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Abstract
Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or ver-
ification of their combinatorial or undecidable properties. Devel-
oped in the late seventies, it has been since then used, implicitly
or explicitly, to many aspects of computer science (such as static
analysis and verification, contract inference, type inference, ter-
mination inference, model-checking, abstraction/refinement, pro-
gram transformation (including watermarking, obfuscation, etc),
combination of decision procedures, security, malware detection,
database queries, etc) and more recently, to system biology and
SAT/SMT solvers. Production-quality verification tools based on
abstract interpretation are available and used in the advanced soft-
ware, hardware, transportation, communication, and medical in-
dustries.

The talk will consist in an introduction to the basic notions of
abstract interpretation and the induced methodology for the sys-
tematic development of sound abstract interpretation-based tools.
Examples of abstractions will be provided, from semantics to typ-
ing, grammars to safety, reachability to potential/definite termina-
tion, numerical to protein-protein abstractions, as well as applica-
tions (including those in industrial use) to software, hardware and
system biology.

This paper is a general discussion of abstract interpretation, with
selected publications, which unfortunately are far from exhaustive
both in the considered themes and the corresponding references.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].

General Terms Algorithms, Languages, Reliability, Security,
Theory, Verification.

Keywords Abstract interpretation, Semantics, Proof, Verification,
Static Analysis.

1. Abstraction
No reasoning on complex systems, including computer systems,
can be done without abstracting the behavior, i.e. the semantics, of
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the system. Because reasoning on a system involves determining
or proving its properties, the central concept is the abstraction of
properties of the system, starting from the strongest one, as speci-
fied by the system semantics (and called the collecting semantics1).
This is the purpose of abstract interpretation (where “interpreta-
tion” stands both for “meaning” and “execution”). A few gentle
introductions to abstract interpretation [44, 79] can be consulted
for a first approach, including some publicly available on the web
(e.g. web.mit.edu/16.399/www/).

2. Scope
Abstract interpretation comprehends undecidable problems (hence
is also applicable to decidable but complex ones). This implies that
any tool (prover, checker, analyzer) designed by abstract interpre-
tation will fail on infinitely many counter-examples. For example
a finiteness or decidability hypothesis will only be applicable to a
very restricted class of programs with finite behavior, hence will
fail on infinitely many other ones. This is inherent to undecidable
problems hence inescapable. By failure we understand being un-
sound/incorrect, non-terminating, using a human oracle to assist
the computer, etc. Although abstract interpretation also applies to
these cases2, it is usually used for sound, terminating, and fully
automatic program analysis/verification, including the inference of
sound inductive arguments (like invariants) to deal with infinite re-
currences for unbounded/non-terminating executions, which makes
the problem particularly difficult, with a very high complexity.

3. Static analysis
The origin of abstract interpretation is in static program analysis
[50, 51] where reachable states are abstracted by local interval nu-
merical invariants understood as a generalization of type inference
[49, 54]. The abstraction from the collecting semantics was for-
malized by a Galois insertion and convergence acceleration of the
iterates by widening, later improved by narrowing. The main in-
novations at the time were to consider infinite non-Noetherian ab-
stractions of infinite systems and to prove rigorously the correct-
ness of the static analysis with respect to a formal semantics (see
more details in footnote 6).

1 The collecting (or static in [52]) semantics is the strongest property of the
standard semantics.
2 For example, some commercial products do consider only two iterations
in loops without widening, which is an under-approximation of an over-
approximating abstraction of program executions which can be formalized
by abstract interpretation theory. The theory also proves beyond doubt
that the result cannot be claimed to be a sound over-approximation of the
program behavior, a conclusion which is not always stated clearly enough
for practitioners to have a precise understanding of the scope of commercial
static analyzers.
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4. Acceleration of fixpoint iteration
The next step was to consider arbitrary fixpoints in ordered struc-
tures, order duality for approximations from above and below, as-
cending and descending iterations, as well as fixpoint iteration with
convergence acceleration from above and below with over- and
under-approximation using the following extrapolation operators
[39, Ch. 4], [52]

