
Syntactic and Semantic Soundness
of Structural Dataflow Analysis

Patrick Cousot
Courant Institute of Mathematical Sciences, New York University

Abstract. We show that the classical approach to the soundness of
dataflow analysis is with respect to a syntactic path abstraction that
may be problematic with respect to a semantics trace-based specification.
The fix is a rigorous abstract interpretation based approach to formally
construct dataflow analysis algorithms by calculational design.

Keywords: Abstract interpretation · Dataflow analysis · Model-checking
· Soundness.

1 Introduction

© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 1–22, 2019.
https://doi.org/10.1007/978-3-030-32304-2_6

The very first data flow analysis algorithms [1,2,3,4] were postulated: map the
program to a control flow graph (CFG), derive binary vector fixpoint equations
using transfer functions/transformers to abstract the actions in the CFG, solve
iteratively or by elimination, the result is postutaled to be the abstract infor-
mation available on the program semantics. We call this approach “syntactic”
since the values of the variables are not taken into account at all by the transfer
functions/transformers in the equations.

Gary Kildall proposed to reason on paths in the CFG [22]: define the ab-
stract information available on any path in the CFG by composition of syntactic
transfer functions/transformers along that path and then merge/join/meet the
information on all paths. In general, this yields more precise results than the fix-
point equations (except for distributive frameworks where transformers preserve
joins/meets and the results are the same). This is an abstract form of sound-
ness since one can prove that the solution of the equations over-approximates
the merge over all paths solution. [12, Section 9] showed that the merge over all
paths solution is also the solution of fixpoint equations taken over the disjunctive
completion [12,16] of the original abstract domain. So the imprecision is not due
to the equations but to the abstract domain [17].

Bernhard Steffen observed that by considering the CFG as a transition sys-
tem, the information along a path can be specified by a modal/temporal logic
formula [28,29]. Model-checking over all paths yields the abstract information
available about the program semantics. The specification is concise and an exist-
ing model-checker can be reused for the implementation. Fixpoint iterates con-
vergence requires the abstract domain to be finite (which excludes e.g. Kildall’s
constant propagation [22] for which the model checker would not be guaranteed
to terminate). The information on the program semantics is still defined with
respect to a syntactic abstraction of the semantics, not the semantics itself.

To solve this problem, David Schmidt proposed to get the abstraction of the
paths by abstract interpretation of a trace semantics [25]. Now the information

https://doi.org/10.1007/978-3-030-32304-2_6

2 P. Cousot

extracted from the program is related to the semantics, but indirectly, since it
is postulated syntactically on abstract paths, not on the traces of the semantics
itself.

David Schmidt used his model to explore “Why some flow analyzes are un-
sound?” and claimed that the live variable analysis is unsound [25, Section 7].
As shown in [13] this is because the analysis is about potential liveness while
David Schmidt’s counter-example is on definite liveness. David Schmidt claims
that this is not a problem in practice since the information is used dually [25]. If
a variable is not potentially live, it is definitely dead and its value need not be
stored e.g. in a register. But if a data flow analysis were wrong, its dual would be
wrong too. As shown by this erroneous reasoning, the syntactic modal/temporal
specification on abstract paths but not directly on the semantics may be prob-
lematic.

In this paper, we explore the definition of dataflow analyses by direct ab-
straction of the trace semantics. So the abstract information extracted by the
static analysis is directly related to the program trace semantics, not to an ab-
straction of this semantics. In this way, values of variables can be taken into
account, which is not the case with temporal specifications on abstract paths.
The analyzes should therefore be more precise and provably sound.

Surprisingly, this approach shows that the abstract syntactic definition of
liveness is unsound with respect to its semantic definition. The problem is both
for definite and potential liveness. The problem comes from the fact that the
semantic definition takes values into account while the abstract definition hence
the resulting dataflow analysis algorithm captures that incorrectly.

Example 1 For definite liveness, consider for example if ℓ1 (x==0) ℓ2 x = x-x ;
where x is dead on exit. The syntactic equational and path-based definitions
of definite liveness both yield x is live at ℓ1 and ℓ2. However, this program is
equivalent to if ℓ1 (x==0) ℓ2 x = 0 ; so x is not live at ℓ2. Moreover, this last
program is itself equivalent to ℓ1; (skip) so that no variable, in particular x is
live at ℓ1. Therefore the semantic definition of definite liveness at ℓ1 and ℓ2 in
the original program if ℓ1 (x==0) ℓ2 x = x-x ; should be that x is not live, in
contradiction with the syntactic equational and path-based definite liveness. ⊓⊔
Potential liveness or, dually, definite deadness is not better.

