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Overview of the
Termination Analysis Method
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Proving Termination of a Loop
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The main point in this talk is (4).
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Proving Termination of a Loop

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example

while (x <> y) do

x := x - 1;

y := y + 1

od

The polyhedral abstraction used for the static analysis of the examples is

implemented using Bertrand Jeannet’s NewPolka library.
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Forward/reachability properties

II

Example: partial correctness (must stay into safe states)

— 7 —

Backward/ancestry properties

II

F

Example: termination (must reach final states)
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Forward/backward properties

I

F

I

Example: total correctness (stay safe while reaching final
states)
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Principle of the iterated forward/backward
iteration-based approximate analysis

– Overapproximate

lfpF u lfpB

by overapproximations of the decreasing sequence

X0 = >
: : :

X2n+1 = lfp–Y .X2n u F (Y )

X2n+2 = lfp–Y .X2n+1 uB(Y )

: : :
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Arithmetic Mean Example:
Termination Precondition (1)

{x>=y}
while (x <> y) do

{x>=y+2}
x := x - 1;

{x>=y+1}
y := y + 1

{x>=y}
od

{x=y}

— 11 —

Idea 1

The auxiliary termination counter method
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Arithmetic Mean Example:
Termination Precondition (2)

{x=y+2k,x>=y}
while (x <> y) do

{x=y+2k,x>=y+2}
k := k - 1;

{x=y+2k+2,x>=y+2}
x := x - 1;

{x=y+2k+1,x>=y+1}
y := y + 1

{x=y+2k,x>=y}
od

{x=y,k=0}
assume (k = 0)

{x=y,k=0}

Add an auxiliary termi-
nation counter to enforce
(bounded) termination in
the backward analysis!
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop

VMCAI’05, Paris, France, 17 Jan. 2005 — 14 — ľ P. Cousot



Arithmetic Mean Example:
Loop Invariant

assume ((x=y+2*k) & (x>=y));
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{k=0,x=y}
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Arithmetic Mean Example:
Body Relational Semantics

Case x < y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x < y);
empty(6)
assume (x0=x)&(y0=y)&(k0=k);
empty(6)
k := k - 1;
x := x - 1;
y := y + 1
empty(6)

Case x > y:
assume (x=y+2*k)&(x>=y+2);
{x=y+2k,x>=y+2}
assume (x > y);
{x=y+2k,x>=y+2}
assume (x0=x)&(y0=y)&(k0=k);
{x=y+2k0,y=y0,x=x0,x=y+2k,

x>=y+2}k := k - 1;
x := x - 1;
y := y + 1
{x+2=y+2k0,y=y0+1,x+1=x0,

x=y+2k,x>=y}
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Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analy-
sis of the loop with termination hypothesis to determine a
necessary proper termination precondition

2. Assuming the termination precondition, perform an forward
relational static analysis of the loop to determine the loop
invariant

3. Assuming the loop invariant, perform an forward relational
static analysis of the loop body to determine the loop ab-
stract operational semantics

4. Assuming the loop semantics, use an abstraction of Floyd’s
ranking function method to prove termination of the loop
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Floyd’s method for termination of while B do C

Given a loop invariant I, find an R=Q=Z-valued unkown
rank function r such that:

– The rank is nonnegative:

8 x0; x : I(x0) ^ JB; CK(x0; x) ) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x : I(x0) ^ JB; CK(x0; x) ) r(x) » r(x0)` ”

” – 1 for Z, ” > 0 for R=Q to avoid Zeno 12,
1
4,
1
8. . .
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Arithmetic Mean Example:
Ranking Function

» clear all;

[v0,v] = variables(’x’,’y’,’k’)

% linear inequalities

% x0 y0 k0

Ai = [ 0 0 0];

% x y k

Ai_ = [ 1 -1 0]; % x0 - y0 >= 0

bi = [0];

[N Mk(:,:,:)]=linToMk(Ai,Ai_,bi);

% linear equalities

% x0 y0 k0

Ae = [ 0 0 -2;

0 -1 0;

-1 0 0;

0 0 0];

% x y k

Ae_ = [ 1 -1 0; % x - y - 2*k0 - 2 = 0

0 1 0; % y - y0 - 1 = 0

1 0 0; % x - x0 + 1 = 0

1 -1 -2]; % x - y - 2*k = 0

be = [2; -1; 1; 0];

[M Mk(:,:,N+1:N+M)]=linToMk(Ae,Ae_,be);

Input the loop abstract
semantics
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» display_Mk(Mk, N, v0, v);

...

