
« Proving Program Invariance and
Termination by Parametric

Abstraction, Lagrangian Relaxation
and Semidefinite Programming »

Patrick Cousot
École normale supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

VMCAI’05 — Paris, France — 17 Jan. 2005

— 1 —

Overview of the
Termination Analysis Method

x§xxxxx§xxx§xxxxx§xx

VMCAI’05, Paris, France, 17 Jan. 2005 — 2 — ľ P. Cousot

Proving Termination of a Loop

� �������	�
�����

���	�
�

� �

����������	

� �

��
����	�
���������	�
�

� �����������
	�
�

�����������

�

The main point in this talk is (4).

— 3 —

Proving Termination of a Loop

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 4 — ľ P. Cousot

Arithmetic Mean Example

while (x <> y) do

x := x - 1;

y := y + 1

od

The polyhedral abstraction used for the static analysis of the examples is

implemented using Bertrand Jeannet’s NewPolka library.

— 5 —

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 6 — ľ P. Cousot

Forward/reachability properties

II

Example: partial correctness (must stay into safe states)

— 7 —

Backward/ancestry properties

II

F

Example: termination (must reach final states)

VMCAI’05, Paris, France, 17 Jan. 2005 — 8 — ľ P. Cousot

Forward/backward properties

I

F

I

Example: total correctness (stay safe while reaching final
states)

— 9 —

Principle of the iterated forward/backward
iteration-based approximate analysis

– Overapproximate

lfpF u lfpB

by overapproximations of the decreasing sequence

X0 = >
: : :

X2n+1 = lfp–Y .X2n u F (Y)

X2n+2 = lfp–Y .X2n+1 uB(Y)

: : :

VMCAI’05, Paris, France, 17 Jan. 2005 — 10 — ľ P. Cousot

Arithmetic Mean Example:
Termination Precondition (1)

{x>=y}
while (x <> y) do

{x>=y+2}
x := x - 1;

{x>=y+1}
y := y + 1

{x>=y}
od

{x=y}

— 11 —

Idea 1

The auxiliary termination counter method

VMCAI’05, Paris, France, 17 Jan. 2005 — 12 — ľ P. Cousot

Arithmetic Mean Example:
Termination Precondition (2)

{x=y+2k,x>=y}
while (x <> y) do

{x=y+2k,x>=y+2}
k := k - 1;

{x=y+2k+2,x>=y+2}
x := x - 1;

{x=y+2k+1,x>=y+1}
y := y + 1

{x=y+2k,x>=y}
od

{x=y,k=0}
assume (k = 0)

{x=y,k=0}

Add an auxiliary termi-
nation counter to enforce
(bounded) termination in
the backward analysis!

— 13 —

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 14 — ľ P. Cousot

Arithmetic Mean Example:
Loop Invariant

assume ((x=y+2*k) & (x>=y));
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{k=0,x=y}

— 15 —

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 16 — ľ P. Cousot

Arithmetic Mean Example:
Body Relational Semantics

Case x < y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x < y);
empty(6)
assume (x0=x)&(y0=y)&(k0=k);
empty(6)
k := k - 1;
x := x - 1;
y := y + 1
empty(6)

Case x > y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x > y);
{x=y+2k,x>=y+2}
assume (x0=x)&(y0=y)&(k0=k);
{x=y+2k0,y=y0,x=x0,x=y+2k,

x>=y+2}k := k - 1;
x := x - 1;
y := y + 1
{x+2=y+2k0,y=y0+1,x+1=x0,

x=y+2k,x>=y}

— 17 —

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 18 — ľ P. Cousot

Floyd’s method for termination of while B do C

Given a loop invariant I, find an R=Q=Z-valued unkown
rank function r such that:

– The rank is nonnegative:

8 x0; x : I(x0) ^ JB; CK(x0; x)) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x : I(x0) ^ JB; CK(x0; x)) r(x) » r(x0)` ”

” – 1 for Z, ” > 0 for R=Q to avoid Zeno 12,
1
4,
1
8. . .

