
Abstract Semantic Dependency
Patrick Cousot

Courant Institute of Mathematical Sciences, New York University

Abstract. Dependency is a prevalent notion in computer science. There
have been numerous informal or formal attempts to define viable syn-
tactic and semantic concepts of dependency in programming languages
with subtle variations and limitations. We develop a new value depen-
dency analysis defined by abstract interpretation of a trace semantics.
A sound approximate dependency algorithm is formally derived by cal-
culational design. Further abstractions provide information flow, slicing,
non-interference, dye, and taint analyses.

1 Introduction

© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 1–22, 2019.
https://doi.org/10.1007/978-3-030-32304-2_6

Motivation: Dependency is a prevalent notion in computer science. For example
it is useful in program development [14], it is an important part of any paral-
lelizing compiler [54]. It appears in dataflow analysis [51,64], (abstract) program
slicing [68,56,49,5], program refactoring [7], hardware design [2] and debugging
[46]. It is prevailing in security, [30,12] including privacy analysis [59,47], and in
data bases [27].

Context: There have been numerous attempts to define a viable semantic concept
of dependency in programming languages. For example they are purely syntactic,
not taking data into account [68]. Or they are postulated on programs [26,6,1] or
on one execution trace [69] rather than derived from a definition of dependency
and a definition of the program semantics. Or they are limited to one [17] or
a few [48] of the many possible definitions of dependency based on a specific
instrumentation of the semantics of a given language. Or they make assumptions
of when dependencies are observed e.g. on program termination only [30,8,11]
maybe including nontermination [5,64]. These are typical limitations that we
would like to overcome.

Objective: Our aim is to introduce, justify, and illustrate a methodology to define
flexible concepts of dependency and corresponding static analyzes that can be
adapted to various contexts of use, each context requiring different notions of
dependency, sometimes with subtle variations.

The general idea of dependency is that modifying something in an execution
will later modify some other thing in the execution. This involves comparing at
least two executions, the original and the modified one. Therefore dependency is
not a property of a trace (such as invariance and termination) but a property of
a set of traces (such as program equivalence), sometimes called hyperproperty
[18].

Previous definitions of dependency (and related notions such as interference)
have called for changing the description of program executions by considering
multisemantics [16] or multilogics [31] handling more than one execution at
a time. Other abstract interpretation-based definitions of dependency consider

https://doi.org/10.1007/978-3-030-32304-2_6

2 P. Cousot

only one execution trace (by postulating dependency on that execution trace
[69] or by annotating the semantics [17,28]). When considering several execu-
tion traces, dependency can be defined by abstracting to functional dependency
[56]. Otherwise, one can provide an hypercollecting semantics [8,64] which then
abstracted.

As usual in abstract interpretation [23], we represent properties of entities in
a universe U by a subset of this universe. So a property of elements of U belongs
to ℘(U). For example “to be a natural” is the property N ≜ {𝑛 ∈ Z ∣ 𝑛 ⩾ 0} of
the integers Z. The property “𝑛 is a natural” is “𝑛 ∈ N”.

Given a program component S which semantics 𝓢JSK is an element of the
semantic domain 𝓓JSK, we understand a program component property 𝑃 as a
property of its semantics 𝓢JSK ∈ 𝓓JSK so 𝑃 ∈ ℘(𝓓JSK) and 𝓢JSK ∈ 𝑃 means
that 𝓢JSK has property 𝑃. The collecting semantics is the strongest program
property, that is the singleton {𝓢JSK}.

For example, the semantics we consider is a relation between a finite execu-
tion trace representing a past computation into its continuation into the future
which may not terminate so 𝓓JSK = ℘(𝕋+ × 𝕋+∞) where 𝕋+ is the set of all
finite execution traces and 𝕋+∞ the set of all finite or infinite execution traces.
So program properties belong to ℘(℘(𝕋+ × 𝕋+∞)). They are often called “hyper
properties”, after [18]. This terminology is supposed to rectify a previous mis-
understanding of program properties in [3], where property stands for a trace
property. More precisely, a program semantics is a set of execution traces in
℘(𝕋+∞) and a program property is also a set of execution traces in ℘(𝕋+∞). So
a semantics and its properties belong to the same semantic domain, which is
apparently incoherent.

Considering a property as a set of entities (with this property) has several
advantages. It applies to languages which semantics are not naturally defined
as traces e.g. [51] for logic programs. It avoids the definition of program proper-
ties through program transformation (like [10] duplicating programs which can
compare one execution to another one but not one too many other ones). It
eliminates the expressivity problems of logics (which can always be taken into
account by a further abstraction). It eliminates the need to define different no-
tions of properties for different notions of entities. In particular, the abstraction
of a property is a property such as ⟨℘(℘(𝕋+∞)), ⊆⟩ −−−−−→⟶←−−−−−−−𝛼∪

𝛾∪ ⟨℘(𝕋+∞), ⊆⟩ with
𝛼∪(𝑋) ≜ ∪𝑋, thus solving the apparent incoherence of [3]. Finally, and more
importantly, it aims at avoiding to create different theories for concepts that are
the same.

One difficulty encountered e.g. by [8,64] to define dependency is to lift the
structural trace semantics of a program component in ℘(𝕋+ ×𝕋+∞) into a struc-
tural collecting semantics in ℘(℘(𝕋+ × 𝕋+∞)). For example, [8] has 𝓓JSK =
Trc⊥ → Trc⊥ (where Trc is a set of pairs of initial-final states augmented by
⊥ for non-termination) while the (hyper-)collecting semantics is in ℘(℘(Trc)) →
℘(℘(Trc)) not in ℘(Trc⊥ → Trc⊥). This is a strict approximation (as shown

by [8, Theorem 1] which is an inclusion not an equality). Similarly, [64] uses
an “outcome semantics” which approximates the (hyper-)collecting semantics.

Abstract Semantic Dependency 3

These collecting semantics are specialized for dependency and lack generality
since traces are approximated by a relation or function, but the advantage is
that dependency boils down to functional dependency, which is easy to define
[56]. We show that, for dependency, we can dispense with the formal structural
definition of the (hyper-)collecting semantics {𝓢JSK} (since it is trivially isomor-
phic to 𝓢JSK by the singleton map • → {•}).
Content: We consider the syntax and trace semantics of iterative programs as
defined in [20, Section 2] in this volume. Traces are necessary to allow us to ob-
serve sequences of values of variables, in particular infinite ones. More abstract
input/output semantics (such as denotational, natural, or axiomatic semantics)
would not be adequate since intermediate or infinite computations are abstracted
away. Informal requirements on the semantic definition of dependency are illus-
trated in Section 3. The formal definition of value dependency is in Section 4. We
prove that this definition is valid both for prefix and maximal trace semantics
hence excludes timing channels including empty observations. The calculational
design of the structural static potential value dependency analysis is in Section 5.
It is not postulated without justification but designed by abstract interpretation
of the semantics, handling uniformly the control and data dependency notions of
[26]. Dye and tracking analysis are further abstractions described in Section 7.
We discuss related work and conclude in Section 2.

2 Syntax and Trace Semantics

We consider a subset of C with simple variables, arithmetic and boolean ex-
pressions, assignment, skip (;), conditionals, while iterations, break, compound
statement, statement lists. The syntax, program labelling, prefix trace seman-
tics, and maximal trace semantics of this subset of C is defined in [20, Section 2]
in this volume. The main idea is that ⟨𝜋0, 𝜋1⟩ ∈ 𝓢JSK if and only if the trace
𝜋0 representing a past computation arriving at S is continued within S by 𝜋1
resulting in a computation 𝜋0 ⌢⋅ 𝜋1. The continuation trace 𝜋1 is finite prefix of
the whole computation when 𝓢JSK = 𝓢∗JSK. 𝜋1 is finite maximal or infinite when
𝓢JSK = 𝓢+∞JSK. 𝝔(𝜋)x denotes the value of a variable x at the end of the trace
𝜋.