+1.x -1.y >= 0

-2.k0 +1.x -1.y +2 = 0

-1.y0 +1.y -1 = 0

-1.x0 +1.x +1 = 0

+1.x -1.y -2.k = 0

...

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’linear’);

» disp(diagnostic)

feasible (bnb)

» intrank(R, v)

r(x,y,k) = +4.k -2

– Display the abstract se-
mantics of the loop while

B do C

– compute ranking func-
tion, if any

— 21 —

Proving Termination by
Parametric Abstraction,
Lagrangian Relaxation and
Semidefinite Programming
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Idea 2

Express the loop invariant and relational semantics
as numerical positivity constraints

— 23 —

Relational semantics of while B do C od loops

– x0 2 R=Q=Z: values of the loop variables before a loop
iteration

– x 2 R=Q=Z: values of the loop variables after a loop
iteration

– I(x0): loop invariant, JB; CK(x0; x): relational seman-
tics of one iteration of the loop body

– I(x0) ^ JB; CK(x0; x) =

N̂

i=1

ffi(x0; x) >i 0 (>i 2 f>;–;=g)

– not a restriction for numerical programs
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Example of linear program (Arithmetic mean)
[AA0][x0 x]

> > b

{x=y+2k,x>=y}

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

+1.x -1.y >= 0

-2.k0 +1.x -1.y +2 = 0

-1.y0 +1.y -1 = 0

-1.x0 +1.x +1 = 0

+1.x -1.y -2.k = 0

2

6

6

6

6

4

0 0 0 1 `1 0
0 0 `2 1 `1 0
0 `1 0 0 1 0
`1 0 0 1 0 0
0 0 0 1 `1 `2

3

7

7

7

7

5

2

6

6

6

6

6

6

4

x0
y0
k0
x
y
k

3

7

7

7

7

7

7

5

–
=
=
=
=

2

6

6

6

6

4

0
`2
1
`1
0

3

7

7

7

7

5
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Example of quadratic form program (factorial)
[x x0]A[x x0]> + 2[x x0] q + r > 0

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

-1.f0 +1.N0 >= 0

+1.n0 >= 0

+1.f0 -1 >= 0

-1.n0 +1.n -1 = 0

+1.N0 -1.N = 0

-1.f0.n +1.f = 0

[n0f0N0nfN ]

2

6

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 `12 0 0
0 0 0 0 0 0

0 `12 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

n0
f0
N0
n
f
N

3

7

7

7

7

7

7

5

+ 2[n0f0N0nfN ]

2

6

6

6

6

6

6

4

0
0
0
0
1
2
0

3

7

7

7

7

7

7

5

+ 0 = 0
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Example of semialgebraic program
(logistic map)

eps = 1.0e-9;

while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do

x := a*x*(1-x)

od

a
.x
.(
1-
x
)

0.4
x a
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Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r and ” >
0 such that:

– The rank is nonnegative:

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0 ) r(x0) – 0

– The rank is strictly decreasing :

8 x0; x :
N̂

i=1

ffi(x0; x) >i 0 ) r(x0)` r(x)` ” – 0
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Idea 3

Eliminate the conjunction
V

and implication ) by
Lagrangian relaxation
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Implication (general case)

BA

A) B
,
8x 2 A : x 2 B
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Implication (linear case)

BA

A) B (assuming A 6= ;)
( (soundness)
) (completeness)
border of A parallel to border of B

— 31 —

Lagrangian relaxation (linear case)

BA
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Lagrangian relaxation, formally

Let V be a finite dimensional linear vector space, N > 0
and 8k 2 [0; N ] : ffk 2 V 7! R.