Extrapolation
operators

iteration
from below

iteration
from above

over-approximation widening narrowing

under-approximation dual narrowing dual widening

Chaotic [53] and asynchronous iterations [38, 39] (including at
higher-order [55, 149]) paved the way for demand-driven [203] and
parallel implementations of static analyzers [86]. Moreover this ap-
proach includes alternative, seemingly different, presentations of
static analysis (like constraint solving, deductive rules-based (type)
systems, etc which nicely generalize in the abstract [68]). The ex-
trapolation operators, which abstract the inference of an inductive
hypothesis in iteration are the more powerful, and difficult to de-
sign, aspects of abstract interpretation. The design of powerful ex-
trapolation operators pertinent to the degree of approximation of
an abstraction is still an art which remains to be much better under-
stood, formalized, and improved. Not enough work has be devoted
to the systematic design of extrapolation operators and the fact that
they cannot be increasing3 (a.o. [8, 21, 36, 63, 131, 169]). Simi-
larly non-iterative methods are just appearing for specific abstract
domains and programs such as exact widenings as in “abstract ac-
celeration” [145] and “policy iteration” [27, 117, 160, 212]4.

5. Semantics
Transition systems [39, 56] and recursive procedures [39, 55] (see
also [67]) departed from the initial consideration of flowcharts
understood as an intermediate program representation [49–51].
Backward and forward analyzes/proof methods become symmet-
ric by inversion of the transition system [39, 40, Ch. 3], [56] so
only one of them needs to be studied formally. Similarly for for-
ward/backward transformers and fixpoint duality (see the figure
on [52, page 241] prefiguring the µ-calculus). Which semantics
is to be preferred, small-step operational [39, 56], denotational
[148, 180], big-step natural [205], etc became subject to contro-
versies [206]. The solution was ultimately to relate all of them by
abstract interpretation.

Another alternative is to design a meta-language to define se-
mantics and to design a general purpose abstract interpreter taking
semantics as a parameter, either that of the program to be analyzed
or that of a programming language [42, 152, 168].

6. Hierarchies of semantics
The choice of a standard (or collecting) semantics may look fun-
damental in the design of abstract interpretations. On one hand,
the most concrete/collecting semantics dictates an initial specific
abstraction specifying the most precise expressible properties. If
the collecting semantics is too abstract, it has a limited expressive
power which also limits the scope of the static analysis/verification
methods that can be formally derived by abstract interpretation of
this collecting semantics. For example, with the big-step natural

3 Intuitively monotone/increasing operators would not be able to “jump”
over fixpoints.
4 Before [50], we tried to solve numerical interval equations by dichotomy,
but rapidly understood that the method would not be generalizable e.g. to
symbolic properties.

semantics [205], it is possible to abstract into a partial correct-
ness axiomatic semantics but not to reason on (non-)termination.
On the other hand, if the collecting semantics is too precise, then
further abstractions are more complex to express (in that they result
in more complex formulae in the Galois connection calculus [82]).

Nevertheless, the importance of the choice of a universal stan-
dard/collecting semantics should be greatly relativized. The reason
is that all known semantics are completely defined by an abstraction
of the concrete operational trace semantics and form a hierarchy
of semantics where all known semantics are recovered by abstrac-
tions [64] (some being Galois isomorphisms like between natural,
angelic, or respectively demonic denotational, relational, predicate
transformer, and axiomatic semantics). An abstraction based on any
semantics in the hierarchy will be comparable to any other abstrac-
tion based on a different semantics in the hierarchy by considering
the greatest lower bound in the hierarchy, which is the most abstract
semantics more precise than these two semantics.

This hierarchical semantic approach is valid for transition sys-
tems [46] (including transfinite behaviors [120]), grammars [80],
resolution-based languages like Prolog [61, 88], higher-order func-
tional languages [67, 78], etc.