3 Informal Requirements for a Semantic Definition of
Dependency

According to [26], “Information flows from object x to object y, denoted x⇝ y,
whenever information stored in x is transferred to, or used to derive information
transferred to, object y”. When x ⇝ y we say that x flows to y or, when con-
sidering the inverse relation, that y depends on x. To make this information flow
clear, most definitions of in/dependency [17,65,64]) are of the form “changing
(part of) the input (say x) may/should not change (part of) the output (say y)”,
sometimes including nontermination [64]. For example, a pure function depends

4 P. Cousot

on a parameter if and only if changing only this parameter changes the result of
the function. In non-interference [30,48] changing private/untrusted input data
should not change public/trusted output data. This shows that two different ex-
ecutions reflecting the change should be involved in the definition of dependency
(or secrecy in [65]).

Dependency is usually static (valid for any execution of the program). The
dependency relation ⇝ can be global (valid anywhere in the program as in [26])
or local (that is relative to a correspondence between initial values of variables
and their values when reaching a program point, if ever, including for nontermi-
nating executions). We consider a static and local definition of dependency. The
following examples illustrate this intuition and show how it may be made more
precise.
Example 1 (explicit dependency). Consider ℓ1 y = x ; ℓ2. Changing the initial
value 𝑦0 of y will change the value of y at the entry point ℓ1. Changing the initial
value 𝑥0 of x will not change the value of y at ℓ1. So at the entry point ℓ1, y
depends on 𝑦0 but not on 𝑥0.

The value of y at exit point ℓ2 is 𝑥0 so changing the initial value 𝑦0 of y will
not change the value of y at ℓ2. Changing the initial value 𝑥0 of x will change the
value of y at ℓ2. So at ℓ2, y depends on 𝑥0 but not on 𝑦0. Such a dependency at
ℓ2 is called explicit in [26] since it does not depend on the program control.

Dependency is local since x ⁄⇝ y at ℓ1 but x ⇝ y at ℓ2. We write x ⁄⇝ℓ2 y
and x⇝ℓ2 y to show the program point where dependency is specified ⊓⊔

Example 2 (implicit dependency). Consider Pa ≜ ℓ1 y = 1 ;if ℓ2 (x == 0) { ;ℓ4 }ℓ5.
Changing the initial value 𝑥0 of x will change whether program control ℓ4 is
reached or not. If ℓ4 is reached then the value of y at ℓ4 will always be 1 so y does
not depend on 𝑥0 at ℓ4 (and neither at ℓ5).

Consider now Pb ≜ ℓ1 y = 1 ;if ℓ2 (x == 0) { ℓ3 y = x ;ℓ4 }ℓ5. Changing the
initial value 𝑥0 of x will change whether program control points ℓ3 and ℓ4 are
reached or not. If ℓ4 is reached then the value of y at ℓ4 will always be 0 so y
does not depend on 𝑥0 at ℓ4. However, depending on the initial value 𝑥0 of x, the
value of y at ℓ5 will be either 1 (when 𝑥0 ≠ 0) or 0 (when 𝑥0 = 0) so y depends
on 𝑥0 at ℓ5. Such a dependency at ℓ5 is called implicit in [26] since it depends on
the program control. ⊓⊔

Our formalization of dependency does not need to distinguish implicit de-
pendency (Ex. 2) from explicit dependency (Ex. 1) since the definition is the
same in both cases.
Example 3 (timely dependency). Consider the program while (0 == 0) ℓ y = x ;.
The sequence of values taken by x at ℓ is 𝑥0, 𝑥0, 𝑥0, …while it is 𝑦0, 𝑥0, 𝑥0, …for
y. So x depends on 𝑥0 while y depends on 𝑥0 and 𝑦0 at ℓ. For y considering
only one possible value during the iterations would be insufficient to determine
the dependency upon initial values and, in general, we have to consider the full
sequence of successive values of y at a given program point ℓ. ⊓⊔

Abstract Semantic Dependency 5

Example 4 (value dependency). Consider the program while (0 == 0) { ℓ x = x -
1 ;if (x == 0) y = y + 1 ; }. If 𝑥0 ⩽ 0, the sequence of values of y at ℓ is the

infinite sequence 𝑦0, 𝑦0, 𝑦0, …. If 𝑥0 > 0, it is
𝑥0times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑦0,… , 𝑦0, 𝑦0 + 1, 𝑦0 + 1, …. So we

can find two executions of the program with different initial values 𝑥0 of x such
that the sequences of values of y at ℓ have a common prefix but differ at least
by one value after that prefix. So y depends on 𝑥0 at ℓ. ⊓⊔

Example 5 (timing channel). Consider the program int x, y; while (x > 0)
ℓ x = x - 1 ; (where we have added a declaration to show that the program
involves variable y). If the initial value of x is 𝑥0 ⩽ 0 then the sequence of values
taken by y at ℓ is empty. Otherwise, if 𝑥0 > 0, it is 𝑦0 ⋅ 𝑦0 ⋅ … ⋅ 𝑦0 repeated 𝑥0
times. So changing 𝑥0 changes this sequence of values. Depending on 𝑥0 we can
find sequences of values of at ℓ that differ in length, but along these sequences
we cannot find a point where they differ in value.

In security, this is a covert channel [44] (more precisely a timing channel [58])
which may or may not be considered as observable, the choice being application-
dependent.

Traditionally, in dependency analysis, timing channels are not considered to
be at the origin of dependencies [26], in particular when dependency is used in
the context of compilation. ⊓⊔

Example 6 (empty observation). Consider the program if (x==0) { ℓ1 y = x ;ℓ2 }ℓ3.
What are the values of y observed at ℓ2? If x==0 this is 0 while if x!=0 there is no
possible observation y at ℓ2. So we may consider that an empty observation is a
valid observation in which case y depends on x at ℓ2. This is certainly a frequent
point of view in security. On the contrary, we may exclude empty observations,
in which case y does not depend on x at ℓ2. This is more common in compilation
(since y is constant at ℓ2). Notice that in both cases y depends on x at ℓ3 since
we can observe different values of y depending on the test on x. ⊓⊔

Our definition of dependency relies on the timely observation of values but
excludes timing channels and empty observations. This is an arbitrary choice
that follows the implicit tradition in compilation.

4 Formal semantic definition of value dependency

Informally, we say that the initial value 𝑥0 of variable x flows to variable y at
program point ℓ (or y depends on the initial value of x), written x⇝ℓ y, if and
only if changing the initial value 𝑥0 of x will change the sequence of values taken
by y whenever execution reaches program point ℓ.

Sequence of values of a variable at a program point Given an initialization
trace 𝜋0 ∈ 𝕋+ followed by a nonempty trace 𝜋 ∈ 𝕋+∞, let us define the sequence
seqvalJyKℓ(𝜋0, 𝜋) of values of the variable y at program point ℓ along the trace 𝜋
continuing 𝜋0 as follows.

6 P. Cousot

seqvalJyKℓ(𝜋0, ℓ) ≜ 𝝔(𝜋0)y (1)
seqvalJyKℓ(𝜋0, ℓ′) ≜ ϶ when ℓ′ ≠ ℓ

seqvalJyKℓ(𝜋0, ℓ 𝑎−−−−→ ℓ″𝜋) ≜ 𝝔(𝜋0)y ⋅ seqvalJyKℓ(𝜋0 ⌢⋅ ℓ 𝑎−−−−→ ℓ″, ℓ″𝜋)
seqvalJyKℓ(𝜋0, ℓ′ 𝑎−−−−→ ℓ″𝜋) ≜ seqvalJyKℓ(𝜋0 ⌢⋅ ℓ′ 𝑎−−−−→ ℓ″, ℓ″𝜋) when ℓ′ ≠ ℓ

seqvalJyKℓ(𝜋0, 𝜋) is the empty sequence ϶ when ℓ does not appear in 𝜋. We rely
on intuition that this definition applies to finite and infinite traces (by passing
to the limit as in [20, Section 2.5]).

The sequence of values of variable y at a program point ℓ abstracts away the
position in traces where the values are observed. So execution time (represented
as the number of steps that have been executed to reach a given position in the
trace) is abstracted away.