8x 2 V :

0

@

N̂

k=1

ffk(x) – 0

1

A) (ff0(x) – 0)

( soundness (Lagrange)
) completeness (lossless)
6) incompleteness (lossy)

9– 2 [1; N ] 7! R+ : 8x 2 V : ff0(x)`
N
X

k=1

–kffk(x) – 0

relaxation = approximation, –i = Lagrange coefficients
— 33 —

Lagrangian relaxation, equality constraints

8x 2 V :

0

@

N̂

k=1

ffk(x) = 0

1

A) (ff0(x) – 0)

( soundness (Lagrange)

9– 2 [1;N ] 7! R+ : 8x 2 V : ff0(x)`
N
X

k=1

–kffk(x) – 0

^ 9–0 2 [1;N ] 7! R+ : 8x 2 V : ff0(x) +
N
X

k=1

–0kffk(x) – 0

, (–00 =
–0 ` –

2
)

9–00 2 [1;N ] 7! R : 8x 2 V : ff0(x)`
N
X

k=1

–00kffk(x) – 0
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Example: affine Farkas’ lemma, informally

– An application of Lagrangian relaxation to the case
when A is a polyhedron

B

A

— 35 —

Example: affine Farkas’ lemma, formally

– Formally, if the system Ax+ b – 0 is feasible then

8x : Ax+ b – 0) cx+ d – 0

( (soundness; Lagrange)

) (completeness;Farkas)

9– – 0 : 8x : cx+ d` –(Ax+ b) – 0 :
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Yakubovich’s S-procedure, informally

– An application of Lagrangian relaxation to the case
when A is a quadratic form

B

A

— 37 —

Incompleteness (convex case)

B

A
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Yakubovich’s S-procedure, completeness cases

– The constraint ff(x) – 0 is regular if and only if 9‰ 2
V : ff(‰) > 0.

– The S-procedure is lossless in the case of one regular
quadratic constraint:
8x 2 Rn : x>P1x+ 2q

>
1 x+ r1 – 0)

x>P0x+ 2q
>
0 x+ r0 – 0

( (Lagrange)
) (Yakubovich)

9– – 0 : 8x 2 Rn : x>

 "

P0 q0
q>0 r0

#

` –

"

P1 q1
q>1 r1

#!

x – 0:

— 39 —

Floyd’s method for termination of while B do C

Find an R=Q=Z-valued unkown rank function r which
is:

– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : r(x0)`
N
X

i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x : (r(x0)` r(x)` ”)`
N
X

i=1

–0iffi(x0; x) – 0
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Idea 4

Parametric abstraction of the ranking function r

— 41 —

Parametric abstraction

– How can we compute the ranking function r?

! parametric abstraction:

1. Fix the form ra of the function r a priori, in term
of unkown parameters a

2. Compute the parameters a numerically

– Examples:

ra(x) = a:x
> linear

ra(x) = a:(x 1)
> affine

ra(x) = (x 1):a:(x 1)
> quadratic
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Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:

– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : ra(x0)`
N
X

i=1

–iffi(x0; x) – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x : (ra(x0)` ra(x)` ”)`
N
X

i=1

–0iffi(x0; x) – 0

— 43 —

Idea 5

Eliminate the universal quantification 8 using
linear matrix inequalities (LMIs)
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Mathematical programming

9x 2 Rn:
N̂

i=1

gi(x) > 0

[Minimizing f(x)]

feasibility problem : find a solution to the constraints

optimization problem : find a solution, minimizing f(x)

Example: Linear programming

9x 2 Rn: Ax > b

[Minimizing cx]

— 45 —

Feasibility

– feasibility problem: find a solution s 2 Rn to the op-

timization program, such that
N̂

i=1

gi(s) – 0, or to de-

termine that the problem is infeasible
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– feasible set: fx j
VN
i=1 gi(x) – 0g

– a feasibility problem can be converted into the opti-
mization program

minf`y 2 R j
N̂

i=1

gi(x)` y – 0g
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Semidefinite programming, once again

9x 2 Rn: M(x) < 0

[Minimizing cx]

Where the linear matrix inequality (LMI) is

M(x) = M0 +
n
X

k=1

xkMk

with symetric matrices (Mk = Mk
>) and the positive

semidefiniteness is

M(x) < 0 = 8X 2 RN : X>M(x)X – 0

— 47 —

Semidefinite programming, once again

Feasibility is:

9x 2 Rn: 8X 2 RN : X>

0

@M0 +
n
X

k=1

xkMk

1

AX – 0

of the form of the formulæ we are interested in for pro-
grams which semantics can be expressed as LMIs:

