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1 Introduction

Abstract Interpretation is a theory of approximation of mathematical structures,
in particular those involved in the semantic models of computer systems [4,10,11].
Abstract interpretation can be applied to the systematic construction of methods
and effective algorithms to approximate undecidable or very complex problems
in computer science. The scope of application is rather large e.g. from type
inference [5], model-checking [13], program transformation [14], watermarking
[15] to context-free grammar parser generation [16].

In particular, abstract interpretation-based static analysis, which automat-
ically infers dynamic properties of computer systems, has been very successful
these last years to automatically verify complex properties of real-time, safety
critical, embedded systems.

For example, Astrée [1,2,3,17,18,25] can analyze mechanically and verify
formally the absence of runtime errors in industrial safety-critical embedded
synchronous control/command codes of several hundred thousand to one million
of lines C.

We summarize the main reasons for the technical success of Astrée, which
provides directions for application of abstract interpretation to the Verification
Grand Challenge [22,23].

2 The Static Analyzer ASTRÉE

2.1 Programs analyzed by ASTRÉE

Astrée [1,2,3,17,18,25] is a static program analyzer aiming at proving the ab-
sence of Run Time Errors (RTE) in programs written in the C programming
language1.

Astrée analyzes structured C programs, without side effects in expressions,
dynamic memory allocation and recursion. All other features of C are handled
including arrays, structures, union types, pointers, pointer arithmetics, etc [31].

1 C programs are analyzed after macro-expansion.
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These restrictions encompass many synchronous, time-triggered, real-time,
safety critical, embedded software programs as found in aerospace, automotive,
customer electronics, defense, energy, industrial automation, medical device, rail
transportation and telecommunications applications.

2.2 Specifications checked by ASTRÉE

Astrée aims at proving that the C programming language is correctly used
and that there can be no Run-Time Errors (RTE) during any execution in any
environment. This covers:
– Any use of C defined by the international norm governing the C program-

ming language (ISO/IEC 9899:1999) as having an undefined behavior (such
as division by zero or out of bounds array indexing);

– Any use of C violating the implementation-specific behavior of the aspects
defined by ISO/IEC 9899:1999 as being specific to an implementation of the
program on a given machine (such as the size of integers and arithmetic over-
flow);

– Any potentially harmful or incorrect use of C violating optional user-defined
programming guidelines (such as no modular arithmetic for signed integers,
even though this might be the hardware choice);

– Any violation of optional, user-provided assertions (similar to assert diagnos-
tics for example), to prove user-defined run-time properties.

2.3 Characteristics of ASTRÉE

Astrée is sound, exhaustive, automatic, infinitary, efficient, trace-based, rela-
tional, specialized, domain-aware, parametric, modular and precise. More pre-
cisely:
– Astrée is sound in that it always considers an over-approximation of all

possible executions (for example with respect to the rounding of floating-
point computations [33]). Since execution is undefined after some runtime
errors and may have an unpredictable, implementation dependent effect (e.g.
an array bound overflow might destroy code), Astrée may have to assume
that execution stops in case of definite runtime error (although in practice it
may go on with an “undefined” behavior). If Astrée can prove the absence
of any runtime error, the program semantics is well-defined and the analysis is
perfectly sound. Otherwise, the results produced by Astrée describe correctly
all executions before the first runtime error, if any;

– Astrée is exhaustive and considers all possible run-time errors in all possible
program executions. Hence Astrée never omits to signal a potential run-time
error, a minimal requirement for safety critical software;

– Astrée is fully automatic, that is never needs to rely on the user’s help such
as program decoration with inductive invariants. It may only happen that a
few hypotheses on the range of variation of some inputs or the clock rate and
maximal execution time may have to be specified in a separate configuration
file to exclude e.g. impossible behaviors of the execution environment;
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– Astrée is infinitary, that is uses infinite abstractions which are provably more
powerful than finite abstract models [12]. This implies that convergence accel-
eration techniques such as widening/narrowing [10] must be used to enforce
termination of fixpoint iterations. Simultaneous widenings in several separate,
independently designed, abstract domains are ensured to enforce convergence
thanks to an appropriate cooperation between abstract domains [18];

