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Proving Termination of a Loop

/ (1) Termination precondition

while B do (2) Loop invariant
Clh———

\ (3) Loop operational semantics

(4) Ranking function

The main point in this talk is (4).

Proving Termination of a Loop

1. Perform an iterated forward /backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example

while (x <> y) do
X :=x - 1;

y =y +1
od

The polyhedral abstraction used for the static analysis of the examples is

implemented using Bertrand Jeannet’s NewPolka library.

— 5 —

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to
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Forward /reachability properties
o > »o\

S

Example: partial correctness (must stay into safe states)

Example: termination (must reach final states)
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Forward /backward properties
OO

i

o E—:/zo

Example: total correctness (stay safe while reaching final
states)

1
1
1
1
AN
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Principle of the iterated forward /backward

iteration-based approximate analysis

— Overapproximate
Ifp F' M Ifp B

by overapproximations of the decreasing sequence

xV = 71

X2 — i AY . X2 E(Y)
X212 — i AY . X2 n B(Y)
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Arithmetic Mean Example:
Termination Precondition (1)

{x>=y}
while (x <> y) do
{x>=y+2}
X :=x - 1;
{x>=y+1}
y =y +1
{x>=y}
od
{x=y}

— 11 —

Idea 1

The auxiliary termination counter method
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Arithmetic Mean Example:

Termination Precondition (2)

{x=y+2k,x>=y}
while (x <> y) do

k .=k - 1;

Add an auxiliary termi-
nation counter to enforce
y =y + 1 (bounded) termination in

. the backward analysis!
0]

assume (k = 0)

Arithmetic Mean Example

1. Perform an iterated forward /backward relational static analy-
sis of the loop with termination hypothesis to determine a

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to
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Arithmetic Mean Example:

assume ((x=y+2¥k) & (x>=y));
{x=y+2k,x>=y}
while (x <> y) do
{x=y+2k,x>=y+2}

k .=k - 1;

{x=y+2k+2,x>=y+2}
x = x - 1;

{x=y+2k+1,x>=y+1}
y =y +1

{x=y+2k,x>=y}

od
{k=0,x=y%}
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Loop Invariant

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop

invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-

stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example:
Body Relational Semantics

Case x < y: Case x > y:
assume (x=y+2xk)&(x>=y+2);  assume (x=y+2*k)&(x>=y+2);

assume (x < y); assume (x > y);

assume (x0=x)&(y0=y)&(k0=k); assume (x0=x)&(y0=y)&(k0=k) ;

ki=k -1 k .=k - 1;
x :=x - 1; o .
x = x - 1;
y =y +1 y =y +1
empty (6) {x+2=y+2k0, y=y0+1,x+1=x0,

x=y+2k ,x>=y}

Arithmetic Mean Example

1. Perform an iterated forward /backward relational static analy-
sis of the loop with termination hypothesis to determine a

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Floyd’s method for termination of while B do C

Given a loop invariant 7, find an R/Q/Z-valued unkown
rank function r such that:

— The rank is nonnegative:

V zo,z : I(zg) A [B;C](zo,z) = r(z0) >0

— The rank is strictly decreasing:

V zo,z : I(zg) A [B;C](z0,z) = r(z) < r(zog) — 7

n > 1for Z, n > 0 for R/Q to avoid Zeno %, %, %. -,

» clear all; — 19 —
[vO,v] = variables(’x’,’y’,’k’) . .
% linear inequalities Arithmetic Mean Example:
b x0 y0 kO . .
A= [0 0 0] Ranking Function
h x y k
Ai_=1[ 1-1 0]; %x0 -y0 >0
bi = [0];
[N Mk(:,:,:)]=1inToMk(Ai,Ai_,bi);
% linear equalities
h x0 y0 kO
Ae = [ 0O 0 -2;

0 -1 0;

-1 0 O0;

0 0 0] Input the loop abstract
’ x oy ok semantics
Ae_ = [ 1 -1 0; %hx-y-2%¥k0-2=0

0 1 0; %y-y0-1=0

1 0 0; %x-x0+1=0

1 -1-2]; %hx-y-2xk=0

be = [2; -1; 1; 0];
(M Mk(:,: ,N+1:N+M)]=1inToMk (Ae,Ae_,be);
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» display_Mk(Mk, N, vO, v);