Differences between sequences of values of a variable at a program
point The definition of dependency of y on the initial value of x involves the
comparison of sequences 𝜔 and 𝜔′ of the successive values of variable y taken at
some program point for two different executions that differ on the initial value
of x. By “differ”, we mean that the sequences may have a common prefix but
must eventually have a different value at some position in the sequences.

diff(𝜔, 𝜔′) ≜ ∃𝜔0, 𝜔1, 𝜔′1, 𝜈, 𝜈′ . 𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜔′ = 𝜔0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈 ≠ 𝜈′ (2)

Observe that ¬diff(𝜔, 𝜔′) implies either that 𝜔 = 𝜔′ (the futures are the same so
there is no dependency) or one is a strict prefix of the other (this is a timing
channel abstracted away in this definition (2) of dependency). Because 𝜔 and
𝜔′ in (2) must contain at least one value, they cannot be empty (thus excluding
Ex. 6).

Definition of value dependency Let us define 𝒟ℓ⟨x, y⟩ to mean that “the
sequence of values of variable y at ℓ depends upon the initial value of x”, also
written x ⇝ℓ y to mean that the initial value of x flows to y. So there are
two execution traces whose initial values are the same but for x for which the
sequences of values of y at program point ℓ on these two execution traces do
differ.

Definition 1 (Dependency 𝒟).

𝒟ℓ⟨x, y⟩ ≜ {Π ∈ ℘(𝕋+ × 𝕋+∞) ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ Π . (3)
(∀z ∈ V ⧵ {x} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z) ∧

diff(seqvalJyKℓ(𝜋0, 𝜋1), seqvalJyKℓ(𝜋′0, 𝜋′1))} ⊓⊔

We do not need to require 𝝔(𝜋0)x ≠ 𝝔(𝜋′0)x in (3), since, the language being
deterministic, the computations would be the same for the same initial values of
variables.

Abstract Semantic Dependency 7

Dependency in (3) defines (a) an abstraction of the past (the initial value
of variables), (b) an abstraction of the future (seqvalJyK), (c) the difference be-
tween past abstractions (the initial values of variables only differ for x), (d) the
difference between futures (diff). It states that the abstraction of the future de-
pends on the abstraction of the past if and only if there exist two executions
with different past abstractions and different future abstractions.

Definition 2 (Value dependency flow). At program point ℓ of program P,
variable y depends on the initial value of variable x (or x ⇝ℓ

P
y i.e. the initial

value of variable x flows to variable y at program point ℓ) if and only if

x⇝ℓ
P
y ≜ (𝓢+∞JPK ∈ 𝒟ℓ⟨x, y⟩). (4) ⊓⊔

The definition of seqval in (1) accounts for timely dependency (Ex. 3) while
that of diff in (2) accounts for value dependency (Ex. 4) but excludes timing
channels (Ex. 5) and empty observations (Ex. 6). Contrary to [26] there is no need
for an artificial distinction between explicit (Ex. 1) and implicit flows (Ex. 2).
In (3) and (4) both explicit and implicit flows are comprehended in exactly the
same definition.

Notice that definition (4) of dependency is semantic-based and explicitly
depends upon the program semantics. The notation x ⇝ℓ

𝓢+∞JPK y would be more
precise.

Prefix versus maximal trace semantics based dependency The use of
the prefix trace semantics 𝓢∗JPK is equivalent to that of the maximal trace
semantics 𝓢+∞JPK in the definition (4) of dependency. This is formally stated by
the following

Lemma 1 (Value dependency for finite prefix traces).

x⇝ℓ
P
y = (𝓢∗JPK ∈ 𝒟ℓ⟨x, y⟩). ⊓⊔

Value dependency abstraction The value dependency abstraction of a se-
mantic property S ∈ ℘(℘(𝕋+ × 𝕋+∞)) is

𝛼ᶁ(S)ℓ ≜ {⟨x, y⟩ ∣ S ⊆ 𝒟ℓ⟨x, y⟩} (5)

Lemma 2. There is a Galois connection ⟨℘(℘(𝕋+×𝕋+∞)), ⊆⟩ −−−−−→←−−−−−
𝛼ᶁ

𝛾ᶁ
⟨ℙᶁ, ⊇̇⟩ where

ℙᶁ ≜ L → ℘(V × V) is ordered pointwise and the concretization of a dependency
property 𝐃 is

𝛾ᶁ(𝐃) ≜ ⋂
ℓ∈L
⋂

⟨x, y⟩∈𝐃(ℓ)
𝒟ℓ⟨x, y⟩ ⊓⊔

8 P. Cousot

The intuition is that the more semantics 𝓢 have semantic property S, the less
dependencies can be found i.e. S ⊆ S′ ⇒ 𝛼ᶁ(S)ℓ ⊇ 𝛼ᶁ(S′)ℓ. This is because
the dependencies must exist for all semantics 𝓢 having semantic property S.
Otherwise stated, the less dependencies you consider, the more semantics will
exactly have these dependencies.

This is different from the observation than larger semantics have more de-
pendencies 𝓢 ⊆ 𝓢′ ⇒ 𝛼ᶁ({𝓢})ℓ ⊆ 𝛼ᶁ({𝓢′})ℓ since 𝓢 ∈ 𝒟ℓ⟨x, y⟩ ⇒ 𝓢′ ∈ 𝒟ℓ⟨x,
y⟩.

Value dependency semantics is an abstraction of the collecting trace seman-
tics.
Corollary 1 (Value dependency for finite prefix traces).

𝜆 ℓ . {⟨x, y⟩ ∣ x⇝ℓ
P
y} = 𝛼ᶁ({𝓢+∞JPK}) = 𝛼ᶁ({𝓢∗JPK}) ⊓⊔

Exact, definite, and potential value dependency semantics The ex-
act value dependency semantics 𝓢 diff abstracts the maximal trace semantics, or
equivalently, by Lem. 1, the prefix trace semantics by the dependency abstrac-
tion. By Rice theorem [55], {𝓢∗JSK} is not computable so 𝓢 diff is not computable
in this way. Therefore, static analysis must content itself with approximations (or
unsoundness that we disapprove of). There are two possibilities. Definite value
dependency is an under-approximation of value dependency (so ∅ is a correct
under-approximation). Potential value dependency is an over-approximation of
value dependency (so V × V is a correct over-approximation). Formally,

𝓢 diffJSK ≜ 𝛼ᶁ({𝓢+∞JSK}) = 𝛼ᶁ({𝓢∗JSK}) exact dependency
𝓢 diff
∀ JSK ⊆̇ 𝛼ᶁ({𝓢+∞JSK}) definite dependency

𝛼ᶁ({𝓢+∞JSK}) ⊆̇ 𝓢 diff
∃ JSK potential dependency (6)

We choose potential value dependency, which is an over-approximation of value
dependency needed e.g. in compilation or security, looking for more dependencies
than there are actually.

5 Calculational Design of the Structural Static Potential
Value Dependency Analysis

Value dependency abstract domain An abstract property 𝐃 ∈ ℙᶁ of the
value dependency abstract domain ℙᶁ tracks at each program point in ℓ ∈ L the
flows ⟨x, y⟩ ∈ 𝐃ℓ the initial value of x to the value of y at ℓ, that is x⇝ℓ y.

𝐃 ∈ ℙᶁ ≜ L→ ℘(V × V) (7)

⟨ℙᶁ, ⊆̇, ⊥̇, ⊤̇, ∩̇, ∪̇⟩ is a finite complete lattice partially ordered by pointwise
subset inclusion ⊆̇. As in [26], values of variables are not taken into account in
this abstraction. The Ex. 7 below shows that this introduces imprecision. This
imprecision can be recovered by a reduced product [23,24] with a relational value
analysis, which is an orthogonal problem.

Abstract Semantic Dependency 9

Example 7 (structural compositionality). In the following statement, x and y at
ℓ1 depend on x at ℓ0. /* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ0 y = x ;
ℓ1 /* 𝑥 = 𝑥0, 𝑦 = 𝑥0 */

In the following statement, x and y at ℓ2 depend on x at ℓ1.
/* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ1 y = y-x ;
ℓ2 /* 𝑥 = 𝑥0, 𝑦 = 𝑦0 −𝑥0 */

In the sequential composition of the two statements
/* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ0 y = x ; /* 𝑥 = 𝑥0, 𝑦 = 𝑥0 */
ℓ1 y = y-x ; /* 𝑥 = 𝑥0, 𝑦 = 0 */
ℓ2

y at ℓ2 depends on x at ℓ1 which depends on x at ℓ0 so, by composition, y at ℓ2
depends on x at ℓ0. However, y = 0 at ℓ2 so y at ℓ2 does not depend on x at ℓ0.