— 19 —

Arithmetic Mean Example:
Ranking Function

» clear all;

[v0,v] = variables(’x’,’y’,’k’)

% linear inequalities

% x0 y0 k0

Ai = [0 0 0];

% x y k

Ai_ = [1 -1 0]; % x0 - y0 >= 0

bi = [0];

[N Mk(:,:,:)]=linToMk(Ai,Ai_,bi);

% linear equalities

% x0 y0 k0

Ae = [0 0 -2;

0 -1 0;

-1 0 0;

0 0 0];

% x y k

Ae_ = [1 -1 0; % x - y - 2*k0 - 2 = 0

0 1 0; % y - y0 - 1 = 0

1 0 0; % x - x0 + 1 = 0

1 -1 -2]; % x - y - 2*k = 0

be = [2; -1; 1; 0];

[M Mk(:,:,N+1:N+M)]=linToMk(Ae,Ae_,be);

Input the loop abstract
semantics

VMCAI’05, Paris, France, 17 Jan. 2005 — 20 — ľ P. Cousot

» display_Mk(Mk, N, v0, v);

...

+1.x -1.y >= 0

-2.k0 +1.x -1.y +2 = 0

-1.y0 +1.y -1 = 0

-1.x0 +1.x +1 = 0

+1.x -1.y -2.k = 0

...

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’linear’);

» disp(diagnostic)

feasible (bnb)

» intrank(R, v)

r(x,y,k) = +4.k -2

– Display the abstract se-
mantics of the loop while

B do C

– compute ranking func-
tion, if any

— 21 —

Proving Termination by
Parametric Abstraction,
Lagrangian Relaxation and
Semidefinite Programming

VMCAI’05, Paris, France, 17 Jan. 2005 — 22 — ľ P. Cousot

Idea 2

Express the loop invariant and relational semantics
as numerical positivity constraints

— 23 —

Relational semantics of while B do C od loops

– x0 2 R=Q=Z: values of the loop variables before a loop
iteration

– x 2 R=Q=Z: values of the loop variables after a loop
iteration

– I(x0): loop invariant, JB; CK(x0; x): relational seman-
tics of one iteration of the loop body

– I(x0) ^ JB; CK(x0; x) =

N̂

i=1

ffi(x0; x) >i 0 (>i 2 f>;–;=g)

– not a restriction for numerical programs

VMCAI’05, Paris, France, 17 Jan. 2005 — 24 — ľ P. Cousot

Example of linear program (Arithmetic mean)
[AA0][x0 x]

> > b

{x=y+2k,x>=y}

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

+1.x -1.y >= 0

-2.k0 +1.x -1.y +2 = 0

-1.y0 +1.y -1 = 0

-1.x0 +1.x +1 = 0

+1.x -1.y -2.k = 0

2

6

6

6

6

4

0 0 0 1 `1 0
0 0 `2 1 `1 0
0 `1 0 0 1 0
`1 0 0 1 0 0
0 0 0 1 `1 `2

3

7

7

7

7

5

2

6

6

6

6

6

6

4

x0
y0
k0
x
y
k

3

7

7

7

7

7

7

5

–
=
=
=
=

2

6

6

6

6

4

0
`2
1
`1
0

3

7

7

7

7

5

— 25 —

Example of quadratic form program (factorial)
[x x0]A[x x0]> + 2[x x0] q + r > 0

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

-1.f0 +1.N0 >= 0

+1.n0 >= 0

+1.f0 -1 >= 0

-1.n0 +1.n -1 = 0

+1.N0 -1.N = 0

-1.f0.n +1.f = 0

[n0f0N0nfN]

2

6

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 `12 0 0
0 0 0 0 0 0

0 `12 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

n0
f0
N0
n
f
N

3

7

7

7

7

7

7

5

+ 2[n0f0N0nfN]

2

6

6

6

6

6

6

4

0
0
0
0
1
2
0

3

7

7

7

7

7

7

5

+ 0 = 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 26 — ľ P. Cousot

Example of semialgebraic program
(logistic map)

eps = 1.0e-9;

while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do

x := a*x*(1-x)

od

a
.x
.(
1-
x
)