– Astrée always terminates and has shown to be efficient and to scale up
to real size programs as found in the advanced industrial practice. Observed
typical figures are about 1 to 2 hours of computation per hundred thousands
lines (although the program size only is not an appropriate measure of the
program analysis complexity);

– Astrée is trace-based, that is abstracts sets of execution traces as opposed
to invariance involving only sets of states. This refined abstraction consider-
ably enhances the precision of the analysis, in particular for functions and
procedures [26];

– Astrée is relational that is keeps track of relations between the values of pro-
gram data (variables, fields of structures, array elements, etc). Examples are
the octagon abstract domain [28,29,30,32,27] or binary decision trees [3,17].
Contrary to attribute-independent abstract domains (such as intervals [9]),
relational abstract domains are expensive (with a polynomial behavior with
high degrees, if not exponential [19], in the number of abstract variables).
To scale up, Astrée uses program analysis directives (which insertion in the
program can be automated by preliminary phases of the analysis) to deter-
mine which candidate packs of variables should be separately considered in
relational abstractions [3,17].

– Like general-purpose static analyzers, Astrée relies on programming lan-
guage-related properties to point at potential run-time errors. Like specialized
static analyzers, Astrée puts additional restrictions on considered program
(e.g. no recursion, no side-effect in expressions, no forward go to) and so
can take specific program structures into account. For example function and
pointer analysis involves no approximation at all, which would not be possible
with dynamic memory allocation and recursion;

– Moreover, Astrée is domain-aware and so knows facts about application
domains that are indispensable to make sophisticated proofs. For example,
Astrée takes the logic and functional properties of control/command theory
into account as implemented in embedded programs [3,20,21];

– Astrée is parametric in that the degree of precision of the analysis can be
adjusted either manually (through parameters or directives in the program
text) or mechanically (by automatic insertion of the directives by prelimi-
nary analysis phases). This means that the performance rate (cost of the
analysis/precision of the analysis) can be fully adapted to the needs of its
end-users;

– Astrée is modular. It is made of separate parts (so called abstract domains)
that can be assembled and parameterized to build application specific analyz-
ers, fully adapted to a domain of application or to end-user needs. Written
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in OCaml, the modularization of Astrée is made easy thanks to OCaml’s
modules and functors;

– A consequence of undecidability in fully automatic static analysis is false
alarms. Even a high selectivity rate of 1 false alarm over 100 operations with
potential run-time errors leaves a number of doubtful cases which may be
unacceptable for very large safety-critical or mission-critical software (for ex-
ample, a selectivity rate of 1% yields 1000 false alarms on a program with 100
000 operations);

In contrast Astrée, being modular, parametric and domain-aware can be
made very precise and has shown to be able to produce no false alarm (and
even no alarm after minor modifications for some critical programs), that is
fully automated correctness proofs.

2.4 Program verification with ASTRÉE

The strength of Astrée is that, despite fundamental undecidability limitations,
it scales up and can automatically do (or has shown to be easily adaptable by
specialists to do) complex proofs of absence of RTE for the considered family
of synchronous control/command software. Such proofs are large, complex and
subtle, even more than the program itself, whence well beyond human capacity,
even using provers or proof assistants.

This strength comes from a careful, domain-specific design of the abstract
interpretation. Any imprecise abstraction that would not be able to express and
automatically infer, without loss of information, an inductive invariant which
is necessary to prove absence of RTE for any program in the considered family
would inexorably produce false alarms and in practice many, because of cascaded
dependencies. On the other hand, an abstraction that would be too precise for
the objective of proving absence of RTE in the considered family of programs
would lead to excessive computational and memory costs. Essentially Astrée
has demonstrated in practice that for a specific program property (absence of
RTE) and a specific family of programs (synchronous control/command C pro-
grams) it is possible to find an abstract interpretation of the program which
encompasses all necessary inductive proofs at reasonable costs.