7. Combinations of semantics
Sometimes, the collecting semantics cannot be expressed as a sin-
gle fixpoint but as a combination of fixpoints. An example in [39] is
the intersection of forward and backward reachability. In that case,
the best abstraction is not the trivial intersection of abstract forward
and abstract backward reachability but an iteration of forward and
backward abstract reachability analyzes [39, 61]. This generalizes
to more complex combinations of fixpoints as found e.g. in tem-
poral logic [94, 158, 159]. This point is not well understood when
reasoning on (abstract) models rather than on properties and their
different levels of abstraction.

8. Proof methods, verification and inference
Proof methods all consider an abstraction of the program seman-
tics and so can be explained by abstract interpretation using basic
induction principles such as fixpoint/post-fixpoint induction.

The essential difference between computer-aided verification
and static analysis is that in verification an inductive argument is as-
sumed to be provided by the end-user (e.g. loop invariants that must
be expressed in some logical language) whereas in static analysis,
this same inductive argument must be automatically inferred (and
expressed in some combination of abstract domains). Notice that
incompleteness in proof methods [41] follows from the abstraction
of the invariant expressible in the collecting semantics which may
be inexpressible in the abstract domain defined by the logical lan-
guage [91]. Inference is of course more difficult than verification,
for which the only problem is to prove implications, not to guess
what to prove. Nevertheless, verification has rapidly difficulties to
scale up when the size of the information to be provided by the
end-user is exponential in the size of the program [219].

9. Over- and under-approximation
The theory of abstract interpretation is usually only presented for
over-approximations. An over-approximation means that all execu-
tions (and maybe a few spurious ones) have to be considered. An
example is automatic reachability analysis with invariant inference
[52]. Right at the origin of the theory, under-approximation was
considered order or complement dual so there is no need to rephrase



the dual theory [52]5. An under-approximation means that some ex-
ecutions (and no spurious ones) have to be considered. However it
is significantly more difficult in practice. An example is the auto-
matic inference of necessary preconditions [83] (whereas an over-
approximation would yield sufficient preconditions).

10. Abstract domains
In abstract interpretation, properties are sets of objects with that
property [56]. For example, the collecting semantics is the single-
ton whose element is the standard semantics. So a concrete pro-
gram property is the set of its possible semantics. If executions are
traces, non-deterministic semantics are sets of traces, so properties
are sets of sets of traces (later called “hyper-properties”). So con-
crete properties can expressed as sets of sets of objects formalizing
the effect of an execution (e.g. traces). This point of view unifies
various versions of abstract interpretation which were first thought
to be different because they abstract different kind of semantics
(operational, denotational, predicate transformers, axiomatic).

Abstract domains encode a subset of the possible properties of a
program/system/etc. They are (pre-)ordered by a relation which en-
codes logical implication. Because of iteration/recursion, they must
also encode some notion of limit (of computations, including un-
bounded or infinite non-terminating ones). Such limits are often
expressed as least upper bounds of increasing chains for a compu-
tational order, which is often, but not always, the same as the log-
ical order. Strictness analysis [180] was the first example were the
logical and computational orders differ, but iterative fixpoint com-
putation and acceleration results extend naturally by considering
different ways of passing to the limit [66, 67].

It is quite remarkable that abstract domains are completely
determined by the concrete properties and a Galois connection.
This leads to the idea of a Galois connection calculus [82], which
allows to specify the essence of static analysis/verification methods
by defining the considered semantic domain and abstraction with a
single formula of the calculus. Another consequence is that abstract
domains are complete lattices since Galois connections preserve
existing least upper bounds.

11. Refinement of abstract domains
The refinement of an abstract domain consists in adding the mini-
mal new abstract properties to the domain so as to be able to express
exactly in the refined domain some of the concrete properties which
had to be strictly approximated in the original domain.

The first example was the disjunctive completion [56, Sect.
10.2], [116] of an abstract domain A: this is a refinement ℘(A)
of this abstract domain A adding to the disjunctive completion
℘(A) all the concrete disjunctions of elements of A originally
missing in A (hence which had to be strictly over-approximated
in A). It is the most abstract domain that is exact on disjunctions
of abstract properties in A. It was used in [56, Sect. 10.2] to prove
that the merge-over-all paths data flow analysis can be expressed
in fixpoint equational form 6. Similarly, the complementation [34]
adds complements that are missing in the abstract.