0.4
x a

— 27 —

Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r and ” >
0 such that:

– The rank is nonnegative:

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0) r(x0)` r(x)` ” – 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 28 — ľ P. Cousot

Idea 3

Eliminate the conjunction
V

and implication) by
Lagrangian relaxation

— 29 —

Implication (general case)

BA

A) B
,
8x 2 A : x 2 B

VMCAI’05, Paris, France, 17 Jan. 2005 — 30 — ľ P. Cousot

Implication (linear case)

BA

A) B (assuming A 6= ;)
((soundness)
) (completeness)
border of A parallel to border of B

— 31 —

Lagrangian relaxation (linear case)

BA

VMCAI’05, Paris, France, 17 Jan. 2005 — 32 — ľ P. Cousot

Lagrangian relaxation, formally

Let V be a finite dimensional linear vector space, N > 0
and 8k 2 [0; N] : ffk 2 V 7! R.

8x 2 V :

0

@

N̂

k=1

ffk(x) – 0

1

A) (ff0(x) – 0)

(soundness (Lagrange)
) completeness (lossless)
6) incompleteness (lossy)

9– 2 [1; N] 7! R+ : 8x 2 V : ff0(x)`
N
X

k=1

–kffk(x) – 0

relaxation = approximation, –i = Lagrange coefficients
— 33 —

Lagrangian relaxation, equality constraints

8x 2 V :

0

@

N̂

k=1

ffk(x) = 0

1

A) (ff0(x) – 0)

(soundness (Lagrange)

9– 2 [1;N] 7! R+ : 8x 2 V : ff0(x)`
N
X

k=1

–kffk(x) – 0

^ 9–0 2 [1;N] 7! R+ : 8x 2 V : ff0(x) +
N
X

k=1

–0kffk(x) – 0

, (–00 =
–0 ` –

2
)

9–00 2 [1;N] 7! R : 8x 2 V : ff0(x)`
N
X

k=1

–00kffk(x) – 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 34 — ľ P. Cousot

Example: affine Farkas’ lemma, informally

– An application of Lagrangian relaxation to the case
when A is a polyhedron

B

A

— 35 —

Example: affine Farkas’ lemma, formally

– Formally, if the system Ax+ b – 0 is feasible then

8x : Ax+ b – 0) cx+ d – 0

((soundness; Lagrange)

) (completeness;Farkas)

9– – 0 : 8x : cx+ d` –(Ax+ b) – 0 :

VMCAI’05, Paris, France, 17 Jan. 2005 — 36 — ľ P. Cousot

Yakubovich’s S-procedure, informally

– An application of Lagrangian relaxation to the case
when A is a quadratic form

B

A

— 37 —

Incompleteness (convex case)

B

A

VMCAI’05, Paris, France, 17 Jan. 2005 — 38 — ľ P. Cousot

Yakubovich’s S-procedure, completeness cases

– The constraint ff(x) – 0 is regular if and only if 9‰ 2
V : ff(‰) > 0.

– The S-procedure is lossless in the case of one regular
quadratic constraint:
8x 2 Rn : x>P1x+ 2q

>
1 x+ r1 – 0)

x>P0x+ 2q
>
0 x+ r0 – 0

((Lagrange)
) (Yakubovich)

9– – 0 : 8x 2 Rn : x>

 "

P0 q0
q>0 r0

#

` –

"

P1 q1
q>1 r1

#!

x – 0:

— 39 —

Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r which
is:

– Nonnegative: 9– 2 [1; N] 7! R+i :

8 x0; x : r(x0)`
N
X

i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N] 7! R+i :

8 x0; x : (r(x0)` r(x)` ”)`
N
X

i=1

–0iffi(x0; x) – 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 40 — ľ P. Cousot

Idea 4

Parametric abstraction of the ranking function r

— 41 —

Parametric abstraction

– How can we compute the ranking function r?