Example 2 For definite deadness, consider ℓ1 x = y-y ;ℓ2 where x is live at ℓ2 on
exit. Syntactically, x is not used in y-y and x is modified by the assignment so
x is syntactically dead at ℓ1. Semantically, x is not used in y-y since changing
the value of x at ℓ1 will not change the value of y-y which is always 0. However,
assume x = 0 at ℓ1 then the assignment ℓ1 x = y-y ; does not modify this value.
So in that case x is not modified by the assignment and therefore x is live at ℓ1
i.e. if the precondition x = 0 is always true, the compiler is allowed to remove the
assignment. For all other initial values x ≠ 0 at ℓ1, the assignment does modify
this value by assigning 0 in which case x is dead at ℓ1. So syntactically, x is
definitely dead at ℓ1 while, semantically, this is not always the case (i.e. when x
is 0 at ℓ1). ⊓⊔

Syntactic and Semantic Soundness of Structural Dataflow Analysis 3

To solve these soundness problems, we first define a structural fixpoint trace
semantics in Section 2. Then, in Section 3, we first provide an intuitive semantic
definition of liveness by abstraction of a trace semantics: “a variable is live at
some point if its value may be read before the next time it is modified”. The
above examples 1 and 2 show that the classical syntactic liveness algorithm
is unsound with respect to this definition. At that point we could change the
algorithm or the liveness definition. We choose the second alternative (so as not
to have to change compilers, but this choice is arbitrary!). This second definition
“a variable is live at some point if its value may be read before the next time
it is assigned to” mixes a syntactic (assignment) and a semantic (value) points
of view (thus preventing meaningful program syntactic transformation such as
useless assignment elimination). It specifies exactly in what sense the classical
syntactic deadness/liveness algorithm [20,19,21] is sound. Then by a further
purely syntactic abstraction “a variable is live at some point if its value may be
used before the next time it is assigned to” (where use and assigned to are defined
syntactically, thus preventing expression and assignment optimizations), we get,
by calculational design [8], the classical syntactic potential liveness algorithm
[20,19,21] in Section 4, and the dual definite deadness algorithm in Section 5.
The definition of the trace semantics is structural, so we get the classical syntactic
deadness/liveness algorithm in structural form. Surprisingly, there is no fixpoint
iteration and the (implicit) equations are solved by elimination, which is more
efficient. This is comparable to equation resolution by elimination for reducible
flowcharts [27,24,26] but much simpler and efficient. In Section 6, we discuss
whether liveness analysis is correctly used for code optimization. We conclude
in Section 7.

2 Syntax and Trace Semantics

Programs are a subset of C with the following context-free syntax.
x, y,… ∈ V variable (V not empty)

A ∈ A ∶∶= 1 | x | A1 - A2 arithmetic expression
B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl ∶∶= Sl S | 𝜖 statement list
P ∈ P ∶∶= Sl program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program. We call “[program]
component” S ∈ Pc ≜ S ∪ Sl ∪ P either a statement, a statement list, or a
program.

4 P. Cousot

2.1 Program labels

Labels are not part of the language, but useful to discuss program points reached
during execution. For each program component S, we define informally
atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S;
inJSK the set of program points inside S (including atJSK but excluding aftJSK and

brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.

2.2 Traces

Because liveness analysis at a program point relates the past, present, and fu-
ture of a computation, we use a trace semantics relating the past computation
reaching that program point to the future computation continuing this past
computation. For simplicity, the program point where liveness is calculated is
the entry point atJSK at a program component S.

A trace 𝜋 ∈ 𝕋+∞ is a sequence of states separated by events. States are
program labels designating the next action to be executed in the program. The
events record the effect of this execution i.e. the value assigned to a variable,
a test B which is true (marked (B)) or false (marked (¬B)), a break ; exiting
from a loop, or a skip when execution goes on with no variable modification. For
example, the program

ℓ1 x = x + 1 ; if ℓ2 (x < 0) ℓ3 x = 0 ; ℓ4 (1)

executed with initial value 0 of x has execution trace ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−→

ℓ4. A trace 𝜋 can be finite 𝜋 ∈ 𝕋+ or infinite 𝜋 ∈ 𝕋∞ (recording a non-terminating
computation) so 𝕋+∞ ≜ 𝕋+ ∪ 𝕋∞ 1. Trace concatenation ⌢⋅ is defined as follows