— Display the abstract se-

Hox 1.3 >= 0 mantics of the loop while

-2.k0 +1.x -1.y 2 = 0 B do C
-1.y0 +1.y -1 =0 .
1.0 +1.x +1 = 0 — compute ranking func-

+1.x -1.y -2.k =0 . .
o tion, if any

» [diagnostic,R] = termination(vO, v, Mk, N, ’integer’, ’linear’);
» disp(diagnostic)

feasible (bnb)
» intrank(R, v)

r(x,y,k) = +4.k -2

Proving Termination by
Parametric Abstraction,

Lagrangian Relaxation and
Semidefinite Programming
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Idea 2

Express the loop invariant and relational semantics
as numerical positivity constraints

Relational semantics of while B do C od loops

— 29 € R/Q/Z: values of the loop variables before a loop
1teration

— z € R/Q/Z: values of the loop variables after a loop
iteration
— I(zp): loop invariant, [B;cC](zp,z): relational seman-

tics of one iteration of the loop body
N

= I(zo0) A [B; C](zo, z) = /\Ui(wo,x) 2,0 (2i€{>2>=})
1=1
— not a restriction for numerical programs
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Example of linear program (Arithmetic mean)
[AAzoz]" >0

{x=y+2k,x>=y} +1.x -1.y >= 0
while (x <> y) do “2.k0 +1.x -1.y +2 = 0
o . -1.y0 +1.y -1 =0
k =k -1 -1.x0 +1.x +1 =0
x = x - 1; +1.x -1.y 2.k = 0
y =y +1
od "0 0 0]1-107|%|>T07
0 0 —2|1-10 ZO — | -2
0 -1 0/0 1 0 xo = |1
10 0]1 0 O = | -1
|0 0 01 -1-2 Z - o

Example of quadratic form program (factorial)
zz|Alz 2" +2[zz']qg+7r >0

n = 0; ~1.£0 +1.NO >= 0
f = 1; +1.n0 >= 0
while (f <= N) do +1.£0 -1 >= 0
n :=n+ 1; -1.n0 +1.n -1 =0
fo=n * f +1.N0 -1.N = 0
od -1.f0.n +1.f = 0
000000 [ng] 0
000-300]|] fo 0
000000 [N 0
NonfN 2IngfoNonf N
[nOfOOnf]O—%OOOO o | T2[mofoNonfN] |
00000O0O0]|]|f :
000000 |N] 0
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Example of semialgebraic program
(logistic map)

eps = 1.0e-9; Ei'
while (0 <= a) & (a <= 1 - eps) \5:
& (eps <= x) & (x <= 1) do
X = axx*(1-x)
od

Floyd’s method for termination of while B do C

Find an R/Q/Z-valued unkown rank function r and n >
O such that:

— The rank is nonnegative:

N
V zo, T : /\ oi(zo,z) 2; 0 = 7r(zg) >0
1=1
— The rank is strictly decreasing:

N
vV zg,T : /\ oi(zo,z) 2;0 = r(zg) —7r(z) —n >0
1=1
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Idea 3

Eliminate the conjunction /\ and implication = by
Lagrangian relaxation

— 29 —

Implication (general case)

Vec A:xz € B
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Implication (linear case)

PPPPPPPPPPPP

<
SRS
LRERELES

ing A+ 0)

assuming

(

A= B
< (soundness)

border of A parallel to border of B

= (completeness)

ey

(© P. Cousot
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Lagrangian relaxation (linear case)
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Lagrangian relaxation, formally

Let V be a finite dimensional linear vector space, N > 0
and Vk € [0, N] : 0, € V — R.