! parametric abstraction:

1. Fix the form ra of the function r a priori, in term
of unkown parameters a

2. Compute the parameters a numerically

– Examples:

ra(x) = a:x
> linear

ra(x) = a:(x 1)
> affine

ra(x) = (x 1):a:(x 1)
> quadratic

VMCAI’05, Paris, France, 17 Jan. 2005 — 42 — ľ P. Cousot

Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:

– Nonnegative: 9– 2 [1; N] 7! R+i :

8 x0; x : ra(x0)`
N
X

i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N] 7! R+i :

8 x0; x : (ra(x0)` ra(x)` ”)`
N
X

i=1

–0iffi(x0; x) – 0

— 43 —

Idea 5

Eliminate the universal quantification 8 using
linear matrix inequalities (LMIs)

VMCAI’05, Paris, France, 17 Jan. 2005 — 44 — ľ P. Cousot

Mathematical programming

9x 2 Rn:
N̂

i=1

gi(x) > 0

[Minimizing f(x)]

feasibility problem : find a solution to the constraints

optimization problem : find a solution, minimizing f(x)

Example: Linear programming

9x 2 Rn: Ax > b

[Minimizing cx]

— 45 —

Feasibility

– feasibility problem: find a solution s 2 Rn to the op-

timization program, such that
N̂

i=1

gi(s) – 0, or to de-

termine that the problem is infeasible

VMCAI’05, Paris, France, 17 Jan. 2005 — 46 — ľ P. Cousot

– feasible set: fx j
VN
i=1 gi(x) – 0g

– a feasibility problem can be converted into the opti-
mization program

minf`y 2 R j
N̂

i=1

gi(x)` y – 0g

VMCAI’05, Paris, France, 17 Jan. 2005 — 46 — ľ P. Cousot

Semidefinite programming, once again

9x 2 Rn: M(x) < 0

[Minimizing cx]

Where the linear matrix inequality (LMI) is

M(x) = M0 +
n
X

k=1

xkMk

with symetric matrices (Mk = Mk
>) and the positive

semidefiniteness is

M(x) < 0 = 8X 2 RN : X>M(x)X – 0

— 47 —

Semidefinite programming, once again

Feasibility is:

9x 2 Rn: 8X 2 RN : X>

0

@M0 +
n
X

k=1

xkMk

1

AX – 0

of the form of the formulæ we are interested in for pro-
grams which semantics can be expressed as LMIs:

N̂

i=1

ffi(x0; x) >i 0 =
N̂

i=1

(x0 x 1)Mi(x0 x 1)
> >i 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 48 — ľ P. Cousot

Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:

– Nonnegative: 9– 2 [1; N] 7! R+i :

8 x0; x : ra(x0)`
N
X

i=1

–i(x0 x 1)Mi(x0 x 1)
> – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N] 7! R+i :

8 x0; x:(ra(x0)`ra(x)`”)`
N
X

i=1

–0i(x0 x 1)Mi(x0 x 1)
>–0

— 49 —

Idea 6

Solve the convex constraints by semidefinite
programming

VMCAI’05, Paris, France, 17 Jan. 2005 — 50 — ľ P. Cousot

The simplex for linear programming

x

y

AX � b

cx�c y

Dantzig 1948, exponential in worst case, good in prac-
tice

— 51 —

Polynomial methods

Ellipsoid method : Khachian 1979, polynomial in worst
case but not good in practice

Interior point method : Kamarkar 1984, polynomial in worst
case and good in practice (hundreds of thousands of
variables)

VMCAI’05, Paris, France, 17 Jan. 2005 — 52 — ľ P. Cousot

The interior point method

cx�c y x

y

AX � b

— 53 —

Interior point method for semidefinite programming

– Nesterov & Nemirovskii 1988, polynomial in worst case
and good in practice (thousands of variables)

x

y

cx�c y

– Various path strategies e.g. “stay in the middle”

VMCAI’05, Paris, France, 17 Jan. 2005 — 54 — ľ P. Cousot

Semidefinite programming solvers

Numerous solvers available under Mathlabő, a.o.:

– lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali

– Sdplr: S. Burer, R. Monteiro, C. Choi

– Sdpt3: R. Tütüncü, K. Toh, M. Todd

– SeDuMi: J. Sturm

– bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

– Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,. . .)