𝜋1ℓ1 ⌢⋅ ℓ2𝜋2 undefined if ℓ1 ≠ ℓ2 𝜋1 ⌢⋅ ℓ2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕋∞ is infinite
𝜋1ℓ1 ⌢⋅ ℓ1𝜋2 ≜ 𝜋1ℓ1𝜋2 if 𝜋1 ∈ 𝕋+ is finite

In pattern matching, we sometimes need the empty trace ∋. For example if ℓ𝜋ℓ′
= ℓ then 𝜋 = ∋ and so ℓ = ℓ′.

States do not record the value of variables x. 𝝔(𝜋)x is the last value assigned
to x on trace 𝜋 (or 0 at initialization).

𝝔(ℓ)x ≜ 0 𝝔(𝜋ℓ x = A = 𝜈−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 𝝔(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝔(𝜋ℓ)x otherwise (2)
1 Abstracting program label states would yield Stephen Brookes trace semantics [6].

Syntactic and Semantic Soundness of Structural Dataflow Analysis 5

2.3 Trace semantics
The trace semantics of a program component S is a relation between past traces
reaching the entry point atJSK and future traces recording the computation of S
from atJSK. For example, program S in (1) has the following two pairs of traces
in its trace semantics.

⟨ℓ0 x = 0 = 0−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−−−→ ℓ4⟩ ∈ 𝓢+∞JSK

⟨ℓ0 x = 1 = 1−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−−−→ ℓ4⟩ ∈ 𝓢+∞JSK

In the maximal trace semantics 𝓢+∞JSK, the observation of the future compu-
tation is maximal. It is finite when the program execution stops and infinite
when the execution does not terminate. In the prefix trace semantics 𝓢∗JSK, the
observation of the future computation is finite and can stop at any time during
the execution (in particular just at the program entry). For example, program
S in (1) has the following two pairs of traces in its prefix trace semantics.

⟨ℓ0 x = 0 = 0−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1⟩ ∈ 𝓢∗JSK ⟨ℓ0 x = 1 = 1−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−−→ ℓ2⟩ ∈ 𝓢∗JSK
It follows from this discussion that the prefix trace semantics is a relation between
finite traces 𝓢∗JSK ∈ ℘(𝕋+ × 𝕋+) while the maximal trace semantics is a relation
between finite traces and finite or infinite traces 𝓢+∞JSK ∈ ℘(𝕋+ × 𝕋+∞).
2.4 Formal definition of the prefix trace semantics

The prefix trace semantics is defined in fixpoint form by structural induction on
the syntax of program components.
• A prefix future trace of an assignment S ∶∶= ℓ x = A ; (where atJSK = ℓ)
continuing some past trace 𝜋ℓ either stops at ℓ or is ℓ followed by the event
x = A = 𝜈 where 𝜈 ∈ 𝕍 is the value assigned to x (that is the value of the arith-
metic expression A evaluated on 𝜋ℓ) and finishing at the label aftJSK after the
assignment.

𝓢∗JSK ≜ {⟨𝜋ℓ, ℓ⟩, ⟨𝜋ℓ, ℓ x = A = 𝜈−−−−−−−−−−−−−−−→ aftJSK⟩ ∣ 𝜋ℓ ∈ 𝕋+ ∧ 𝜈 =𝓐JAK𝝔(𝜋ℓ)} (3)

We often write ℓ x = 𝑣−−−−−−−−−−→ ℓ′ for ℓ x = A = 𝑣−−−−−−−−−−−−−−−→ ℓ′ (since ℓ x = A ; can be recovered from
the program text and the unique program label ℓ). The value of an arithmetic
expression A in environment 𝜌 ∈ Ev ≜ V→𝕍 is 𝓐JAK𝜌 ∈ 𝕍:

𝓐J1K𝜌 ≜ 1 𝓐JxK𝜌 ≜ 𝜌(x) 𝓐JA1 - A2K𝜌 ≜𝓐JA1K𝜌 −𝓐JA2K𝜌 (4)

• A prefix trace of a break statement S ∶∶= ℓ break ; continuing some initial
trace 𝜋ℓ either stops at ℓ or is the trace ℓ followed by the break event and ending
at the break label brk-toJSK (which is defined as the exit label of the closest
enclosing iteration).