5 In [39, Ch. 4.1] both over- and under-approximations are explicitly con-
sidered to sandwich a fixpoint and it is stated that after Ch. 4.2 included,
dual results are to be left implicit.
6 At the time in data flow analysis, the merge-over-all paths, propagating
abstract properties along execution paths, was used as the concrete domain
to “justify” the abstract fixpoint data flow equations. This abstraction does
not loose information if and only if it is closed under disjunctive completion
[56, Sect. 10.2]. The correctness proof is therefore purely syntactic, not
related to the program semantics, hence essentially circular and unsound.
Using temporal logic to specify the data flow analysis does not help either
since it does link the data flow to the program syntax (flowchart) not to
its semantics [207]. For example, liveness is misinterpreted in [207] as

The transformer/fixpoint completion of an abstract domain is a
program-dependent refinement which minimally enriches this ab-
stract domain by adding to the abstract domain all the concrete
properties that would make the abstract transformer/fixpoint impre-
cise (so that all counter-examples are considered altogether [124])
[127]. Various weaker notions of transformer/fixpoint completion
can also be considered, e.g. ignoring termination [45], relative to
an observation of program behaviors [6], or complete with respect
to unification for resolution-based concrete semantics [128].

12. Combinations of abstract domains
The complex design of abstract domains/Galois connections is bet-
ter performed compositionally, starting from basic abstract do-
mains which are then refined (Sect. 11), combined (this Sect. 12),
and composed to get very expressive abstractions [56, Sect. 10],
[82]. This consists in defining a functor on abstract domains/Galois
connections than takes existing domains as parameter and creates a
new one.

The most popular abstract domain functor is certainly the re-
duced product [56, Sect. 10.1], and its numerous variants (such as
the more economical [33, 85]) and scope extensions [114, 215].
The reduced product functor creates a new domain out of existing
domains that essentially performs the conjunction of the informa-
tion carried by each domain by transferring commonly expressible
information between domains. It is the most abstract domain which
is more precise than the given domains. A recent example is the un-
derstanding of Nelson-Oppen combination of logical theories with
equality in SMT solvers as a reduced product [92, 96] where the
commonly expressible information between domains are uninter-
preted in/equalities between variables.

The reduced power functor [56, 125, Sect. 10.2] is used to ex-
press conditional abstract properties that rely upon abstract condi-
tions, as e.g. in an analysis by cases. The reduced power functor
has many more specific instances such as polyvariance for context-
sensitive analyzes [130] or trace partitioning [137, 202] where a
local invariant at a program point may depend upon an abstraction
of the history of computations reaching that point.

13. Equational design of abstract domains
The refinement (Sect. 11) and combination (Sect. 12) functors on
abstract domains can be used to recursively define abstract domains
equationally [115, 123, 209]. This has been exploited for semantics
[122] but remains to be exploited in static analysis e.g. in the
automatic design of static analyzers, which is the objective of the
Galois connection calculus [82].

14. Galois connections for best abstraction
If the concept of Galois connection is central to abstract interpre-
tation, it is equivalent to many other formalisms including clo-
sure operators [39, 56], Moore families and principal ideals, [56],
soundness/logical relations [182], topologies [55, 208], etc which

noted in [71]. Moreover the finiteness hypothesis to compute the solution
of the data flow equations using a fixpoint checker eliminate trivial infinite
but Noetherian analyses such as constant propagation. The correctness
argument in [151] is based upon a distributivity hypothesis not satisfied by
the main example of the paper which is constant propagation.
Other precursors [183, 184, 211] understood (non-relational) static analysis
as a specification calculus on non-standard values or (relational) static
analysis as recursive definitions [199] i.e. sound by definition. For example
the sign analysis in [211] is unsound in that negative 	 is interpreted as
< 0 and positive ⊕ as > 0 so that −1 × 0 = 0 is a counter-example

to the classical rule 	 × ⊕ = 	. 0 has no best abstraction and is handled
specifically in mathematics by simplification rules. Intuition is not always
right.



can express the concept of best abstraction: any concrete property
has a most precise approximation in the abstract [56]. An interest-
ing consequence is that the analysis/verification in the abstract is
completely determined by the collecting semantics and the abstrac-
tion (nothing else has to be invented apart from convergence ac-
celeration operators). This leads to the idea of calculational (even
automatic) design [44, 210], or at least automatic certification of
analyzers/verifiers (such as [44] and its extensions which has been
formally checked in Coq [18]).