This strength is also the weakness of Astrée. Since Astrée produces “mir-
acles” on the considered family of properties and programs, end-users would like
it to produce very good results on any C program. Obviously this is impossible
since the abstractions considered in Astrée will miss the inductive invariants
which are out of its precisely defined scope. However, new abstractions can be
explored outside the current scope of Astrée and easily incorporated in the
static analyzer.

3 Directions for application of abstract interpretation to
the Verification Grand Challenge

In light of the Astrée, we propose a few directions for application of abstract
interpretation to verification.



The Verification Grand Challenge and Abstract Interpretation 5

3.1 Program verification

“A program verifier uses automated mathematical and logical reasoning to check
the consistency of programs with their internal and external specifications” [23].
Following E.W.D. Dijkstra, there is a clear distinction between the verification
or proof of the presence of bugs (that is “testing” or “debugging”) from the
verification or proof of the absence of bugs (that is “correctness verification” or
“verification” for short). Of course the Verification Grand Challenge addresses
the correctness verification only since the real challenge should be to find the
last bug.

3.2 Error tracing

Nevertheless, bugs have to be considered in the development process. When
an automatic verification system signals an error, it is important to be able
to trace the origin of the error, in particular to determine whether it is a bug
or a false alarm. Abstract slicing may be useful to trace back the part of the
computation which is involved in the bug/false alarm [38,39]. Then constraint
solving techniques can help finding an actual counter-example. However, finding
counter-examples can be extremely difficult, if not impossible, e.g. when tracking
the consequences of accumulating rounding errors after hours of floating point
computations.

3.3 Program semantics

A program is checked with respect to a semantics that is a formal description of
its computations. Numerous semantics have been proposed which differ in the
level of abstraction at which they describe computations (e.g. sets of reachable
states versus computation histories) and in the method for associating compu-
tations to programs (e.g. by induction on an abstract syntax using fixpoints
versus using rule-based formal systems). These semantics can be organized in a
hierarchy by abstract interpretation [7] so that different analyzers can rely on
different semantics which can be formally guaranteed to be coherent, at various
levels of abstractions.

In practice, although norms do exist for programming languages like C, they
are of little help because too many program behaviors are left unspecified. So
one must rely on compilers, linkers, loaders and machines to know, e.g. the
exact effect of evaluating an arithmetic expressions. Since the Verification Grand
Challenge addresses “significant software products”, it is clear that methods for
defining the semantics of programs are needed, at a level of precision which is
compatible with the implementation.

An approach could be, like in Astrée for absence of side effects in expres-
sions, to reject programs for which this compatibility cannot be formally guaran-
teed. The abstraction methods to do so, might then be part of the programming
language semantics, the restricted language being a subset of a larger exist-
ing language where undefined behaviors have been excluded. Such programming
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norms limiting the use of obscure, error-prone and/or non-portable features of
programming languages tend to be more widely accepted in practice.

3.4 Compilation

That the semantics of a programming language precisely reflects program execu-
tions depends upon the correctness of the translation into machine code. So that
verification of the compiler [24], of the object code [35,36] or of the translation
[37] must be part of the complete verification process.

3.5 Specification

The program semantics restricts the verification to properties that can be ex-
pressed in terms of this semantics. The specifications (such as invariance, safety,
security, liveness) further restricts the verification process to specific properties.
Specifications themselves translate external requirements in terms of program
computations. Thus it is necessary to define adequate specification languages,
their semantics with respect to that of the programming language. This ranges
from implicit internal specifications (like absence of runtime errors as defined by
the semantics of the programming language) to arbitrary complex specification
languages.

Specifications cannot be simply be considered as correct, since in practice
they are not or e.g. only one side of interfaces satisfies the given specifications.
Abstract interpretation techniques could be used both to analyze specifications
and to check programs for resistance to specification unsatisfaction.

Finally, the analysis of the specification, should be checked to remain valid
in the implementation, e.g. by reanalysis of the program or by translation vali-
dation.