N̂

i=1

ffi(x0; x) >i 0 =
N̂

i=1

(x0 x 1)Mi(x0 x 1)
> >i 0
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Floyd’s method for termination of while B do C

Find R=Q=Z-valued unkown parameters a, such that:

– Nonnegative: 9– 2 [1; N ] 7! R+i :

8 x0; x : ra(x0)`
N
X

i=1

–i(x0 x 1)Mi(x0 x 1)
> – 0

– Strictly decreasing : 9” > 0 : 9–0 2 [1; N ] 7! R+i :

8 x0; x:(ra(x0)`ra(x)`”)`
N
X

i=1

–0i(x0 x 1)Mi(x0 x 1)
>–0

— 49 —

Idea 6

Solve the convex constraints by semidefinite
programming
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The simplex for linear programming

x

y

AX � b

cx�c y

Dantzig 1948, exponential in worst case, good in prac-
tice

— 51 —

Polynomial methods

Ellipsoid method : Khachian 1979, polynomial in worst
case but not good in practice

Interior point method : Kamarkar 1984, polynomial in worst
case and good in practice (hundreds of thousands of
variables)
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The interior point method

cx�c y x

y

AX � b

— 53 —

Interior point method for semidefinite programming

– Nesterov & Nemirovskii 1988, polynomial in worst case
and good in practice (thousands of variables)

x

y

cx�c y

– Various path strategies e.g. “stay in the middle”
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Semidefinite programming solvers

Numerous solvers available under Mathlabő, a.o.:

– lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali

– Sdplr: S. Burer, R. Monteiro, C. Choi

– Sdpt3: R. Tütüncü, K. Toh, M. Todd

– SeDuMi: J. Sturm

– bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

– Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,. . . )

— 55 —

Linear program: termination of Euclidean division
» clear all

% linear inequalities

% y0 q0 r0

Ai = [ 0 0 0; 0 0 0;

0 0 0];

% y q r

Ai_ = [ 1 0 0; % y - 1 >= 0

0 1 0; % q - 1 >= 0

0 0 1]; % r >= 0

bi = [-1; -1; 0];

% linear equalities

% y0 q0 r0

Ae = [ 0 -1 0; % -q0 + q -1 = 0

-1 0 0; % -y0 + y = 0

0 0 -1]; % -r0 + y + r = 0

% y q r

Ae_ = [ 0 1 0; 1 0 0;

1 0 1];

be = [-1; 0; 0];

Iterated forward/back-
ward polyhedral analysis:
{y>=1}
q := 0;
{q=0,y>=1}
r := x;
{x=r,q=0,y>=1}
while (y <= r) do
{y<=r,q>=0}
r := r - y;
{r>=0,q>=0}
q := q + 1
{r>=0,q>=1}

od
{q>=0,y>=r+1}
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» [N Mk(:,:,:)]=linToMk(Ai, Ai_, bi);

» [M Mk(:,:,N+1:N+M)]=linToMk(Ae, Ae_, be);

» [v0,v]=variables(’y’,’q’,’r’);

» display_Mk(Mk, N, v0, v);

+1.y -1 >= 0

+1.q -1 >= 0

+1.r >= 0

-1.q0 +1.q -1 = 0

-1.y0 +1.y = 0

-1.r0 +1.y +1.r = 0

» [diagnostic,R] = termination(v0, v, Mk, N, ’integer’, ’quadratic’);

» disp(diagnostic)

termination (bnb)

» intrank(R, v)

r(y,q,r) = -2.y +2.q +6.r

Floyd’s proposal r(x; y; q; r) = x` q is more intuitive but requires to discover

the nonlinear loop invariant x = r + qy.

— 57 —

Imposing a feasibility radius

x

y

cx�c y
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Quadratic program: termination of factorial

Program:

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

LMI semantics:

-1.f0 +1.N0 >= 0

+1.n0 >= 0

+1.f0 -1 >= 0

-1.n0 +1.n -1 = 0

+1.N0 -1.N = 0

-1.f0.n +1.f = 0

r(n,f,N) = -9.993455e-01.n +4.346533e-04.f

+2.689218e+02.N +8.744670e+02

— 59 —

Idea 7

Convex abstraction of non-convex constraints

VMCAI’05, Paris, France, 17 Jan. 2005 — 60 — ľ P. Cousot



Semidefinite programming relaxation for
polynomial programs

eps = 1.0e-9;

while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do

x := a*x*(1-x)

od

a
.x
.(
1-
x
)