— 55 —

Linear program: termination of Euclidean division
» clear all

% linear inequalities

% y0 q0 r0

Ai = [0 0 0; 0 0 0;

0 0 0];

% y q r

Ai_ = [1 0 0; % y - 1 >= 0

0 1 0; % q - 1 >= 0

0 0 1]; % r >= 0

bi = [-1; -1; 0];

% linear equalities

% y0 q0 r0

Ae = [0 -1 0; % -q0 + q -1 = 0

-1 0 0; % -y0 + y = 0

0 0 -1]; % -r0 + y + r = 0

% y q r

Ae_ = [0 1 0; 1 0 0;

1 0 1];

be = [-1; 0; 0];

Iterated forward/back-
ward polyhedral analysis:
{y>=1}
q := 0;
{q=0,y>=1}
r := x;
{x=r,q=0,y>=1}
while (y <= r) do
{y<=r,q>=0}
r := r - y;
{r>=0,q>=0}
q := q + 1
{r>=0,q>=1}

od
{q>=0,y>=r+1}

VMCAI’05, Paris, France, 17 Jan. 2005 — 56 — ľ P. Cousot

» [N Mk(:,:,:)]=linToMk(Ai, Ai_, bi);

» [M Mk(:,:,N+1:N+M)]=linToMk(Ae, Ae_, be);

» [v0,v]=variables(’y’,’q’,’r’);

» display_Mk(Mk, N, v0, v);

+1.y -1 >= 0

+1.q -1 >= 0

+1.r >= 0

-1.q0 +1.q -1 = 0

-1.y0 +1.y = 0

-1.r0 +1.y +1.r = 0

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’quadratic’);

» disp(diagnostic)

termination (bnb)

» intrank(R, v)

r(y,q,r) = -2.y +2.q +6.r

Floyd’s proposal r(x; y; q; r) = x` q is more intuitive but requires to discover

the nonlinear loop invariant x = r + qy.

— 57 —

Imposing a feasibility radius

x

y

cx�c y

VMCAI’05, Paris, France, 17 Jan. 2005 — 58 — ľ P. Cousot

Quadratic program: termination of factorial

Program:

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

LMI semantics:

-1.f0 +1.N0 >= 0

+1.n0 >= 0

+1.f0 -1 >= 0

-1.n0 +1.n -1 = 0

+1.N0 -1.N = 0

-1.f0.n +1.f = 0

r(n,f,N) = -9.993455e-01.n +4.346533e-04.f

+2.689218e+02.N +8.744670e+02

— 59 —

Idea 7

Convex abstraction of non-convex constraints

VMCAI’05, Paris, France, 17 Jan. 2005 — 60 — ľ P. Cousot

Semidefinite programming relaxation for
polynomial programs

eps = 1.0e-9;

while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do

x := a*x*(1-x)

od

a
.x
.(
1-
x
)

0.4
x a

Write the verification conditions in polynomial form, use
SOS solver to relax in semidefinite programming form.
SOStool+SeDuMi:

r(x) = 1.222356e-13.x + 1.406392e+00

— 61 —

Considering More General
Forms of Programs

VMCAI’05, Paris, France, 17 Jan. 2005 — 62 — ľ P. Cousot

Handling disjunctive loop tests and tests in
loop body

– By case analysis

– and “conditional Lagrangian relaxation” (Lagrangian
relaxation in each of the cases)

— 63 —

Loop body with tests

!̀ case analysis:



i – 0
i < 0

while (x < y) do

if (i >= 0) then

x := x+i+1

else

y := y+i

fi

od

lmilab:
r(i,x,y) = -2.252791e-09.i -4.355697e+07.x +4.355697e+07.y

+5.502903e+08

VMCAI’05, Paris, France, 17 Jan. 2005 — 64 — ľ P. Cousot

Quadratic termination of linear loop
{n>=0} ̀ termination precondition

determined by iterated for-
ward/backward polyhedral
analysis

i := n; j := n;

while (i <> 0) do

if (j > 0) then

j := j - 1

else

j := n; i := i - 1

fi

od

— 65 —

sdplr (with feasibility radius of 1.0e+3):

r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i ...