N
Vz e V: /\ak(x)zo = (oo(z) > 0)
k=1
< soundness (Lagrange)
= completeness (lossless)
#  incompleteness (lossy)

INE[L,N]— R : Ve e V:og(z Zkkak

relaxation = approximation, A\; = Lagrange coefficients

Lagrangian relaxation, equality constraints

N

Vz €V (/\ op(z) = O) = (op(z) > 0)
k=1

< soundness (Lagrange)

N
INE[L,N] =R :Vz € V:iog(z) — > Ago(z) >0
k=1
N
A XN €L N =R Vo € V:oo(z)+ ) Nox(z) >0
; A )\ k=1
& (A = 5 ) ¥
IN" €L, N R:Vz € V:ag(z)— Y Aog(z) >0
k=1
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Example: affine Farkas’ lemma, informally

— An application of Lagrangian relaxation to the case
when A is a polyhedron

Example: affine Farkas’ lemma, formally

— Formally, if the system Az + b > 0 is feasible then
Ve :Az+b>0=cx+d>0

< (soundness, Lagrange)
= (completeness, Farkas)

AA>0:Vz:cx+d— Az +b) >0.
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Yakubovich’s S-procedure, informally

— An application of Lagrangian relaxation to the case

when A is a quadratic form

Incompleteness (convex case)
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Yakubovich’s S-procedure, completeness cases

— The constraint o(z) > 0 is regular if and only if 3¢ €
V:o(€) > 0.

— The S-procedure is lossless in the case of one regular
guadratic constraint:

Va:ER”:a:TPla:+2q1Ta:+r120:>
z! Poz + 2qq & + rg > 0

>x>0.

Floyd’s method for termination of while B do C

= (Lagrange)
= (Yakubovich)
Py qo

MN>0:Vz Rz [ |7
dy 70

Find an R/Q/Z-valued unkown rank function r which
1s:

— Nonnegative: I\ € [1, N| +— R :

N
V zo,z: 7(z0) — Z A;o;(zg,z) >0
1=1

— Strictly decreasing: dn > 0:3X € [1, N| — R :

N
V o,z : (r(zo) — () — 1) — > Ajoy(zo,z) >0
1=1
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Idea 4

Parametric abstraction of the ranking function »

Parametric abstraction

— How can we compute the ranking function »?
— parametric abstraction:

1. Fix the form 7, of the function r a priori, in term
of unkown parameters a

2. Compute the parameters ¢ numerically

— Examples:
ro(x) = a.x' linear
ro(z) = a.(z 1)T affine
ro(z) = (2 1).a.(z 1) " quadratic
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Floyd’s method for termination of while B do C

Find R/Q/Z-valued unkown parameters a, such that:
— Nonnegative: I\ € [1, N| +— RT7:

N
V zo,z : ro(z0) — Z A;oi(zo,z) >0
1=1

— Strictly decreasing: 9n > 0: )N € [1, N] — R :

N
v Lo, T - (ra(xO) — ra(x) o 77) o Z A;Ui(x& x) Z 0
1=1

Idea 5

Eliminate the universal quantification V using
linear matrix inequalities (LMIs)
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Mathematical programming

N
Jz e R™ /\ gi(z) >0
1=1
[Minimizing f(z)]

feasibility problem : find a solution to the constraints

. find a solution, minimizing f(z)

Example: Linear programming

Jz € R™: Az > b

[Minimizing cz]

Feasibility
— feasibility problem: find a solution s € R" to the op-
N
timization program, such that /\ gi(s) > 0, or to de-
1=1

termine that the problem is infeasible
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— feasible set: {z | /\f\f:1 gi(z) > 0}
— a feasibility problem can be converted into the opti-
mization program

N

min{-y € R | \ gi(z) —y > 0}
1=1

VMCAI'05, Paris, France, 17 Jan. 2005 — 46 — © P. Cousot y;“



Semidefinite programming
Jz € R™: M(z) =0
[Minimizing cz]
Where the linear matrix inequality (LMI) is
n
M(z) = Mo+ )z Mj
k=1

with symetric matrices (M = My ') and the positive
semidefiniteness is

M(z)=0=VYX eRY : X "M(z)X >0

— a7 —

Semidefinite programming, once again

Feasibility 1is:

n
Jz e RMVYX RV X | Mo+ apMy | X >0
k=1
of the form of the formulae we are interested in for pro-
grams which semantics can be expressed as LMIs:
N N

/\ o;(zo,z) 2; 0 = /\(:I:o z 1)Mi(zoz 1) >;0
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Floyd’s method for termination of while B do C

Find R/Q/Z-valued unkown parameters a, such that:
— Nonnegative: I\ € [1, N| +— RT7:

N

V zo,z : ro(z) — Z Ni(zo z 1) M;(zg z 1) >0
1=1

— Strictly decreasing: 9n > 0: )N € [1, N] — R :

V zo, z:(re(z0)— Z N(zo z 1) M;(zo = 1) >0

Idea 6

Solve the convex constraints by semidefinite
programming
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The simplex for linear programming

Dantzig 1948, exponential in worst case, good in prac-
tice

Polynomial methods

Ellipsoid method : Khachian 1979, polynomial in worst
case but not good in practice

Interior point method : Kamarkar 1984, polynomial in worst
case and good in practice (hundreds of thousands of
variables)
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The interior point method

Interior point method for semidefinite programming

— Nesterov & Nemirovskii 1988, polynomial in worst case

and good in practice (thousands of variables)

y t

»
At

\\\CLE—\FC/y\ R T

— Various path strategies e.g. “stay in the middle”
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Semidefinite programming solvers

Numerous solvers available under MATHLAB", a.o.:

— Imilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali

— Sdplr: S. Burer, R. Monteiro, C. Choi

— odpt3: R. Titiinci, K. Toh, M. Todd

— SeDuMi: J. Sturm

— bnb: J. Lofberg (integer semidefinite programming)
Common interfaces to these solvers, a.o.:

— Yalmip: J. Lofberg

Sometime need some help (feasibility radius, shift,...)

Linear program: termination of Euclidean division

» clear all

/» linear inequalities Iterated forward/back—
ho y0q0rO ward polyhedral analysis:
Ai= [0 O 0; 0 0 O0;

0 0 0]; {y>=1}
h y q r q:=0;
Ai_=[1 0 0; %y-1>0

0 1 O, % q - 1 >0 r = X;

0 0 1]; %r >0

bi = [-1; -1; 0];
% linear equalities

while (y <=1) do

h y0 q0 r0
Ae= [0-1 0; %-90+qg-1=0 r=r-y,
10 0; % -y0+y=0
0 0-1]; % -r0O+y +1r =20 q:=q+1
h y q r
Ae_=[0 1 0;1 0 O0; od
VMCAT'05, Phris, Grande] 17 Jan. 2005 — 56 — © P. Cousot Hk;zﬂ‘
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» [N Mk(:,:,:)]=1inToMk(Ai, Ai_, bi);

» [M Mk(:,:,N+1:N+M)]=1inToMk(Ae, Ae_, be);
» [v0,v]=variables(’y’,’q’,’r’);

» display_Mk(Mk, N, vO, v);

+1.y -1 >=0

+1.9 -1 >=0

+1.r >= 0

-1.9q0 +1.9 -1 =0

-1.y0 +1.y = 0

-1.r0 +1.y +1.r = 0
» [diagnostic,R] = termination(vO, v, Mk, N, ’integer’, ’quadratic’);
» disp(diagnostic)

termination (bnb)

» intrank(R, v)

r(y,q,r) = -2.y +2.q +6.r

Floyd’s proposal r(z,y, q,7) =  — q is more intuitive but requires to discover

the nonlinear loop invariant z = r + qy.

Imposing a feasibility radius

\\\CZE—\FC/y\ "
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Quadratic program: termination of factorial

Program:
n := 0;
f =1;
while (f <= N) do
n :=n+1;
f :=nxf
od
r(n,f,N) = -9.993455e-01

LMI semantics:

-1.

+1

+1.

-1

+1.
-1.

f0 .NO >= 0
.n0 0

f0 >= 0

.n0 .n-1=20
NO -1.N =0
fO.on +1.£f =0

.n +4.346533e-04 .
+2.689218e+02.N +8.744670e+02

Idea 7

Convex abstraction of non-convex constraints

VMCAT05, Paris, France, 17 Jan. 2005
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Semidefinite programming relaxation for
polynomial programs

eps = 1.0e-9; ‘
while (0 <= a) & (a <=1 - eps)  &.
& (eps <= x) & (x <= 1) do
X = axx*k(1-x)

od

a.x.(

005 |

o8
2 i Qa

04
L]
x o

Write the verification conditions in polynomial form, use

SOS solver to relax in semidefinite programming form.
SOStool+SeDuMi:

r(x) = 1.222356e-13.x + 1.406392e+00

Considering More General
Forms of Programs
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Handling disjunctive loop tests and tests in
loop body