𝓢∗JSK ≜ {⟨𝜋ℓ, ℓ⟩, ⟨𝜋ℓ, ℓ break−−−−−−−−−−−→ brk-toJSK⟩ ∣ 𝜋ℓ ∈ 𝕋+} (5)

• A prefix trace of a conditional statement S ∶∶= if ℓ (B) S𝑡 continuing some
initial trace 𝜋1ℓ is

6 P. Cousot

• either ℓ when the observation of the execution stops on entry of the program
component;
• or, when the value of the boolean expression B on 𝜋1ℓ is ff, ℓ followed by the

event ¬(B) and finishing at the label aftJSK after the conditional statement;
• or finally, when the value of the boolean expression B on 𝜋1ℓ is tt, ℓ followed

by the test event B followed by a prefix trace of S𝑡 continuing 𝜋1ℓ
B−−−−→ atJS𝑡K.

𝓢∗JSK ≜ {⟨𝜋1ℓ, ℓ⟩ ∣ 𝜋1ℓ ∈ 𝕋+} (6)

∪ {⟨𝜋1ℓ, ℓ
¬(B)
−−−−−−−−→ aftJSK⟩ ∣𝓑JBK𝝔(𝜋1ℓ) = ff ∧ 𝜋1ℓ ∈ 𝕋+}

∪ {⟨𝜋1ℓ, ℓ
B−−−−→ atJS𝑡K ⌢⋅ 𝜋2⟩ ∣𝓑JBK𝝔(𝜋1ℓ) = tt ∧ ⟨𝜋1ℓ

B−−−−→ atJS𝑡K, 𝜋2⟩ ∈ 𝓢∗JS𝑡K}
Notice that if 𝜋2 starting atJS𝑡K is a maximal trace of S𝑡 terminating aftJS𝑡K then
ℓ B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 is also a maximal trace of S terminating aftJSK since aftJS𝑡K =
aftJSK.

Observe also that definition (6) includes the case of a conditional within an
iteration and containing a break statement in the true branch S𝑡. Since brk-toJSK =
brk-toJS𝑡K, from ⟨𝜋1ℓ

B−−−−→ atJS𝑡K, 𝜋2 break−−−−−−−−−−−→ brk-toJS𝑡K⟩ ∈ 𝓢∗JS𝑡K, we infer that
⟨𝜋1ℓ, ℓ

B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 break−−−−−−−−−−−→ brk-toJSK⟩ ∈ 𝓢∗JSK.
• A prefix trace 𝜋 of the empty statement list Sl ∶∶= 𝜖 is reduced to the
program label at that empty statement.

𝓢∗JSlK ≜ {⟨𝜋atJSlK, atJSlK⟩ ∣ 𝜋atJSlK ∈ 𝕋+} (7)

• A prefix trace of a statement list Sl ∶∶= Sl′ S continuing an initial trace 𝜋1
can be a prefix trace of Sl′ or a finite maximal trace of Sl′ followed by a prefix
trace of S.
𝓢∗JSlK ≜ 𝓢∗JSl′K (8)

∪ {⟨𝜋1, 𝜋2 ⌢⋅ 𝜋3⟩ ∣ ⟨𝜋1, 𝜋2⟩ ∈ 𝓢∗JSl′K ∧ ⟨𝜋1 ⌢⋅ 𝜋2, 𝜋3⟩ ∈ 𝓢∗JSK}
Notice that if ⟨𝜋1 ⌢⋅ 𝜋2, 𝜋3⟩ ∈ 𝓢∗JSK then trace 𝜋3 starts atJSK = aftJSl′K so the
trace 𝜋2 in ⟨𝜋1, 𝜋2⟩ ∈ 𝓢∗JSl′K must end aftJSl′K. Therefore 𝜋2 must be a maximal
terminating execution of Sl′ i.e. S is executed only if Sl′ terminates.