For a more precise analysis, the reduced product of the dependency analysis
and the linear equality analysis [40] will find ∃𝑥′0, 𝑦′0 . 𝑥′0 = 𝑥0 ∧ 𝑦′0 = 𝑥0 ∧ 𝑥 =
𝑥′0, 𝑦 = 𝑦′0 − 𝑥′0, that is, by projection, 𝑥 = 𝑥0, 𝑦 = 0 so y at ℓ2 does not depend
on x at ℓ0. ⊓⊔

Value dependency abstract semantics Whenever some term is not com-
putable because it uses values, the calculational design of the potential value
dependency semantics 𝓢 diff

∃ JSK will over-approximated it (as required by (6)).
Therefore 𝓢 diff

∃ JSK is sound by construction. Besides the reduction with abstrac-
tions of values, this calculational design of 𝓢 diff

∃ JSK shows that it is possible to
improve the precision of the analysis by taking the symbolic constancy of ex-
pressions into account.

Theorem 1. For all program components S, the abstract value dependency se-
mantics 𝓢 diff

∃ JSK defined by (8) to (17) is sound as specified by (6) of potential
dependency.

We obtain an abstract semantics operating by structural induction and comput-
ing fixpoints in a finite domain. It is therefore computable and directly yields
an effective algorithm. We show the calculational design for the assignment, the
other cases are similar.
• The abstract potential dependency semantics at a statement S which
is not an iteration, variables have their initial value so only depend on them-
selves. (For loops (17) more dependencies may originate from the iterations.)

𝓢 diff
∃ JSK atJSK ≜ 1V (8)

where 1𝑆 ≜ {⟨x, x⟩ ∣ x ∈ 𝑆} is the identity relation on set 𝑆 and V is the set of
program variables.

10 P. Cousot

• The abstract potential dependency semantics outside a statement,
there is no possible potential dependency since executions never reach that
point.

ℓ ∉ labsJSK⇒ 𝓢 diff
∃ JSK ℓ ≜ ∅ (9)

• The abstract potential dependency semantics after an assignment
S ∶∶= x = A ;, the unmodified variables y ≠ x depend upon their initial value at
atJSK. The assigned-to variable x depends on 𝓢 diff

∃ JAK defined as the variables on
which the assigned expression A does depend.

𝓢 diff
∃ JSK ℓ ≜ (ℓ = atJSK ? 1V (10)

| ℓ = aftJSK ? {⟨y, x⟩ ∣ y ∈ 𝓢 diff
∃ JAK} ∪ {⟨y, y⟩ ∣ y ≠ x}

: ∅)

𝓢 diff
∃ JAK ≜ {y ∣ ∃𝜌 ∈ Ev . ∃𝜈 ∈ 𝕍 .𝓐JAK𝜌 ≠𝓐JAK𝜌[y← 𝜈]} ⊆ 𝕧𝕒𝕣𝕤JAK

The functional dependency 𝓢 diff
∃ JAK of expression A is traditionally over-approx-

imated syntactically by the set of variables 𝕧𝕒𝕣𝕤JAK of this expression A [68,26].
This is very coarse since e.g. if A is constant (such as y = x - x ;), 𝓢 diff

∃ JAK is
empty. For a trivial improvement, we can define

𝓢 diff
∃ J1K ≜ ∅ 𝓢 diff

∃ JxK ≜ {x} 𝓢 diff
∃ JA1 - A2K ≜ {y ∈ 𝕧𝕒𝕣𝕤JA1K ∪ 𝕧𝕒𝕣𝕤JA2K ∣ A1 ≠ A2}.

The analysis looks quite imprecise. Further precision can be obtained by a re-
duced product with a value analysis, as examplified in Ex. 7 and later discussed
in Section 6.

The interest of the proof of (10) is to show that the value dependency al-
gorithm follows by calculus from the trace semantics of [20, Section 2] and
the abstraction (5). By varying the semantics this can be applied to other lan-
guages. By varying the abstraction, one can consider the different variants of
dependency. In another context of safety analysis, such proofs have been shown
to be machine checkable [39] and hopefully, in the future, automatisable.

Proof (of (10)). The cases ℓ = atJSK was handled in (8) and ℓ ∉ labsJSK in (9). It
remains the case ℓ = aftJSK.
𝛼ᶁ({𝓢+∞JSK}) aftJSK

= 𝛼ᶁ({𝓢∗JSK}) aftJSK HLem. 1I
= {⟨x′, y⟩ ∣ 𝓢∗JSK ∈ 𝒟(aftJSK)⟨x′, y⟩} Hdef. (5) of 𝛼ᶁ and def. ⊆I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ 𝓢∗JSK . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z ∧

diff(seqvalJyK(aftJSK)(𝜋0, 𝜋1), seqvalJyK(aftJSK)(𝜋′0, 𝜋′1))}Hdef. ∈ and (3) of 𝒟ℓ⟨x′, y⟩I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ {⟨𝜋atJSK, atJSK x=𝓐JAK𝝔(𝜋atJSK)−−−−−−−−−−−−−−−−−−−−−→

aftJSK⟩ ∣ 𝜋atJSK ∈ 𝕋+} . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z ∧
diff(seqvalJyK(aftJSK)(𝜋0, 𝜋1), seqvalJyK(aftJSK)(𝜋′0, 𝜋′1))}

Abstract Semantic Dependency 11

Hdef. ([20].3) of the assignment prefix finite trace semanticsI
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z =
𝝔(𝜋′0atJSK)z ∧ diff(seqvalJyK(aftJSK)(𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK),

seqvalJyK(aftJSK)(𝜋′0atJSK, atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK))} Hdef. ∈I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z) ∧
diff(𝝔(𝜋0atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y, 𝝔(𝜋′0atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y)}Hdef. (1) of the future seqvalJyKI

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z =
𝝔(𝜋′0atJSK)z) ∧ ((𝝔(𝜋0atJSK)y ≠ 𝝔(𝜋′0atJSK)y) ∨ (𝝔(𝜋0atJSK)y = 𝝔(𝜋′0atJSK)y ∧
𝝔(𝜋0atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y ≠ 𝝔(𝜋′0atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y)}H(2) so that diff(𝑎 ⋅ 𝑏, 𝑐 ⋅ 𝑑) if and only if (1) 𝑎 ≠ 𝑐 or (2) 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑑.I

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵{x′} . 𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z)∧((y =
x′) ∨ (y = x ∧𝓐JAK𝝔(𝜋0atJSK) ≠𝓐JAK𝝔(𝜋′0atJSK)))} Hdef. (2) of 𝝔I
⊆ {⟨x′, y⟩ ∣ ((y = x′) ∨ (y = x ∧ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]))} (11)

Hletting 𝜌 = 𝝔(𝜋0atJSK) and 𝜈 = 𝝔(𝜋′0atJSK)(x′) so that ∀z ∈ V ⧵ {x′} .
𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z implies that 𝝔(𝜋′0atJSK) = 𝜌[x′ ← 𝜈].I

= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} Hcase analysisI
= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ x′ ∈ 𝓢 diff

∃ JAK}
Hby defining the functional dependency of an expression A as 𝓢 diff

∃ JAK ≜
{x′ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} in (10)I ⊓⊔

Equality holds in (11) if every environment is computable i.e. ∀𝜌 ∈ Ev . ∃𝜋 ∈ 𝕋+ .
𝝔(𝜋) = 𝜌. Then imprecision comes only from 𝓢 diff

∃ JAK i.e. when it is impossible
to evaluate A in all possible environments. Notice that a reduced product with a
reachability analysis providing an invariant atJSK will limit the possible values of
the environments 𝜌 and 𝜌[x′ ← 𝜈] in 𝓢 diff

∃ JAK and therefore make the dependency
analysis more precise.