15. In absence of best abstraction
It was recognized early that in many cases there is no best abstrac-
tion. For example in [95], there is no best/smallest, even no minimal
polyhedron enclosing a disk. Then only half of the Galois connec-
tion can be used [62], the most popular one being a concretization
function only [95]. Because Galois connection preserves arbitrary
joins the power set structure of concrete properties is preserved as
complete lattices in abstract domains. This is no longer the case in
absence of best abstraction, in which case joins/meets, even finite
ones may not exist (so e.g. [151, 221] are no longer applicable).
This can be compensated by using widening/narrowing7. Another
example is the abstraction of languages by grammars [69] or of
properties by a logical theory [91] where there is no best abstrac-
tion. In that case properties and fixpoint transformers may have in-
finitely many sound abstractions without a best/most precise one
and so arbitrary choices have to be made in the abstract.

16. Abstraction of syntax
The syntax of languages as described by grammars provide varied
examples of abstractions. Grammars can be given a fixpoint oper-
ational semantics of derivations which abstractions yield e.g. the
Chomsky-Schützenberger fixpoint characterization of the language
generated by the grammar, as well as top-down and bottom-up
parsers and numerous algorithms used in compilation [75, 77, 80].
This generalizes to resolution-based languages [88] where essen-
tially, text substitution is replaced by unification.

17. Syntactic abstractions
By syntactic abstraction we mean an abstraction of a collecting se-
mantics to a meta-formalism describing languages, such as regular
expressions, context-free grammars [69], or even theories in logic
[93]. Typically, for syntactic abstractions, unless a property is ex-
actly describable in the meta-formalism, there is no best abstrac-
tion. For example, if an over approximation of non-regular lan-
guage of finite unbounded strings on a finite alphabet is described
by a regular expression, there exists a sentence, of say length n, de-
riving from the regular expression which is not in the non-regular
language to be over-approximated. A better description of the non-
regular language consists in the regular expression enumerating the
finitely many sentences of length less than or equal to n, and over
approximating only those of greater length. There is no best and
even minimal abstraction since, at least in theory, n can be indefi-
nitely increased to get better and better abstractions. Of course the
description of the concrete collecting semantics must not be sub-
ject to such expressivity restrictions which explains that abstract
interpretation describe concrete domains using set/model theory
rather than proof theory for a given first-order logic. Category the-
ory would also be a mathematically reasonable choice, although it
might not help in practice and would considerably restrict the read-
ership [1].

7 which is the first use of widening/narrowing in [39, Ch. 4], the conver-
gence condition being later added [39, Ch. 5] to ensure termination of fix-
point iteration.

18. Abstraction of programs versus languages,
and the power of extrapolation operators

That verification/analysis formal method have to be designed for
programming languages and not for checking a given program (or
a given model) makes a significant difference by adding a universal
dependence on all programs of the language. So an abstract domain
collects the part of the abstraction which is common to all programs
and must be instantiated when analyzing a specific program.

A first example is set-based analysis which is often presented
as acting on an infinite domain, which is true for the language,
whereas a finite subset only is used for any given program. A conse-
quence is that the set-based constraint-solving methods turned out
to be mere finite fixpoint iterations in a finite domain [69].

A second example is on the use of Notherian/finite or non-
Notherian/infinite domains. The case of finite abstractions is easy
since always equivalent to predicate abstraction and reciprocally
[47]. On the contrary, abstract interpretation stresses infinite non-
Noetherian abstractions of infinitary properties. For a given pro-
gram, a complete finite abstraction does exist for proving any de-
sired property of this particular program [45]. In fact finding this
abstraction or the proof is mathematically equivalent (and unde-
cidable except e.g. for finite states). This is no longer the case
for programming languages, for which any finite abstraction, or fi-
nite refinement [94], will fail or not terminate on infinitely many
programs for which an infinite abstraction would have succeeded
[45, 60]. This means that the relevant abstraction can only be deter-
mined during the analysis, which is the rôle of extrapolation oper-
ators.