-2.809222e-03.n.j +1.533829e-02.n ...

+1.569773e-03.i^2 +7.077127e-05.i.j ...

+3.093629e+01.i -7.021870e-04.j^2 ...

+9.940151e-01.j +4.237694e+00

Successive values of
r(n; i; j) for n = 10 on
loop entry

0

5

10

0
2

4
6

8
10

0

50

100

150

200

250

300

350

j

Ranking function

i

r(
10

,i,
j)

VMCAI’05, Paris, France, 17 Jan. 2005 — 66 — ľ P. Cousot

Handling nested loops

– by induction on the loop depth

– use an iterated forward/backward symbolic analysis to
get a necessary termination precondition

– use a forward symbolic symbolic analysis to get the
semantics of a loop body

– use Lagrangian relaxation and semidefinite program-
ming to get the ranking function

— 67 —

Example of termination of nested loops:
Bubblesort inner loop

...

+1.i’ -1 >= 0

+1.j’ -1 >= 0

+1.n0’ -1.i’ >= 0

-1.j +1.j’ -1 = 0

-1.i +1.i’ = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0 = n & j >= 0 & i >= 1 & n0 >= i & j <> i);

{n0=n,i>=1,j>=0,n0>=i}

assume (n01 = n0 & n1 = n & i1 = i & j1 = j);

{j=j1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=0,n0>=i}

j := j + 1

{j=j1+1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=1,n0>=i}

termination (lmilab)

r(n0,n,i,j) = +434297566.n0 +226687644.n -72551842.i

-2.j +2147483647
VMCAI’05, Paris, France, 17 Jan. 2005 — 68 — ľ P. Cousot

Example of termination of nested loops:
Bubblesort outer loop

...

+1.i’ +1 >= 0

+1.n0’ -1.i’ -1 >= 0

+1.i’ -1.j’ +1 = 0

-1.i +1.i’ +1 = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0=n & i>=0 & n>=i & i <> 0);

{n0=n,i>=0,n0>=i}

assume (n01=n0 & n1=n & i1=i & j1=j);

{j1=j,i=i1,n0=n1,n0=n01,n0=n,i>=0,n0>=i}

j := 0;

while (j <> i) do

j := j + 1

od;

i := i - 1

{i+1=j,i+1=i1,n0=n1,n0=n01,n0=n,i+1>=0,n0>=i+1}

termination (lmilab)

r(n0,n,i,j) = +24348786.n0 +16834142.n +100314562.i +65646865

— 69 —

Handling nondeterminacy

– By case analysis

– Same for concurrency by interleaving

– Same with fairness by nondeterministic interleaving
with encoding of an explicit scheduler

VMCAI’05, Paris, France, 17 Jan. 2005 — 70 — ľ P. Cousot

Termination of a concurrent program
[| 1: while [x+2 < y] do

2: [x := x + 1]

od

3:

||

1: while [x+2 < y] do

2: [y := y - 1]

od

3:

|]

interleaving

!̀

while (x+2 < y) do

if ?=0 then

x := x + 1

else if ?=0 then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

od
penbmi: r(x,y) = 2.537395e+00.x+-2.537395e+00.y+

-2.046610e-01

— 71 —

Termination of a fair parallel program
[[while [(x>0)|(y>0) do x := x - 1] od ||

while [(x>0)|(y>0) do y := y - 1] od]]

interleaving
+ scheduler
!̀

{m>=1} termination precondition determined by iterated
forward/backward polyhedral analysist := ?;

assume (0 <= t & t <= 1);

s := ?;

assume ((1 <= s) & (s <= m));