0.4
x a

Write the verification conditions in polynomial form, use
SOS solver to relax in semidefinite programming form.
SOStool+SeDuMi:

r(x) = 1.222356e-13.x + 1.406392e+00

— 61 —

Considering More General
Forms of Programs
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Handling disjunctive loop tests and tests in
loop body

– By case analysis

– and “conditional Lagrangian relaxation” (Lagrangian
relaxation in each of the cases)

— 63 —

Loop body with tests

!̀ case analysis:



i – 0
i < 0

while (x < y) do

if (i >= 0) then

x := x+i+1

else

y := y+i

fi

od

lmilab:
r(i,x,y) = -2.252791e-09.i -4.355697e+07.x +4.355697e+07.y

+5.502903e+08
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Quadratic termination of linear loop
{n>=0}  ̀ termination precondition

determined by iterated for-
ward/backward polyhedral
analysis

i := n; j := n;

while (i <> 0) do

if (j > 0) then

j := j - 1

else

j := n; i := i - 1

fi

od

— 65 —

sdplr (with feasibility radius of 1.0e+3):

r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i ...

-2.809222e-03.n.j +1.533829e-02.n ...

+1.569773e-03.i^2 +7.077127e-05.i.j ...

+3.093629e+01.i -7.021870e-04.j^2 ...

+9.940151e-01.j +4.237694e+00

Successive values of
r(n; i; j) for n = 10 on
loop entry

0

5

10

0
2

4
6

8
10

0

50

100

150

200

250

300

350

j

Ranking function

i

r(
10

,i,
j)
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Handling nested loops

– by induction on the loop depth

– use an iterated forward/backward symbolic analysis to
get a necessary termination precondition

– use a forward symbolic symbolic analysis to get the
semantics of a loop body

– use Lagrangian relaxation and semidefinite program-
ming to get the ranking function

— 67 —

Example of termination of nested loops:
Bubblesort inner loop

...

+1.i’ -1 >= 0

+1.j’ -1 >= 0

+1.n0’ -1.i’ >= 0

-1.j +1.j’ -1 = 0

-1.i +1.i’ = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0 = n & j >= 0 & i >= 1 & n0 >= i & j <> i);

{n0=n,i>=1,j>=0,n0>=i}

assume (n01 = n0 & n1 = n & i1 = i & j1 = j);

{j=j1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=0,n0>=i}

j := j + 1

{j=j1+1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=1,n0>=i}

termination (lmilab)

r(n0,n,i,j) = +434297566.n0 +226687644.n -72551842.i

-2.j +2147483647
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Example of termination of nested loops:
Bubblesort outer loop

...

+1.i’ +1 >= 0

+1.n0’ -1.i’ -1 >= 0

+1.i’ -1.j’ +1 = 0

-1.i +1.i’ +1 = 0

-1.n +1.n0’ = 0

+1.n0 -1.n0’ = 0

+1.n0’ -1.n’ = 0

...

Iterated forward/backward polyhedral analysis
followed by forward analysis of the body:

assume (n0=n & i>=0 & n>=i & i <> 0);

{n0=n,i>=0,n0>=i}

assume (n01=n0 & n1=n & i1=i & j1=j);

{j1=j,i=i1,n0=n1,n0=n01,n0=n,i>=0,n0>=i}

j := 0;

while (j <> i) do

j := j + 1

od;

i := i - 1

{i+1=j,i+1=i1,n0=n1,n0=n01,n0=n,i+1>=0,n0>=i+1}

termination (lmilab)

r(n0,n,i,j) = +24348786.n0 +16834142.n +100314562.i +65646865

— 69 —

Handling nondeterminacy

– By case analysis

– Same for concurrency by interleaving

– Same with fairness by nondeterministic interleaving
with encoding of an explicit scheduler
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Termination of a concurrent program
[| 1: while [x+2 < y] do