Moreover, in practice, a finitude hypothesis is not of much help,
since it does not prevent the combinatorial explosion of the set of
cases to be considered, so that extrapolation operators must be used
(or replaced by specific fixpoint computation methods when they
exist). Of course trivial extrapolation operators (like any execution
is to be over-approximated by chaos after a given number of steps)
lead to very poor results, which are inconclusive but of a finite
number of cases. Others like Milner’s idea that all instances of a
recursive procedure should be the same polymorphic type, which
is a widening [43, 177], is quite satisfactory in practice.

19. Temporal abstraction
Although initially designed for reachability analysis [51], abstract
interpretation applies sensu stricto to temporal properties, includ-
ing time-symmetric trace-based ones referring both to the past,
present, and future [71] (for which incompleteness results can be
proved even for finite systems [126]).

20. Languages
Almost all families of programming languages (imperative lan-
guages [52], functional languages [180], Prolog [13, 26, 104, 142,
178, 179], constraint logic programs [119, 142], constraint solvers
[189], database query languages [35], object-oriented languages
[154], multithreaded programs [112], byte code [12], machine code
[108, 109, 153, 222], etc), but also specification languages [129],
grammars [175], algebraic polynomial systems [70], graph rewrit-
ing systems [138], logics [5], games [141], synchronous languages
[135], continuous systems [37], hybrid automata [140], quantum
computing [190], etc have been subject to static analysis by abstract
interpretation.

21. Control-flow analysis
Besides data, static analysis by abstract interpretation should take
into account the control structure of programs.

Control-flow (closure, escape, binding-time, etc) analysis are an
abstract interpretation [165–167, 187].



22. Parallelism
Parallelism was considered early as a challenge to scalability [57,
58, 97]. One important aspect was which collecting semantics
should be considered, otherwise stated which semantic model and
proof methods should be abstracted. It turned out that the proof
methods known at the time were just different abstractions of the
same interleaving semantics [97]. Unfortunately the interest of
funding studies of parallelism faded in the late eighties because
the speed of sequential processors was progressing spectacularly.
But any exponential process must stop by exhaustion of resources,
which is the case nowadays, so the interest in parallelism is revived,
by necessity. Fortunately, principles are immutable, so that more
recent proof methods such as assume-guarantee, are also, like all
proof methods, abstract interpretations, which can serve as an ef-
fective basis for designing scalable analyzers of parallel programs
[172, 173]. Other aspects of parallelism are scheduling [132], par-
allelization of sequential or non-deterministic programs, where ab-
stract interpretation can be used to take semantic aspects into ac-
count [25, 217].

23. Types
Type theory that developed around operational semantics, subject
reduction, type inference by unification and typing rules, long ap-
peared hardly comparable to abstract interpretation. This is not
the case since [43] showed that polymorphic types and type in-
ference are abstract interpretations with widening (to exclude re-
cursive calls of functions with infinitely many different principle
types). The approach was based on a denotational semantics, which
was intentionally unusual but not surprising in the hierarchy of se-
mantics [46]. The same approach applies to other unification-based
analyzes [3].

24. Binary abstraction and hardware analysis
Binary abstractions abstract infinite sets of sequences with finite
elements, sometimes of bounded length hence finite but still very
large which requires widening for scalability [161, 171]. A trivial
abstraction where “0 or 1” cases are abstracted into > is used for
hardware analysis [223] and is one of the rare formal methods that
scales on complex hardware. A more sophisticated abstract domain
is in Astrée used to analyze integers and floats in their machine
representation [171].