• The abstract potential value dependency semantics of a conditional
statement S ∶∶= if (B) S𝑡 is specified in (12) below. It was discovered by
calculational design. (The left restriction 𝑟 ⌉ 𝑆 of a relation 𝑟 ∈ ℘(𝑆1 × 𝑆2) to a set
𝑆 is {⟨𝑥, 𝑦⟩ ∈ 𝑟 ∣ 𝑥 ∈ 𝑆}.)

12 P. Cousot

𝓢 diff
∃ JSK ℓ ≜ (ℓ = atJSK ? 1V (a) (12)

| ℓ ∈ inJS𝑡K ? 𝓢 diff
∃ JS𝑡K ℓ ⌉ nondet(B, B) (b)

| ℓ = aftJSK ? 𝓢 diff
∃ JS𝑡K aftJS𝑡K ⌉ nondet(B, B) (c.1)
∪ 1V ⌉ nondet(¬B, ¬B) (c.2)
∪ nondet(¬B, ¬B) ×modJS𝑡K (c.3)

: ∅) (d)

On entry (12.a), which is an instance of (8), variables in V only depend upon
themselves as specified by the identity relation 1V .

The reasoning in (12.b) is that if a variable y depends at ℓ on the initial value
of a variable x at atJS𝑡K, it depends in the same way on that initial value of the
variable x at atJSK since the test B has no side effect. However, (12.b) also takes
into account that if S𝑡 can only be reached for a unique value of the variable x
and the branch is not taken for all other values of x then the variable y does not
depend on x in S𝑡 since empty observations are disallowed by the abstraction (5)
using the definition (2) of diff.

[Non-]determinacy det(B1, B2) [nondet(B1, B2)] is defined s.t.

det(B1, B2) ⊆ {x ∣ ∀𝜌, 𝜌′ . (𝓑JB1K𝜌 ∧𝓑JB2K𝜌′) ⇒ (𝜌(x) = 𝜌′(x))} (13)
nondet(B1, B2) ⊇ V ⧵ det(B1, B2)

So if x ∈ det(B1, B2) in (13) then B1 and B2 can both be true for at most one value of
x (e.g. det(x==1, x==1) = {x} and det(x==1, x!=1) = ∅). It is under-approximated
by ∅. Its complement nondet(B1, B2) in (13) is the set of variables for which B1
and B2 may both be true for different values of variable x. It is over-approximated
by all variables V . A better solution is to use a reduced product with a value or
symbolic constant propagation analysis as in Section 6.

If x ∉ nondet(B, B) in (12.b) then x ∈ det(B, B) so the value of x is constant
in S𝑡 so no variable y in S𝑡 can depend on x. For example dependency at ℓ in
if (x == 1) { y = x ; ℓ } is the same as x = 1 ;y = x ; ℓ, which is the same as
y = 1 ; ℓ so y does not depends on x at ℓ.

(12.c) determines dependencies after S so compare two possible executions of
that statement. In case (12.c.1) both executions go through the true branch. In
case (12.c.2) both executions go through the false branch, while in case (12.c.3)
the executions take different branches.

In case (12.c.1) when the test is true tt for both executions, the executions
of the true branch S𝑡 terminate and control after S𝑡 reaches the program point
after S (recall that aftJS𝑡K = aftJSK). The dependencies after S𝑡 propagate after S
but only in case of non-determinism, e.g. for variables that are not constant.

The second case in (12.c.2) is for those executions for which the test B is false
ff. Variables depend on themselves atJSK and control moves to aftJSK so that
dependencies are the same there, but only for variables that can reach aftJSK
with different values on different executions as indicated by the restriction to
nondet(¬B, ¬B).

Abstract Semantic Dependency 13

The third case in (12.c.3) is for pairs of executions, one through the true
branch and the other through the false branch. In that case y depends on x
only if x does not force execution to always take the same branch, meaning that
x ∈ nondet(¬B, ¬B). If y is not modified by the execution through S𝑡 then its
value after S is always the same as its value atJSK (since y is not modified on the
false branch either). In that case changing y atJSK would not change y after S so
that, in that situation, y does not depend on x. Therefore (12.c.3) requires that
y ∈ modJS𝑡K.

The variables modJSK modified by a statement S are

modJSK ⊇ {x ∣ ∃𝜋0, 𝜋1 . ⟨𝜋0atJSK, atJSK𝜋1aftJSK⟩ ∈ 𝓢+∞JSK
∧ 𝝔(𝜋0atJSK𝜋1aftJSK)x ≠ 𝝔(𝜋0atJSK)x} (14)

In the style of [26], a purely syntactic and very rough over-approximation would
be
modJx = E ;K ≜ {x} modJif (B) S𝑡 else S𝑓K ≜modJS𝑡K ∪modJS𝑓K (15)
modJ{ Sl }K ≜modJSlK modJwhile (B) SK ≜modJif (B) SK ≜modJSK

modJSl SK ≜modJSlK ∪modJSK modJ;K ≜modJ 𝜖 K ≜modJbreak ;K ≜∅
Again Section 6 applies. A reduced product with a reachability analysis would
be more precise e.g. because the variable is constant on exit of S or a relational
analysis such that linear equalities [40] shows that it is equal to its initial value.

Finally in case (12.d) the program point ℓ is not reachable in S so, as stated
in (9) there is not dependency at ℓ originating from S.

Example 8. Consider S ∶∶= ℓ L = H ;ℓ′. We have 𝓢 diff
∃ JSK ℓ = {⟨x, x⟩ ∣ x ∈ V } and

𝓢 diff
∃ JSK ℓ′ = {⟨H, L⟩} ∪ {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}.

We have nondet(H, H) = nondet(¬H, ¬H) = {L} so that for the statement S′ ∶∶=
{ if ℓ1 (H) ℓ2 L = H ;ℓ3 else ℓ4 L = H ;ℓ5 }ℓ6, we have

𝓢 diff
∃ JS′K ℓ1 = {⟨x, x⟩ ∣ x ∈ V }

𝓢 diff
∃ JS′K ℓ2 = 𝓢 diff

∃ JS′K ℓ4 = {⟨x, x⟩ ∣ x ∈ V ⧵ {H}}
𝓢 diff
∃ JS′K ℓ3 = 𝓢 diff

∃ JS′K ℓ5 = {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}
𝓢 diff
∃ JS′K ℓ6 = {⟨H, L⟩} ∪ {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}

This is different and more precise than e.g. [5,26] since L does not depend on H
at ℓ3 and ℓ5 since, by def. nondet, L is constant at ℓ3 and ℓ5. So this is equivalent to
ℓ2 L = true ;ℓ3 and ℓ4 L = false ;ℓ5 which obviously would create no dependency.
In contrast [5,26] maintain an imprecise control dependence context, denoting
(a superset of) the variables that at least one test surrounding S depends on.
Section 6 provides other examples of increased precision when taking values of
variables into account. ⊓⊔

r • The abstract potential dependency semantics of a statement list
Sl ∶∶= Sl′ S is

14 P. Cousot

𝓢 diff
∃ JSlK ℓ ≜ (ℓ ∈ labsJSl′K ? 𝓢 diff

∃ JSl′K ℓ (16.a)
| ℓ ∈ labsJSK ⧵ {atJSK} ? 𝓢 diff

∃ JSl′K atJSK #𝓢 diff
∃ JSK ℓ (16.b)

: ∅)

where the composition # of relations is 𝑟1 # 𝑟2 ≜ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 . ⟨𝑥, 𝑧⟩ ∈ 𝑟1 ∧ ⟨𝑧,
𝑦⟩ ∈ 𝑟2}.

The first case (16.a) looks for dependencies at a program point ℓ inside Sl′

so, by structural induction, this is 𝓢 diff
∃ JSl′K ℓ.

The second case (16.b) looks for dependencies at a program point ℓ inside S.
We exclude the case ℓ = atJSK since atJSK = aftJSl′K ∈ labsJSl′K so this case has
already been handled in the previous case (16.a).