2: [x := x + 1]

od

3:

||

1: while [x+2 < y] do

2: [y := y - 1]

od

3:

|]

interleaving

!̀

while (x+2 < y) do

if ?=0 then

x := x + 1

else if ?=0 then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

od
penbmi: r(x,y) = 2.537395e+00.x+-2.537395e+00.y+

-2.046610e-01
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Termination of a fair parallel program
[[ while [(x>0)|(y>0) do x := x - 1] od ||

while [(x>0)|(y>0) do y := y - 1] od ]]

interleaving
+ scheduler
!̀

{m>=1} termination precondition determined by iterated
forward/backward polyhedral analysist := ?;

assume (0 <= t & t <= 1);

s := ?;

assume ((1 <= s) & (s <= m));

while ((x > 0) | (y > 0)) do

if (t = 1) then

x := x - 1

else

y := y - 1

fi;

s := s - 1;

if (s = 0) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

else

skip

fi

od;;

penbmi: r(x,y,m,s,t) = +1.000468e+00.x +1.000611e+00.y

+2.855769e-02.m -3.929197e-07.s +6.588027e-06.t +9.998392e+03
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Relaxed Parametric
Invariance Proof Method

— 73 —

Floyd’s method for invariance

Given a loop precondition P , find an unkown loop in-
variant I such that:

– The invariant is initial:

8 x : P (x) ) I

"
(x)

– The invariant is inductive:

8 x; x0 : I
"
???

(x) ^ JB; CK(x; x0) ) I

"
(x0)
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Abstraction

– Express loop semantics as a conjunction of LMI con-
straints (by relaxation for polynomial semantics)

– Eliminate the conjunction and implication by Lagrangian
relaxation

– Fix the form of the unkown invariant by parametric
abstraction

. . . we get . . .
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Floyd’s method for numerical programs

Find R=Q=Z-valued unkown parameters a, such that:

– The invariant is initial: 9— 2 R+ :

8 x : Ia(x)` —:P (x) – 0

– The invariant is inductive: 9– 2 [0; N ] !̀ R+ :

8 x; x0 : Ia(x
0)` –0:Ia(x)

" "
bilinear in –0 and a

`
N
X

k=1

–k:ffk(x; x
0) – 0
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Idea 8

Solve the bilinear matrix inequality (BMI) by
semidefinite programming

— 77 —

Bilinear matrix inequality (BMI) solvers

9x 2 Rn :
m̂

i=1

0

@M i0 +
n
X

k=1

xkM
i
k +

n
X

k=1

n
X

‘=1

xkx‘N
i
k‘ < 0

1

A

[Minimizing x>Qx+ cx]

Two solvers available under Mathlabő:

– PenBMI: M. Kočvara, M. Stingl

– bmibnb: J. Löfberg

Common interfaces to these solvers:

– Yalmip: J. Löfberg
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Example: linear invariant
Program:
i := 2; j := 0;

while (??) do

if (??) then

i := i + 4

else

i := i + 2;

j := j + 1

fi

od;

– Invariant:

+2.14678e-12*i -3.12793e-10*j +0.486712 >= 0

– Less natural than i` 2j ` 2 – 0

– Alternative:

- Determine parameters (a) by other
methods (e.g. random interpreta-
tion)

- Use BMI solvers to check for invari-
ance

— 79 —

Conclusion
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Constraint resolution failure

– infeasibility of the constraints does not mean “non ter-
mination” or “non invariance” but simply failure

– inherent to abstraction!

— 81 —

Numerical errors

– LMI/BMI solvers do numerical computations with round-
ing errors, shifts, etc

– ranking function is subject to numerical errors

– the hard point is to discover a candidate for the rank-
ing function

– much less difficult, when the ranking function is known,
to re-check for satisfaction (e.g. by static analysis)

– not very satisfactory for invariance (checking only ???)
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Related work

– Linear case (Farkas lemma):
- Invariants: Sankaranarayanan, Spima, Manna (CAV’03,
SAS’04, heuristic solver)
- Termination: Podelski & Rybalchenko (VMCAI’03,
Lagrange coefficients eliminated by hand to reduce
to linear programming so no disjunctions, no tests,
etc)
- Parallelization & scheduling: Feautrier, easily gener-
alizable to nonlinear case
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Seminal work

– LMI case, Lyapunov 1890,
“an invariant set of a dif-

ferential equation is sta-

ble in the sense that it at-

tracts all solutions if one

can find a function that is

bounded from below and

decreases along all solu-

tions outside the invariant

set”.
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THE END, THANK YOU
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