25. Numerical abstractions
Numerical abstractions abstract infinite sets of numerical vectors of
finite dimension. There are numerous examples, including convex
abstractions such as the non-relational intervals [52], and the rela-
tional linear inequalities [95], linear interval inequalities [30, 31],
zonotopes [134] and a few non-convex abstractions such as linear
absolute value inequalities [32]. Very good compromises such as
octagons [170], pentagons [156], or parallelotopes [7] provide both
scalability and enough precision for most common situations (like
buffer-overrun checking in case the array bounds are symbolic).

26. Symbolic abstractions
Symbolic abstractions abstract infinite sets of in/finite functions,
graphs, etc as found in most programming languages such as arrays
[89], trees [162], infinitary relations [163], and heaps (like non-
sharing [54, 55] or shape analysis [29, 198]). This research area
where directly reusable mathematics essentially does not exist is
quite important and still in infancy (except in a few easier particular
cases, such as linear lists).

27. Simulations
(Bi-)simulations are abstract interpretations [194]. This new under-
standing has lead to more efficient simulation [196] and partition-
ing [195] algorithms.

28. Probabilistic abstractions
Probabilistic abstraction is another relatively underdeveloped ap-
plication domain of abstract interpretation [2, 96, 99, 176, 204].
The reasons are that probabilistic behaviors are often only known
with imprecision, that they mix with non-determinism on data, and
that inference for infinite systems is much more complex than enu-
meration in the finite case since very subtle extrapolations are re-
quested for precision.

29. Program transformation
The main applications of abstract interpretation beyond static anal-
ysis (e.g. to automatically infer loop invariants), are program trans-
formations such as partial evaluation [146], abstract debugging
[22, 40] abstract slicing [201], parallelization (see Sect. 22), com-
pilation [200], etc.

Program transformations can be formalized as an abstraction,
where a syntactic transformation of a source program is under-
stood as first performed on the source program semantics to get
a generally more efficient although equivalent transformed seman-
tics which is then abstracted into the object program [74]. This is
another example of syntactic abstraction (of the transformed se-
mantics into the object program). More examples include partial
evaluation [74], dead-end elimination [72], and refactoring [90].

30. Termination
Termination is an abstract interpretation [81] where the transfinite
variant functions abstract in each program state what remains to be
executed before potential or definite termination. This termination
abstraction yields known proof methods [59, 65, 97] while further
abstractions with widenings (e.g. piecewise linear [218] or ordinal-
valued [218]) or policy iteration ([160]) yield static analyzers auto-
matically inferring abstractions of variant functions. Another aspect
of time abstraction is the determination of bounds on the worst-case
execution times of programs [108, 109, 222].

31. Modularity
Static analyzers are complex programs, certainly much more com-
plex than compilers, so they must be modular and extensible. The
design by combination of abstractions is fundamental for scalabil-
ity and extensibility [85]. Another aspect is the modular analysis
of programs by parts [73]. The sound analyzers can be classified
into the ones that perform a global program analysis (like Astrée
[16, 17, 84]) which are precise but maybe costly and an analysis by
part (like cccheck [107]) where cheap analyzes can be performed
at compile time, but may require user-interaction to design code
contracts (an activity which may also be automatized [83]), but not
loop invariants which in all cases are inferred automatically.

32. Generalist versus domain-aware static
analyzers

Sound generalist analyzers like Polyspace Code Prover
TM 8, C

Global Surveyor [220], Checkmate [113], CodeSonar for machine
code [197], or Julia [188] produce good results for a large vari-
ety of codes in a given programming language. Most often they
lack extreme precision. Using heuristics to sort out proliferating

8 www.mathworks.com/products/polyspace-code-prover/
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false alarms may be a fake commercial argument but does not have
the rigor necessary to verify very large safety or security critical
software.

This leads to the idea of analyzers aware of an application do-
main such as the precision of floating-point computations for Fluc-
tuat [102, 133], control-command for Astrée [16, 17, 84]. In ad-
dition to generalist abstractions, filters, integrators, relation of vari-
ables to the clock, etc must be handled with greater precision thanks
to specifically adapted abstract domains [110, 111]. Initially de-
signed for avionic software, Astrée [16, 17, 84] had to be extended
with a non-linear abstract domain to analyze precisely quaternions
used for satellite positioning [20].