3.6 Specification and verification of complex systems

More generally, specifications refer, especially in the case of embedded systems,
to an external world which should be taken into account to prove the correctness
of a whole system, not only the program component. Progress has to be made on
the abstraction of this external, often physical world, to be compatible with the
program interfaces. We envision that abstraction can be applied to the full sys-
tem (program + reactive environment) although the descriptions of the program
and physical part of the system are a quite different nature (e.g. continuous ver-
sus discrete). A unification of abstraction in computer science and engineering
sciences must be considered to achieve the goal of full system verification [8].

3.7 Verification of program families

The considered programs to be verified may range from one program (with a
finite specific abstraction), to a family of programs with specific characteris-
tics, to a programming language or even a family of programming languages. A
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broad spectrum verifier is likely to have many customers but also to produce
too many false alarms, a recurrent complain of end-users of static analyzers. A
finite abstraction can always be found for a given program and specification but
discovering this abstraction amounts to making the proof [6], i.e. iteratively com-
puting the weakest inductive argument. To get no false alarm, the consideration
of families of programs for which generic, precise and efficient abstractions can
be found might be a useful alternative, as was the case in Astrée.

3.8 Required precision of verifiers

Automatic program verification requires the discovery of inductive arguments
(for loops, recursion, etc). Proceeding by direct reference to the program se-
mantics (as in refinement-based methods) amounts to the computation of the
program semantics restricted to the program specification, which is not a finitary
process. Abstraction is therefore necessary but leads to false alarms. The condi-
tion for absence of false alarm is that the weakest inductive argument suitable
for the proof be expressible without loss of precision in the abstract (including
for its transformers in the induction step) [6]. There is obviously no hope to find
an abstract domain containing all of such inductive arguments, since this will
ultimately amount to include e.g. all first-order predicates with arithmetic and
one is back to undecidability.

3.9 Abstract assertions

The choice of the form of the abstract assertions depends on the considered
family of programs, the nature of the considered specifications and the corre-
sponding necessary inductive arguments. Universal representations (as terms or
specific encodings of sets of states), to be used in all circumstances, are likely
to be very inefficient. The specific abstract assertions are implemented as ab-
stract domains in Astrée using specific encoding and computer representations
that lead to efficient manipulation algorithms. The study of efficient implemen-
tation of abstract assertions and efficient algorithms in abstract domains can
certainly make significant progress, in particular by considering the domains of
applications of programs.

3.10 Application-aware verifiers

Astrée is a program verifier with a very precise scope of application that is of
synchronous, real-time control command systems. It can therefore incorporate
knowledge about such programs, looking e.g. for ellipsoidal assertions when en-
countering digital filters [20]. In absence of such domain specific knowledge, a
verifier might have to look for costly nonlinear invariants.

Among the application domains that have been largely neglected by the ver-
ification community are the numerical applications involving intensive floating
point computations. To be sound Astrée must perform a rigorous analysis of
floating point computations [30]. Further abstractions of this complex semantics
are needed.
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3.11 Abstract solvers

Astrée uses sophisticated iteration techniques to propagate assertions and per-
form inductive steps by widening in solvers (see e.g. trace partitioning [26]). A
lot of progress can still be done on abstract solvers, in particular for generic,
parametric, modular and parallel [34] ones.

3.12 Combination of abstractions

A verification in Astrée is done by parts, each part corresponding to a sepa-
rate abstract domain handling specific abstract assertions, with an interaction
between the parts, formalized by the reduced product [11]. So a specific version
of Astrée is built by incorporating a choice of abstract domains, which can be
program specific, and of the corresponding interactions [18].

3.13 Modular analyzers

The modular design of Astrée might be a useful approach to the necessity
to have specific analyzers adapted to domains of applications and the need for
general tools for program verification. One can imagine a large collections of
abstract domains and solvers that can be combined on demand to adjust the
cost/precision ratio, depending upon the proposed application of the verifier.

3.14 User interface

Static analyzers like Astrée yield extremely complex informations on program
executions that the end-user may want to understand. For that purpose, a user-
interface is needed to present internal information in understandable form, at
different levels of abstractions.

3.15 Verifier infrastructure

Once a programming, a specification and a user-interface language have been
chosen, and their semantics defined, a static analyzer has to provide computer
representations of these languages for the purpose of the program analysis, the
specification checking and the report of the results to the end-user. Despite the
difficulty to design such a general-purpose infrastructure, it should be sharable
between different verifiers to accelerate experimentations and developments.