Otherwise in (16.b), a variable y at ℓ in S depends on the initial value of a
variable x on entry atJSl ∶∶= Sl′ SK = atJSl′K ∈ labsJSl′K if and only if y at ℓ
in S depends on the initial value of some variable z on entry atJSK = aftJSl′K of
statement S and the value of z at that point depends on the initial value of a
variable x on entry atJSlK of the statement list Sl. So there exists z such that
⟨y, z⟩ ∈ 𝓢 diff

∃ JSl′K aftJSl′K = 𝓢 diff
∃ JSl′K atJSK and ⟨z, y⟩ ∈ 𝓢 diff

∃ JSK ℓ, meaning that
⟨x, y⟩ ∈ 𝓢 diff

∃ JSl′K atJSK #𝓢 diff
∃ JSK ℓ is in their composition. As shown by Ex. 7, the

precision can be improved by a reduced product with a value analysis.

• The abstract potential dependency semantics of an iteration state-
ment S ∶∶= while ℓ (B) S𝑏 is the following

𝓢 diff
∃ JSK ℓ′ = (lfp ⊆̇𝓕diff

∃ Jwhile ℓ (B) S𝑏K) ℓ′ (17)

𝓕diff
∃ Jwhile ℓ (B) S𝑏K𝑋 ℓ′ =
(ℓ′ = ℓ ? 1V ∪ (𝑋(ℓ) # (𝓢 diff

∃ JS𝑏K ℓ ⌉ nondet(B, B))) (a)
| ℓ′ ∈ inJS𝑏K ? 𝑋(ℓ) # (𝓢 diff

∃ JS𝑏K ℓ′ ⌉ nondet(B, B)) (b)
| ℓ′ = aftJSK ? 𝑋(ℓ) ∪ (𝑋(ℓ) # (V ×modJS𝑏K)) ∪

𝑋(ℓ) # ((⋃ℓ″∈brks-ofJS𝑏K 𝓢 diff
∃ JS𝑏K ℓ″) ⌉ nondet(B, B))

(c)

: ∅) (d)

Since 𝓕diff
∃ JSK ∈ ℙᶁ → ℙᶁ is ⊆̇-monotone and the abstract domain ⟨ℙᶁ, ⊆̇, 𝜆 ℓ .∅,

𝜆 ℓ . V × V , ∪̇, ∩̇⟩ in (7) is a complete lattice, the least fixpoint lfp ⊆̇𝓕∗JSK of
𝓕∗JSK exists by Tarski’s fixpoint theorem [62]. Moreover, since ℙᶁ is finite (at
least when considering only the program labels L and variables V occurring
in a program), the abstract properties of ℙᶁ have a finite computer memory
representation and the limit of iterates [22] can be computed in finitely many
iterations, which yields an effective static analysis algorithm.

lfp ⊆̇𝓕diff
∃ Jwhile ℓ (B) S𝑏K is the least solution to the system of equations

{𝑋(
ℓ′) =𝓕diff

∃ Jwhile ℓ (B) S𝑏K𝑋 ℓ′
ℓ′ ∈ L

which can be understood as follows.

Abstract Semantic Dependency 15

(a) On loop entry the variables depend on themselves. After several iterations
the dependency is the composition of the dependencies of the previous it-
erations 𝑋(ℓ) composed with those 𝓢 diff

∃ JS𝑏K ℓ created by one more iteration.
The composition # is that used for a list of statements in (16). The restric-
tion ⌉nondet(B, B) eliminates dependencies on variables with a single possible
value on loop [re-]entry;

(b) The initial value of a variable x on loop entry flows to a variable z at ℓ′ ∈ inJS𝑏K
in the loop body if and only if the initial value of a variable x on loop entry
flows to some variable y at loop entry ℓ after 0 or more iterations (so ⟨x,
y⟩ ∈ 𝑋(ℓ)) and the value of variable y at the loop body flows to z at ℓ′ (so
⟨y, z⟩ ∈ 𝓢 diff

∃ JS𝑏K ℓ′). Moreover the restriction nondet(B, B) eliminates the case
when x is constant after the loop test B. (The case when y is constant after
the loop test B has been recursively eliminated by 𝓢 diff

∃ JS𝑏K ℓ′));
(c) This case determines the dependencies on loop exit ℓ′ = aftJSK, not knowing

the values of variables, so the number of iterations and how the loop is exited
is unknown. Therefore all cases must be considered.
• The term 𝑋(ℓ) (where ℓ ≜ atJSK = aftJS𝑏K) corresponds to the case when

the loop is entered and iterated 0 or more times before exiting so either
the loop is never entered so each variable depends on itself by (17.a) or
the dependencies on exit of the loop are those after the last iteration of
the body;
• The term (𝑋(ℓ) # (V ×modJS𝑏K)) covers dependencies originating from two

executions decided by the initial values of a variable x such that in one
case the loop is entered and exited and for another value it is immediately
exited. The variables y modified in the loop body depend on x, as was the
case in (12.c.3) for the conditional;
• The term ⋃ℓ″∈brks-ofJSK(𝑋(ℓ)#𝓢 diff

∃ JS𝑏Kℓ″) propagates the dependencies at the
break ; statements within the loop body to the break point aftJSK after
the loop;
• The term (17.c) can be refined to take the test determinism into account

more precisely, by eliminating those cases for which it is sure that no two
distinct executions can be found in the definition of dependency;

(d) The iteration statement while ℓ (B) S𝑏 introduces no dependency outside its
reachable points.

• The remaining cases of the conditional with alternative, empty statement
list, skip, break, and compound statements are similar.

6 Reduced product with a relational value analysis

𝓢 diff
∃ JAK in (10) handles the case 𝓢 diff

∃ Jx - xK = ∅ while 𝕧𝕒𝕣𝕤Jx - xK = {x}. As
shown in Ex. 7, even more precision can be achieved by considering reachable
environments only. The abstraction 𝛼𝑟(𝓢JSK)ℓ of the trace semantics 𝓢JSK of a
program component S by the classical relation abstraction

𝛼𝑟(𝓢) ≜ 𝜆 ℓ ∈L . {⟨𝝔(𝜋0), 𝝔(𝜋0 ⌢⋅ 𝜋1ℓ)⟩ ∣ ⟨𝜋0, 𝜋1ℓ⟩ ∈ 𝓢}

16 P. Cousot

provides a relation between the initial value of variables and their value at a
program point ℓ of S (the relation is empty if ℓ is not in S).

Then the dependency analysis can be refined using this relational value in-
formation.

– For the assignment (10), the imprecision is only due to the term 𝓢 diff
∃ JAK be-

cause it is impossible to evaluate the arithmetic expression A in all reachable
environments on entry of the assignment (see step (11) of the calculation
design). However, a relational value static analysis can provide relevant infor-
mation.
For example, using a constant propagation either cartesian [41,67] or relational
in [40,42,52], or a zone/octagon analysis [50], y ∈ 𝓢 diff

∃ JA1 - A2K only if this
analysis cannot prove that A1 - A2 is constant.

– For the conditional (12) and the iteration (17), the relational value static
analysis can provide relevant information on non-determinacy nondet in (13).

– For sequential composition, conditionals, and iteration, it is also possible to
refine the calculational design to improve compositionality. For example, in
if (H) L=X; else L=X;, the above relational value analyzes yield L=X0 on
exit of the conditional so L does not depend on H.

This is better implemented by a reduced product [23,69,19] and side condi-
tions in the dependency analysis (such as 𝓢 diff

∃ JAK and nondet) refining depen-
dencies using relational value information provided by the other domains in the
product. This separation of concerns greatly simplifies the design of the analysis
[25].

7 Examples of derived dependency semantics and
analyzes

Independence Definite independence is the complement of potential depen-
dency. [53,4,5] introduced a Hoare-like logic to statically check independences. It
also takes nontermination into account so relies on a different definition of ¬𝒟ℓ⟨x,
y⟩. It is recognized that definite independence is an abstract interpretation but
this is not used to design the logic which remains empirical.

Abstract non-interference/dependency The abstraction 𝛼ᶁ(S) of the se-
mantic property S in (5) is meaningful for any semantic property S, including
abstract ones, as considered in abstract non-interference/dependency [29]. Given
a structural semantic definition of this abstract property, the principle of design
by calculational design of the abstract dependency remains the same.