while ((x > 0) | (y > 0)) do

if (t = 1) then

x := x - 1

else

y := y - 1

fi;

s := s - 1;

if (s = 0) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

else

skip

fi

od;;

penbmi: r(x,y,m,s,t) = +1.000468e+00.x +1.000611e+00.y

+2.855769e-02.m -3.929197e-07.s +6.588027e-06.t +9.998392e+03

VMCAI’05, Paris, France, 17 Jan. 2005 — 72 — ľ P. Cousot

Relaxed Parametric
Invariance Proof Method

— 73 —

Floyd’s method for invariance

Given a loop precondition P , find an unkown loop in-
variant I such that:

– The invariant is initial:

8 x : P (x)) I

"
(x)

– The invariant is inductive:

8 x; x0 : I
"
???

(x) ^ JB; CK(x; x0)) I

"
(x0)

VMCAI’05, Paris, France, 17 Jan. 2005 — 74 — ľ P. Cousot

Abstraction

– Express loop semantics as a conjunction of LMI con-
straints (by relaxation for polynomial semantics)

– Eliminate the conjunction and implication by Lagrangian
relaxation

– Fix the form of the unkown invariant by parametric
abstraction

. . . we get . . .

— 75 —

Floyd’s method for numerical programs

Find R=Q=Z-valued unkown parameters a, such that:

– The invariant is initial: 9— 2 R+ :

8 x : Ia(x)` —:P (x) – 0

– The invariant is inductive: 9– 2 [0; N] !̀ R+ :

8 x; x0 : Ia(x
0)` –0:Ia(x)

" "
bilinear in –0 and a

`
N
X

k=1

–k:ffk(x; x
0) – 0

VMCAI’05, Paris, France, 17 Jan. 2005 — 76 — ľ P. Cousot

Idea 8

Solve the bilinear matrix inequality (BMI) by
semidefinite programming

— 77 —

Bilinear matrix inequality (BMI) solvers

9x 2 Rn :
m̂

i=1

0

@M i0 +
n
X

k=1

xkM
i
k +

n
X

k=1

n
X

‘=1

xkx‘N
i
k‘ < 0

1

A

[Minimizing x>Qx+ cx]

Two solvers available under Mathlabő:

– PenBMI: M. Kočvara, M. Stingl

– bmibnb: J. Löfberg

Common interfaces to these solvers:

– Yalmip: J. Löfberg

VMCAI’05, Paris, France, 17 Jan. 2005 — 78 — ľ P. Cousot

Example: linear invariant
Program:
i := 2; j := 0;

while (??) do

if (??) then

i := i + 4

else

i := i + 2;

j := j + 1

fi

od;

– Invariant:

+2.14678e-12*i -3.12793e-10*j +0.486712 >= 0

– Less natural than i` 2j ` 2 – 0

– Alternative:

- Determine parameters (a) by other
methods (e.g. random interpreta-
tion)

- Use BMI solvers to check for invari-
ance

— 79 —

Conclusion

VMCAI’05, Paris, France, 17 Jan. 2005 — 80 — ľ P. Cousot

Constraint resolution failure

– infeasibility of the constraints does not mean “non ter-
mination” or “non invariance” but simply failure

– inherent to abstraction!

— 81 —

Numerical errors

– LMI/BMI solvers do numerical computations with round-
ing errors, shifts, etc

– ranking function is subject to numerical errors

– the hard point is to discover a candidate for the rank-
ing function

– much less difficult, when the ranking function is known,
to re-check for satisfaction (e.g. by static analysis)

– not very satisfactory for invariance (checking only ???)

VMCAI’05, Paris, France, 17 Jan. 2005 — 82 — ľ P. Cousot

Related work

– Linear case (Farkas lemma):
- Invariants: Sankaranarayanan, Spima, Manna (CAV’03,
SAS’04, heuristic solver)
- Termination: Podelski & Rybalchenko (VMCAI’03,
Lagrange coefficients eliminated by hand to reduce
to linear programming so no disjunctions, no tests,
etc)
- Parallelization & scheduling: Feautrier, easily gener-
alizable to nonlinear case

— 83 —

Seminal work

– LMI case, Lyapunov 1890,
“an invariant set of a dif-

ferential equation is sta-

ble in the sense that it at-

tracts all solutions if one

can find a function that is

bounded from below and

decreases along all solu-

tions outside the invariant

set”.