— By case analysis

— and “conditional Lagrangian relaxation” (Lagrangian
relaxation in each of the cases)

Loop body with tests

while (x < y) do i >0
if (i >= 0) then — case analysis: { T
X = x+1+1 1<0
else
y = y+i
fi
od
lmilab:

r(i,x,y) = -2.252791e-09.1 -4.355697e+07.x +4.355697e+07 .y
+5.502903e+08
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Quadratic termination of linear loop

{n>=0} < termination  precondition
determined by iterated for-

b= g T ward/backward polyhedral
while (1 <> 0) do analysis
if (j > 0) then
j =3 -1
else
j :=n; 1 :=1-1
f1
od

sdplr (with feasibility radius of 1.0e+3):

r(n,i,j) = +7.024176e-04.n"2 +4.394909e-05.n.1 ...
-2.809222e-03.n.j +1.533829e-02.n ...
+1.569773e-03.172 +7.077127e-05.1.
+3.093629e+01.1 -7.021870e-04.772 ...
+9.940151e-01.7 +4.237694e+00

Ranking function

Successive values of wl e
r(n,i,j) for n = 10 on
loop entry

r(10,i,j)
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Handling nested loops

— by induction on the loop depth

— use an iterated forward /backward symbolic analysis to
get a necessary termination precondition

— use a forward symbolic symbolic analysis to get the
semantics of a loop body

— use Lagrangian relaxation and semidefinite program-
ming to get the ranking function

Example of termination of nested loops:
Bubblesort inner loop

H.00 o1 5= 0 Iterated forward/backward polyhedral analysis
*1.37 -1>=0 followed by forward analysis of the body:

+1.00° -1.i’ >= 0
1.3 +1.j7 -1 =0

~1.i 41,17 = 0
-1.n +1.n0° = 0 assume (n0 =n & j > 04&1>1&n0>1¢&j<>1);

+1.00 -1.n0 = 0 {n0=n,i>=1,j>=0,n0>=i}

+1.n0° -1.n> =0 assume (1101 =n0 & nl =n& il = i & J]. _ J),
{j=j1,i=11,n0=n1,n0=n01,n0=n,i>=1, j>=0,n0>=1}
j=3+1
{JZJ 1+1 , i=i1 ,I]_OZI]_]_ ,nO=n01 ,nO:n, i>=1 ’j>=1 ,nO>=i}

termination (lmilab)

r(n0,n,i,j) = +434297566.n0 +226687644.n -72551842.1

2. +2147483647
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Example of termination of nested loops:
Bubblesort outer loop

110 41 5= 0 Iterated forward/backward polyhedral analysis

+1.m0° -1.i’ -1 >= 0 followed by forward analysis of the body:
+1.17 -1.37 +1 =0 assume (n0=n & i>=0 & n>=1 & 1 <> 0);
-La#a7 #+1 =0 fn0=n,i>=0,n0>=1}

~ton#dn0” =0 assume (n01=n0 & nl=n & il=i & j1=j);

+1.n0 -1.n0’° = . . ] i
1.10° 1.1’ = 0 {j1=j,1=11,n0=n1,n0=n01,n0=n,i>=0,n0>=1}
j = 0;
while (j <> 1) do
j =3 +1
od;
i :=1-1

{i+1=j,i+1=i1,n0=n1,n0=n01,n0=n,i+1>=0,n0>=i+1}
termination (lmilab)
r(n0,n,i,j) = +24348786.n0 +16834142.n +100314562.1i +65646865

Handling nondeterminacy

— By case analysis
— Same for concurrency by interleaving

— Same with fairness by nondeterministic interleaving
with encoding of an explicit scheduler
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Termination of a concurrent program

[| 1: while [x+2 < y] do while (x+2 < y) do
; [x = x + 1] if 7?=0 then
od x (=x+1
3: _ _ else 1f 7?=0 then
N interleaving y =y -1
1: while [x+2 < y] do — else
; [y =y - 1] X =x + 1;
od y =y -1
3: fi fi
] od

penbmi: r(x,y) = 2.537395e+00.x+-2.537395e+00.y+
-2.046610e-01

— 7 —

Termination of a fair parallel program
[[ while [(x>0)|(y>0) do x := x - 1] od || interleaving