Forward and backward dependency Dependency information is useful for
program slicing [68]. The semantics ([20].3)—([20].9) considered in Section 2 is
forward, defining the continuation in a program component of an initialization

Abstract Semantic Dependency 17

computation ending on entry of that program component. This forward depen-
dency is adequate for forward slicing [5]. The dependency abstraction may be
applied to a backward semantics defining the reachability in a program compo-
nent of an finalization computation starting at that end of a program component
or on a break. This backward dependency would certainly be more useful as a
basis for slicing [68], or abstract slicing [37,57,49].

Dye instrumented semantics By analogy with dye-tracer tests in hydrology
to determine the possible origins of spring discharges or resurgences by water
source coloring and flow tracing [43], it has been suggested to decorate the ini-
tial values of variables with labels such as color annotations and to track their
diffusion and mixtures to determine dependencies [17]. This postulated defini-
tion of dependency can be proved sound by observing that the initial color of
variables can be designated by the name of these variables and that the color
mix at point ℓ for variable y is {x ∣ 𝓢+∞JPK ∈ 𝒟ℓ⟨x, y⟩}. Note that in the postu-
lated instrumented semantics, the choice of diff remains implicit as defined by
the arbitrarily selected color mixing rules. Otherwise the instrumented seman-
tics [38] need to be semantically justified with respect to the non-instrumented
semantics, in which case the non-instrumented semantics can be used as well to
justify dependency, as we do.

Tracking analysis Assume the initial values of variables (more generally in-
puts) are partitioned into tracked T and untracked U variables, V = T ∪ U

and T ∩ U = ∅. The tracking abstraction 𝛼𝜏(𝐃) of a dependency property
𝐃 ∈ L → ℘(V × V) (7) attaches to each program point ℓ the set of variables
y which, at that program point ℓ, depend upon the initial value of at least one
tracked variable x ∈ T .

𝛼𝜏(𝐃)ℓ ≜ {y ∣ ∃x ∈ T . ⟨x, y⟩ ∈ 𝐃(ℓ)}
A tracking analysis is an over-approximation of the abstract tracking semantics

𝓢𝜏JSK ⊇ 𝛼𝜏(𝛼ᶁ({𝓢+∞JSK}))
assigning the each program point ℓ, a set 𝓢𝜏JSKℓ ∈ ℘(V) of variables potentially
depending on tracked variables. Examples are taint analysis in privacy/security
checks [28,61] (tracked is tainted, untracked is untainted); binding time anal-
ysis in offline partial evaluation [33] (tracked is dynamic, untracked is static)
and absence of interference [30,66,15,36,45] (tracked is high (private/untrusted),
untracked is low (public/trusted)).

8 Conclusion
Related work Definitions of dependency follow one of the approaches below1.
1 Some approaches are a mix of these cases. For example [69,19] postulates dependency

on one trace as in 1. and then abstracts for a set of traces as in 3. and so uses
the “Merge over all paths” approach of dataflow analysis [23], with no semantics
justification of soundness.

18 P. Cousot

1. Dependency is postulated for a given programming language by specifying
an algorithm [68,26] or a calculus [1] which is claimed, a priori, to define
dependency. Since the definition is not semantic, it hides (and does not allow
to discuss) important details and so is hardly transferable to other languages.

2. Dependency is incorporated in a semantics of the language instrumented with
a policy [65] or flows [17]. The problem is that changing slightly the instru-
mentation definitely changes the variety of dependency which is defined. In
particular, it does not guarantee that the notion of dependency is defined
uniformly all over the language (e.g. conditionals and iterations might be
handled using different notions of dependency).

3. Dependency is defined as an abstract interpretation of properties of a formal
semantics [65,8,64], although the abstraction originally remained completely
implicit [30,66].

Our approach is in the category 3. Besides a generalization beyond input-output
dependency, we have shown that, although dependency is an “hyperproperty”
(i.e. a property of the semantics which is a set of traces), we don’t need a differ-
ent abstract interpretation theory for that case (as in [8,64] introducing specific
collecting semantics abstracting general semantic properties). The classical ap-
proach [21,23] directly applies whichever kind of property is considered.

Achievements We have designed by calculus a new potential value dependency
analysis between the initial value of variables and their value when reaching a
program point during execution. It follows and formalizes the intuition provided
by [26], “Information flows from object x to object y, denoted x⇝ y, whenever
information stored in x is transferred to, or used to derive information transferred
to, object y. A program statement specifies a flow x ⇝ y if execution of the
statement could result in a flow x ⇝ y.” “Information flow” is formalized as
“changing initial values will change the non-empty sequence of values observed
at a program point”.

An alternative [32,13,35] is to monitor an abstraction of the program seman-
tics at runtime (Lem. 1 on prefix observation is not valid for all definitions of
dependency so dynamic checking might be unsound [60,9]).

The analysis is not postulated but derived formally by abstract interpretation
of the trace semantics. So our definition is concise and coherent. We found no
need for extra notions like (hyper)𝑛properties [8], non-standard abstract inter-
pretation [64], postulated instrumented semantics [70, Sect. 4], multisemantics
[16], monadic reification [31], etc.

As shown by [13,34] and Ex. 7, taking values into account will definitely
improve the precision of the dependency analysis. As noticed in Section 6, one
possible implementation is by a reduced product of a dependency analysis with
a reachability analysis [69,19].

The data-dependence analysis used to detect parallelism in sequential code
[54] is also an abstract interpretation, see [63].

Abstract Semantic Dependency 19

Future work The Def. 1 of 𝒟 is certainly not unique. For example replacing diff
in (3) by equality would take into consideration timing dependencies (Ex. 5) and
empty observations (Ex. 6). The methodology that we proposed in this paper
can, in our opinion, be applied to a wide variety of definitions of dependency, as
follows.

The semantics is a set of executions by pairs ⟨𝜋ℓ, ℓ𝜋′⟩ where 𝜋ℓ is the past
before reaching ℓ and ℓ𝜋′ is the continuation. We define an abstraction of the
past 𝜋ℓ (e.g. the initial value of variables in our case). We define an abstraction
of the continuation (e.g. seqval (1) in our case). We define the difference between
past abstractions (the initial values of variables only differ for one variable in
our case). We define the difference between futures (diff in our case). Then the
abstraction of the future depends on the abstraction of the past if and only if
there exist two executions with different past abstractions and different future
abstractions. We conjecture that by varying the past/future abstractions and
their difference, we can express the dependency abstractions introduced in the
literature. Good examples are [29] for (abstract) non-interference and [12] for
mitigation against side-channel attacks.

Acknowledgement. I thank the reviewers for their comments. This work was
supported in part by NSF Grant CCF-1617717. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science Foundation.

References
1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.

In: POPL. pp. 147–160. ACM (1999)
2. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models

(extended version). Formal Methods in System Design 40(2), 170–205 (2012)
3. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-

ing 2(3), 117–126 (1987)
4. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-

oriented programs. In: POPL. pp. 91–102. ACM (2006)
5. Amtoft, T., Banerjee, A.: A logic for information flow analysis with an application

to forward slicing of simple imperative programs. Sci. Comput. Program. 64(1),
3–28 (2007)

6. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Lang. Syst. 2(1), 56–76 (1980)

7. Apel, S., Kästner, C., Batory, D.S.: Program refactoring using functional aspects.
In: GPCE. pp. 161–170. ACM (2008)

8. Assaf, M., Naumann, D.A., Signoles, J., Éric Totel, Tronel, F.: Hypercollecting
semantics and its application to static analysis of information flow. In: POPL. pp.
874–887. ACM (2017)

9. Balliu, M., Schoepe, D., Sabelfeld, A.: We are family: Relating information-flow
trackers. In: ESORICS (1). Lecture Notes in Computer Science, vol. 10492, pp.
124–145. Springer (2017)

10. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: FM. Lecture Notes in Computer Science, vol. 6664, pp. 200–214. Springer (2011)

20 P. Cousot

11. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Mathematical Structures in Computer Science 21(6), 1207–1252 (2011)

12. Barthe, G., Grégoire, B., Laporte, V.: Provably secure compilation of side-channel
countermeasures. IACR Cryptology ePrint Archive 2017, 1233 (2017)

