 2007.

[203] M. Rosendahl. Abstract interpretation as a programming language.
Banerjee et al. [11], 84–104.

[204] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: inferring whole program properties from
finitely many paths. Boehm and Flanagan [19], 447–458.

[205] D. A. Schmidt. Natural-semantics-based abstract interpretation (pre-
liminary version). Mycroft [181], 1–18.

[206] D. A. Schmidt. On the need for a popular formal semantics. ACM
Comput. Surv., 28(4es):175, 1996.

[207] D. A. Schmidt. Data flow analysis is model checking of abstract
interpretations. D. B. MacQueen and L. Cardelli, editors, POPL, 38–
48. 1998.

[208] D. A. Schmidt. Inverse-limit and topological aspects of abstract
interpretation. Theor. Comput. Sci., 430:23–42, 2012.

[209] F. Scozzari. Domain theory in abstract interpretation: equations,
completeness and logic. PhD thesis, Dipartimento di Matematica,
Univ. di Siena, via del Capitano 15, I-53100 Siena, Italy, February
1999.

[210] I. Sergey, D. Devriese, M. Might, J. Midtgaard, D. Darais, D. Clarke,
and F. Piessens. Monadic abstract interpreters. Boehm and Flanagan
[19], 399–410.

[211] M. Sintzoff. Calculating properties of programs by valuations on
specific models. Proceedings of an ACM Conference on Proving
Assertions about Programs, Las Cruses, ACM SIGPLAN Notices
7(1):203–207, 6–7 January 1972.

[212] P. Sotin, B. Jeannet, F. Védrine, and E. Goubault. Policy iteration
within logico-numerical abstract domains. Bultan and Hsiung [27],
290–305.

[213] J. Souyris and D. Delmas. Experimental assessment of Astrée on
safety-critical avionics software. F. Saglietti and N. Oster, editors,
SAFECOMP, volume 4680 of Lecture Notes in Computer Science,
479–490. 2007.

[214] A. V. Thakur and T. W. Reps. A generalization of Stålmarck’s method.
Miné and Schmidt [174], 334–351.

[215] A. Toubhans, B.-Y. E. Chang, and X. Rival. Reduced product combi-
nation of abstract domains for shapes. Giacobazzi et al. [118], 375–
395.

[216] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. An-
dromeda: Accurate and scalable security analysis of web applications.
V. Cortellessa and D. Varró, editors, FASE, volume 7793 of Lecture
Notes in Computer Science, 210–225. 2013.

[217] S. Tzolovski. Data dependence as abstract interpretations. Hentenryck
[139], page 366.

[218] C. Urban and A. Miné. An abstract domain to infer ordinal-valued
ranking functions. Z. Shao, editor, ESOP, volume 8410 of Lecture
Notes in Computer Science, 412–431. 2014.

[219] M. Y. Vardi. Branching vs. linear time: Final showdown. T. Mar-
garia and W. Yi, editors, TACAS, volume 2031 of Lecture Notes in
Computer Science, 1–22. 2001.

[220] A. Venet and G. P. Brat. Precise and efficient static array bound
checking for large embedded C programs. W. Pugh and C. Chambers,
editors, PLDI, 231–242. 2004.

[221] B. Wegbreit. Property extraction in well-founded property sets. IEEE
Trans. Software Eng., 1(3):270–285, 1975.

[222] R. Wilhelm and B. Wachter. Abstract interpretation with applications
to timing validation. A. Gupta and S. Malik, editors, CAV, volume
5123 of Lecture Notes in Computer Science, 22–36. 2008.

[223] J. Yang and C.-J. H. Seger. Generalized symbolic trajectory evaluation
- abstraction in action. M. Aagaard and J. W. O’Leary, editors,
FMCAD, volume 2517 of Lecture Notes in Computer Science, 70–87.
2002.