VMCAI’05, Paris, France, 17 Jan. 2005 — 84 — ľ P. Cousot

THE END, THANK YOU

VMCAI’05, Paris, France, 17 Jan. 2005 — 85 — ľ P. Cousot

	OVERVIEW OF THE TERMINATION ANALYSIS METHOD
	Proving Termination of a Loop
	Proving Termination of a Loop
	Arithmetic Mean Example
	Arithmetic Mean Example
	Forward/reachability properties
	Backward/ancestry properties
	Forward/backward properties
	Principle of the iterated forward/backward iteration-based approximate analysis
	Arithmetic Mean Example: Termination Precondition (1)
	Idea 1: The Auxiliary Termination Counter Method
	Arithmetic Mean Example: Termination Precondition (2)
	Arithmetic Mean Example
	Arithmetic Mean Example: Loop Invariant
	Arithmetic Mean Example
	Arithmetic Mean Example: Body Relational Semantics
	Arithmetic Mean Example
	Floyd's method for termination of while B do C
	Arithmetic Mean Example: Ranking Function
	PROVING TERMINATION BY PARAMETRIC ABSTRACTION, LAGRANGIAN RELAXATION AND SEMIDEFINITE PROGRAMMING
	Idea 2: Express the loop invariant and relational semantics as numerical positivity constraints
	Relational semantics of while B do C od loops
	Example of linear program (Arithmetic mean)
	Example of quadratic form program (factorial)
	Example of semialgebraic program (logistic map)
	Floyd's method for termination of while B do C
	Idea 3: Eliminate the conjunction and implication by Lagrangian relaxation
	Implication (general case)
	Implication (linear case)
	Lagrangian relaxation (linear case)
	Lagrangian relaxation, formally
	Lagrangian relaxation, equality constraints
	Example: affine Farkas' lemma, informally
	Example: affine Farkas' lemma, formally
	Example: Yakubovich's S-procedure, informally
	Incompleteness (convex case)
	Yakubovich's S-procedure, completeness cases
	Floyd's method for termination of while B do C
	Idea 4: Parametric abstraction of the ranking function
	Parametric abstraction
	Floyd's method for termination of while B do C
	Idea 5: Eliminate the universal quantification using linear matrix inequalities (LMIs)
	Mathematical programming
	Feasibility
	Semidefinite programming
	Semidefinite programming, once again
	Floyd's method for termination of while B do C
	Idea 6: Solve the constraints by semidefinite programming
	The simplex for linear programming
	Polynomial methods
	The interior point method
	Interior point method for semidefinite programming
	Semidefinite programming solvers
	Linear program: termination of Euclidean division
	Imposing a feasibility radius
	Quadratic program: termination of factorial
	Idea 7: Convex abstraction of non-convex constraints
	Semidefinite programming relaxation for polynomial programs
	MORE GENERAL FORMS OF PROGRAMS
	Handling disjunctive loop tests and tests in loop body
	Loop body with tests
	Quadratic termination of linear loop
	Handling nested loops
	Example of termination of nested loops: Bubblesort
	Example of termination of outer loops: Bubblesort
	Handling nondeterminacy
	Termination of a concurrent program
	Termination of a fair parallel program
	RELAXED PARAMETRIC INVARIANCE PROOF METHOD
	Floyd's method for invariance
	Abstraction
	Floyd's method for invariance for numerical programs
	Idea 8: Solve the bilinear matrix inequality (BMI) by semidefinite programming
	Bilinear matrix inequality (BMI) solvers
	Example: linear invariant
	CONCLUSION
	Constraint resolution failure
	Numerical errors
	Related work
	Seminal work
	THE END