33. Industrial applications
The use of a principled approach to static analysis based on abstract
interpretation allow for the rigorous and incremental design of
precise and scalable static analyzers, with very few false alarms.

Astrée [14, 16, 17, 48, 84, 85, 87, 150] is a static analyzer com-
mercialized by AbsInt and used in the medical, transportation, and
communications industry for analyzing the absence of runtime er-
rors in control command software, e.g. to control medical monitor-
ing equipment, planes or satellites. This is certainly one of the first
completely automatic tools based on formal methods that did scale
up with enough precision to allow, after avoiding a few potentially
catastrophic software failures, to become voluntarily mandatory in
the design of e.g. avionic safety critical systems (see [103, 213] for
reports on preliminary experiences).

cccheck [107, 155] is an example of general purpose, modular,
precise, and efficient analyzer relying on the use of abstract code
contracts. Being based on an intermediate language used by com-
pilers it is applicable to several different programming languages
that compile to this intermediate language. This is a possible ap-
proach to cope with the proliferation of programming languages.
Other complementary approaches include the implementation of
reusable libraries of abstract domains, like APRON [144] or the
Parma library [9] for numerical properties.

34. Security
Security is typical of computer science lack of responsibility with
respect to customers. One can leave a door open and take no
responsibility at all when a burglar comes in, whereas this would
be excluded by a restriction clause in any theft home insurance.
This situation cannot go on for ever, and the computer industry
will have to take responsibility for its provable errors. Such a proof
of error can be given by a counter-example. Better, a proof of
absence of error can be given by a tool proving the absence of
error, provided the tool is sound and precise (otherwise it could
be qualified of time-consuming and too restrictive, as for security
types). Fully automatic tools are already able to catch such security
bugs by taking values and objects into account (e.g. [216]), at least
the common ones, but this is not yet a current practice. Many
security properties cannot be checked at runtime so static analysis
and verification tools have an outstanding domain of application.

Other areas in security where the semantic-based approach of
abstract interpretation is much more powerful than syntactic match-
ing or type inference is abstract non-interference [121], steganog-
raphy [76], obfuscation [191, 192], and malware detection [193].

35. Unexpected applications
35.1 Biology
We anticipated in [39, Ch. 3] that basing abstract interpretation col-
lecting semantics on transition systems “is obviously very general.
It applies not only to computer systems but also to economic or
biological systems, provided that the model of the system to study

evolves according to discrete time steps.”. In biology, it took some
time before abstract interpretation was applied in practice in the
context of rule-based modeling of protein-protein interaction net-
works [28, 100, 101]. The widening for economy was a bit too
optimistic!

35.2 SAT and SMT solvers
The fact that SAT and SMT solvers are abstract interpretations of
the semantics of logics came more as an unanticipated surprise
[23, 24, 105, 106, 214]. This understanding yields new decision
algorithms [136, 214].

36. Conclusion
Any semantic based-program manipulation, analysis, and verifi-
cation in the scope of abstract interpretation theory can also be
designed in the form of a specific paradigm/method/algorithm,
illustrated by examples, and justified by an informal reasoning.
This is the usual problem-specific approach of computer science
which leads to a proliferation of disparate results lacking a uni-
fying point of view. The consequence is that only one or two
paradigms/methods/algorithms/examples are taught, remembered,
and later extended, which completely inhibits the creative power.
This empirical approach will certainly disappear over a long pe-
riod of time in favor of more abstract foundations. This took cen-
turies in mathematics were, by combining fundamental ideas, one
reaches a definite result. This is indispensable to make computer
science teachable beyond tricky know-how rapidly becoming out-
dated in the short term. In particular, it is not possible to assimilate,
understand, and compare thousand of approaches to verification or
inference in static analysis without a reduction to a few abstract
concepts, explaining concisely how they can be (re-)designed. This
is the objective of abstract interpretation, and requires a perpetual
evolution, renewal, and rethinking of the foundations and practice,
with very few basic principles remaining stable. Principled com-
puter science is the only path to cost-effective safety and security.
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[97] R. Cousot. Fondements des méthodes de preuve d’invariance et de fa-
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