3.16 The verified verifier

A recurrent question about Astrée is whether it has been verified and this
question is likely to appear for any verifier. A verification has three phases,

1. the computation of an inductive assertion implied by the semantics and the
specification which involves resolution of fixpoint inequations,
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2. the verification that the assertion is indeed inductive, and
3. finally the proof that the inductive assertion implies the specification.

All phases are formally specified by abstract interpretation theory. The first
phase is indeed the more complex but, from a strict soundness point of view, it
does not need to be formally verified. Only the second and third phases of the
verifier must be verified, which is simpler. Preliminary work on Astrée shows
that this is indeed possible. The verified verifier is indeed part of the Verification
Grand Challenge.

3.17 Acceptance and dissemination of static analysis

The dissemination and widespread adoption of formal methods is confronted
with economic payoff criteria. Not doing any correctness proof is, at first sight,
easier and less expensive.

Regulation might be necessary to enforce the adoption of formal methods
to produce safer software (e.g. in industrial norms). Static analysis, which has
shown to scale up in an industrial context, is a very good candidate.

End-users might also be willing to enforce their right for verified software
products. The ability to perform automatically static analyzes showing that
products are not state of the art might even be a decisive argument to change
present-day permissive laws regarding software reliability.

4 Conclusion

Abstraction, as formalized by Abstract Interpretation, is certainly central in
the Verification Grand Challenge, as shown by its recent applications, that do
scale up for real-life safety critical industrial applications. A Grand Challenge for
abstract interpretation is to extend its scope to complex systems, from design
to implementation.
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cale de Grenoble, Grenoble, France, 21 March 1978.

5. P. Cousot. Types as abstract interpretations, invited paper. In Conference Record
of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 316–331, Paris, France, January 1997. ACM
Press, New York, New York, United States.

6. P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In
B.Y. Choueiry and T. Walsh, editors, Proceedings of the Fourth International Sym-
posium on Abstraction, Reformulation and Approximation, SARA ’2000, Horseshoe
Bay, Texas, United States, Lecture Notes in Artificial Intelligence 1864, pages 1–25.
Springer, Berlin, Germany, 26–29 July 2000.

7. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1—2):47–103, 2002.

8. P. Cousot. Integrating physical systems in the static analysis of embedded control
software, invited paper. In Proceedings of the Third Asian Symposium on Program-
ming Languages and Systems, APLAS ’2005, pages 135–138, Tsukuba, Japan, 3–5
November 2005. Lecture Notes in Computer Science 3780, Springer, Berlin, Ger-
many.

9. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130, Paris, France, 1976. Dunod, Paris, France.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, New York, United States.

11. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979.
ACM Press, New York, New York, United States.

12. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In M.
Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth International
Symposium Programming Language Implementation and Logic Programming,
PLILP ’92, Leuven, Belgium, 26–28 August 1992, Lecture Notes in Computer Sci-
ence 631, pages 269–295. Springer, Berlin, Germany, 1992.

13. P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 12–25, Boston, Massachusetts, United States,
January 2000. ACM Press, New York, New York, United States.

14. P. Cousot and R. Cousot. Systematic design of program transformation frameworks
by abstract interrpetation. In Conference Record of the Twentyninth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
178–190, Portland, Oregon, United States, January 2002. ACM Press, New York,
New York, United States.

15. P. Cousot and R. Cousot. An abstract interpretation-based framework for software
watermarking. In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 173–185,



The Verification Grand Challenge and Abstract Interpretation 11

Venice, Italy, 14–16 January 2004. ACM Press, New York, New York, United
States.

16. P. Cousot and R. Cousot. Grammar analysis and parsing by abstract interpreta-
tion, invited chapter. In T. Reps, M. Sagiv, and J. Bauer, editors, Program Analysis
and Compilation, Theory and Practice: Essays dedicated to Reinhard Wilhelm, Lec-
ture Notes in Computer Science 4444, pages 178–203. Springer, Berlin, Germany,
2006.

17. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
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