13. Bello, L., Hedin, D., Sabelfeld, A.: Value sensitivity and observable abstract val-
ues for information flow control. In: LPAR. Lecture Notes in Computer Science,
vol. 9450, pp. 63–78. Springer (2015)

14. Bergeretti, J., Carré, B.: Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst. 7(1), 37–61 (1985)

15. Bowman, W.J., Ahmed, A.: Noninterference for free. In: ICFP. pp. 101–113. ACM
(2015)

16. Cabon, G., Schmitt, A.: Annotated multisemantics to prove non-interference anal-
yses. In: PLAS@CCS. pp. 49–62. ACM (2017)

17. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathe-
matical Structures in Computer Science 21(6), 1301–1337 (2011)

18. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157–1210 (2010)

19. Cortesi, A., Ferrara, P., Halder, R., Zanioli, M.: Combining symbolic and numerical
domains for information leakage analysis. Trans. Computational Science 31, 98–
135 (2018)

20. Cousot, P.: Syntactic and semantic soundness of structural dataflow analysis. In:
SAS. Lecture Notes in Computer Science, vol. this volume. Springer (2019)

21. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252. ACM (1977)

22. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics 81(1), 43–57 (1979)

23. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282. ACM Press (1979)

24. Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static analysis by
abstract interpretation. J. ACM 59(6), 31:1–31:56 (2012)

25. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
Astrée scale up? Formal Methods in System Design 35(3), 229–264 (2009)

26. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

27. Fagin, R., Vardi, M.Y.: The theory of data dependencies - a survey. In: Mathemat-
ics of Information Processing. Proceedings of Symposia in Applied Mathematics,
vol. 34, pp. 19–71. AMS (1986)

28. Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis to GDPR. In:
Privacy Technologies and Policy. 6th Annual Privacy Forum, APF 2018,
Barcelona, Spain, June 13-14, 2018, Revised Selected Papers (Jun 2018).
https://doi.org/10.1007/978-3-030-02547-2_4

29. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: A unifying framework for
weakening information-flow. ACM Trans. Priv. Secur. 21(2), 9:1–9:31 (2018)

30. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE Symposium
on Security and Privacy. pp. 75–87. IEEE Computer Society (1984)

31. Grimm, N., Maillard, K., Fournet, C., Hritcu, C., Maffei, M., Protzenko, J., Ra-
mananandro, T., Rastogi, A., Swamy, N., Béguelin, S.Z.: A monadic framework for
relational verification: applied to information security, program equivalence, and
optimizations. In: CPP. pp. 130–145. ACM (2018)

https://doi.org/10.1007/978-3-030-02547-2_4

Abstract Semantic Dependency 21

32. Guernic, G.L.: Confidentiality Enforcement Using Dynamic Information Flow
Analyses. Ph.D. thesis, Kansas State University, United States of America (2007)

33. Hatcliff, J.: An introduction to online and offline partial evaluation using a simple
flowchart language. In: Partial Evaluation. Lecture Notes in Computer Science,
vol. 1706, pp. 20–82. Springer (1998)

34. Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control
for a javascript-like language. In: CSF. pp. 351–365. IEEE Computer Society (2015)

35. Hedin, D., Bello, L., Sabelfeld, A.: Information-flow security for javascript and its
apis. Journal of Computer Security 24(2), 181–234 (2016)

36. Heinze, T.S., Turker, J.: Certified information flow analysis of service implemen-
tations. In: SOCA. pp. 177–184. IEEE Computer Society (2018)

37. Hong, H.S., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program
slicing based on abstract interpretation and model checking. In: SCAM. pp. 25–34.
IEEE Computer Society (2005)

38. Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Abramsky, S., Gabbay, D.M. (eds.) Handbook of Logic in Com-
puter Science, vol. 4, Semantic Modelling, pp. 527–636. Oxford University Press
(1995)

39. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C
static analyzer. In: POPL. pp. 247–259. ACM (2015)

40. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151
(1976)

41. Kildall, G.A.: A unified approach to global program optimization. In: POPL. pp.
194–206. ACM Press (1973)

42. Knoop, J., Rüthing, O.: Constant propagation on the value graph: Simple constants
and beyond. In: CC. Lecture Notes in Computer Science, vol. 1781, pp. 94–109.
Springer (2000)

43. Kranjc, A.: Tracer Hydrology 97. CRC Press (Jan 1997)
44. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10),

613–615 (1973)
45. Lourenço, L., Caires, L.: Dependent information flow types. In: POPL. pp. 317–

328. ACM (2015)
46. Malburg, J., Finder, A., Fey, G.: Debugging hardware designs using dynamic de-

pendency graphs. Microprocessors and Microsystems - Embedded Hardware Design
47, 347–359 (2016)

47. Mandal, A.K., Cortesi, A., Ferrara, P., Panarotto, F., Spoto, F.: Vulnerability
analysis of Android auto infotainment apps. In: CF. pp. 183–190. ACM (2018)

48. Mantel, H.: A Uniform Framework for the Formal Specification and Verification of
Information Flow Security. Dr.-ing. thesis, Fakultät I der Universität des Saarlan-
des, Saarbrücken, Germany (Jul 2003)

49. Mastroeni, I., Zanardini, D.: Abstract program slicing: An abstract interpretation-
based approach to program slicing. ACM Trans. Comput. Log. 18(1), 7:1–7:58
(2017)

50. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31–100 (2006)

51. Muthukumar, K., Hermenegildo, M.V.: Compile-time derivation of variable depen-
dency using abstract interpretation. J. Log. Program. 13(2&3), 315–347 (1992)

52. Müller-Olm, M., Rüthing, O.: On the complexity of constant propagation. In:
ESOP. Lecture Notes in Computer Science, vol. 2028, pp. 190–205. Springer (2001)

53. Ngo, M., Naumann, D.A., Rezk, T.: Typed-based relaxed noninterference for free.
CoRR abs/1905.00922 (2019)

22 P. Cousot

54. Padua, D.A., Wolfe, M.: Advanced compiler optimizations for supercomputers.
Commun. ACM 29(12), 1184–1201 (1986)

55. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74(1), 358–366 (1953)

56. Rival, X.: Abstract dependences for alarm diagnosis. In: APLAS. Lecture Notes in
Computer Science, vol. 3780, pp. 347–363. Springer (2005)

57. Rival, X.: Understanding the origin of alarms in astrée. In: SAS. Lecture Notes in
Computer Science, vol. 3672, pp. 303–319. Springer (2005)

58. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

59. Sadeghi, A., Bagheri, H., Garcia, J., Malek, S.: A taxonomy and qualitative com-
parison of program analysis techniques for security assessment of Android software.
IEEE Trans. Software Eng. 43(6), 492–530 (2017)

60. Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: A policy for
taint tracking. In: EuroS&P. pp. 15–30. IEEE (2016)

61. Spoto, F., Burato, E., Ernst, M.D., Ferrara, P., Lovato, A., Macedonio, D., Spiri-
don, C.: Static identification of injection attacks in java. ACM Trans. Program.
Lang. Syst. 41(3), 18:1–18:58 (2019)

62. Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific J. of
Math. 5, 285–310 (1955)

63. Tzolovski, S.: Data dependence as abstract interpretations. In: SAS. Lecture Notes
in Computer Science, vol. 1302, p. 366. Springer (1997)

64. Urban, C., Müller, P.: An abstract interpretation framework for input data usage.
In: ESOP. Lecture Notes in Computer Science, vol. 10801, pp. 683–710. Springer
(2018)

65. Volpano, D.M.: Safety versus secrecy. In: SAS. Lecture Notes in Computer Science,
vol. 1694, pp. 303–311. Springer (1999)

66. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. Journal of Computer Security 4(2/3), 167–188 (1996)

67. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

68. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984)
69. Zanioli, M., Cortesi, A.: Information leakage analysis by abstract interpretation.

In: SOFSEM. Lecture Notes in Computer Science, vol. 6543, pp. 545–557. Springer
(2011)

70. Ørbæk, P.: Can you trust your data? In: TAPSOFT. Lecture Notes in Computer
Science, vol. 915, pp. 575–589. Springer (1995)

	Abstract Semantic Dependency