. + scheduler
while [(x>0)|(y>0) doy :=y - 1] od 1] —
{m>=1} ¢« termination precondition determined by iterated if (g = 0) then
t = 7- forward /backward polyhedral analysis if (t = 1) then
assume (0 <=t & t <= 1); t =0
s =7 else
assume ((1 <=3s) & (s <=m)); t =1
while ((x > 0) | (y > 0)) do fi;
if (¢t = 1) then s = 7;
x :=x -1 assume ((1 <= s8) & (s <=m))
else else
y =y -1 skip
fi; fi
s =8 - 1; od:

penbmi: r(x,y,m,s,t) = +1.000468e+00.x +1.000611e+00.y
+2.855769e-02.m -3.929197e-07.s8 +6.588027e-06.t +9.998392e+03
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Relaxed Parametric
Invariance Proof Method

Floyd’s method for invariance

Given a loop precondition P, find an unkown loop in-
variant I such that:
— The invariant is initial:
Vz:Plz)= I(z)
T

— The invariant i1s inductive:

Vz,z': I(z)A[B;c](z,2)) = I(z)
T T

77
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Abstraction

— Express loop semantics as a conjunction of LMI con-

straints (by relaxation for polynomial semantics)

— BEliminate the conjunction and implication by Lagrangian

relaxation

— Fix the form of the unkown invariant by parametric

abstraction

. we get ...

Floyd’s method for numerical programs

Find R/Q/Z-valued unkown parameters a, such that:

— The invariant is initial: Jpu € R™ :

Vz:l(z)— pu.Plz)>0

— The invariant is inductive: 9\ € [0, N| — R™ :

N
Vo' I(z) — NI (z) — Z Mg.ox(z,z') >0
T 1 k=1

bilinear in Ag and a
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Idea 8

Solve the bilinear matrix inequality (BMI) by
semidefinite programming

Bilinear matrix inequality (BMI) solvers

m

dz € R™: /\ Mo—l_Zkak—'_ZZxkxeNkﬁ

1=1 k=1/{=1

Minimizing z ' Qz + cz]

Two solvers available under MATHLAB":
— PenBMI: M. Koc¢vara, M. Stingl
— bmibnb: J. Lofberg

Common interfaces to these solvers:

— Yalmip: J. Lofberg
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Example: linear invariant

Program: — Invariant:

1:=2; 3 :=0; +2.14678e-12%1 -3.12793e-10%j +0.486712 >= 0
while (77) do

if (?7?) then

elie:= i+4  —Tess natural thanz—27 —2 >0
i :=1i+2; — Alternative:
fij R - Determine parameters (a) by other
od; methods (e.g. random interpreta-

tion)
- Use BMI solvers to check for invari-
ance

Conclusion
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Constraint resolution failure

— infeasibility of the constraints does not mean “non ter-
mination” or “non invariance” but simply failure

— inherent to abstraction!

Numerical errors

— LMI/BMI solvers do numerical computations with round-
ing errors, shifts, etc

— ranking function is subject to numerical errors

— the hard point is to discover a candidate for the rank-
ing function

— much less difficult, when the ranking function is known,
to re-check for satisfaction (e.g. by static analysis)

— not very satisfactory for invariance (checking only 777)
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Related work

— Linear case (Farkas lemma):

- Invariants: Sankaranarayanan, Spima, Manna (CAV’03,
SAS’04, heuristic solver)

- Termination: Podelski & Rybalchenko (VMCAI'03,
Lagrange coefficients eliminated by hand to reduce
to linear programming so no disjunctions, no tests,
etc)

- Parallelization & scheduling: Feautrier, easily gener-
alizable to nonlinear case

Seminal work

— LMI case, Lyapunov 1890,

“an invariant set of a dif- [~ = -
ferential equation is sta- -~/ e ™ e =N Ny
LA r P = 5\
ble in the sense that it at- N A IS
. . 0 & / kuﬂ\ ) 5
tracts all solutions if one -~/ i)
: N 3 :
can find a function that is | - \\ ,
-4 )
bounded from below and \LN ke 53 ~ el

decreases along all solu-
tions outside the invariant
set”.
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THE END, THANK YOU
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