• The prefix finite trace semantic definition 𝓢∗JSK (9) of an iteration statement
of the form S ∶∶= while ℓ (B) S𝑏 is the ⊆-least solution lfp⊆𝓕∗JSK to the equation
𝑋 =𝓕∗JSK(𝑋). Since 𝓕∗JSK ∈ ℘(𝕋+ ×𝕋+)→℘(𝕋+ ×𝕋+) is ⊆- monotone (if 𝑋 ⊆ 𝑋′
then 𝓕∗JSK(𝑋) ⊆𝓕∗JSK(𝑋′)) and ⟨℘(𝕋+ ×𝕋+), ⊆, ∅, 𝕋+ ×𝕋+, ∪, ∩⟩ is a complete
lattice, lfp⊆𝓕∗JSK exists by Tarski’s fixpoint theorem [30] and can be defined as
the limit of iterates [11], which is useful to abstract into iterative static analysis
algorithms. In definition (9) of the transformer 𝓕∗JSK, case (9.a) corresponds
to a loop execution observation stopping on entry, (9.b) corresponds to an ob-
servation of a loop exiting after 0 or more iterations, and (9.c) corresponds to a
loop execution observation that stops anywhere in the body S𝑏 after 0 or more
iterations. This last case covers the case of an iteration terminated by a break
statement (to aftJSK after the iteration statement).

Syntactic and Semantic Soundness of Structural Dataflow Analysis 7

𝓢∗JSK = lfp⊆𝓕∗JSK (9)

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋) ≜ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ} 2 (a)

∪ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′
¬(B)
−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′, ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ} (b)

∪ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′
B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′, ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt ∧ ⟨𝜋1ℓ′𝜋2ℓ′
B−−−−→atJS𝑏K, 𝜋3⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ} (c)

• The prefix trace semantics of the other program components is similar. It
follows that for each program component S, we have

{⟨𝜋1atJSK, atJSK⟩ | 𝜋1atJSK ∈ 𝕋+} ⊆ 𝓢∗JSK (10)

2.5 Definition of the maximal trace semantics

The maximal trace semantics 𝓢+∞JSK = 𝓢+JSK∪𝓢∞JSK is derived from the prefix
trace semantics 𝓢∗JSK by keeping the longest finite traces 𝓢+JSK and passing to
the limit 𝓢∞JSK of prefix-closed traces for infinite traces.

𝓢+JSK ≜ {⟨𝜋1, 𝜋2ℓ⟩ ∈ 𝓢∗JSK ∣ (ℓ = aftJSK) ∨ (escJSK ∧ ℓ = brk-toJSK)} (11)
𝓢∞JSK ≜ lim(𝓢∗JSK) (12)

where the limit is limT ≜ {⟨𝜋, 𝜋′⟩ ∣ 𝜋′ ∈ 𝕋∞ ∧ ∀𝑛 ∈ N . ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ T}. (13)

The intuition for (13) is the following. Let S be an iteration. ⟨𝜋, 𝜋′⟩ ∈ 𝓢∞JSK =
lim𝓢∗JSK where 𝜋′ is infinite if and only if, whenever we take a prefix 𝜋′[0..𝑛]
of 𝜋′, it is a possible finite observation of the execution of S and so belongs to
the prefix trace semantics ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ 𝓢∗JSK.
3 The semantic and syntactic liveness/deadness

abstractions

3.1 The generic liveness/deadness abstractions

Informally “a variable is (potentially/definitely) live at some point if it holds a
value that may/must be used in the future before the next time the variable is
modified”. The liveness abstraction 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ of a program trace
𝜋 continuing an initial trace 𝜋0 of a program component S is parameterized by
2 A definition of the form 𝑑(�⃗�) ≜ {𝑓(�⃗�′) ∣ 𝑃(�⃗�′, �⃗�)} has the variables �⃗�′ in 𝑃(�⃗�′, �⃗�) bound

to those of 𝑓(�⃗�′) whereas �⃗� is free in 𝑃(�⃗�′, �⃗�) since it appears neither in 𝑓(�⃗�′) nor (by
assumption) under quantifiers in 𝑃(�⃗�′, �⃗�). The �⃗� of 𝑃(�⃗�′, �⃗�) is therefore bound to the
�⃗� of 𝑑(�⃗�).

8 P. Cousot

– use defining the set useJ𝑎K𝜌 of variables which value is used when executing
action 𝑎 in environment 𝜌;

– mod defining the set modJ𝑎K𝜌 of variables which value is modified when
executing action 𝑎 in environment 𝜌.

Liveness depends on the set 𝐿𝑏 of variables assumed to be live on exit of the
program component S by a break statement and 𝐿𝑒 by a normal exit after S. It
is defined inductively on a finite trace (or co-inductively for an infinite trace) as
follows

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩ ≜ {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (a) (14)
(escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)}

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩ ≜ {x ∈ V ∣ x ∈ useJ𝑎K𝝔(𝜋0) ∨ (b)
(x ∉ modJ𝑎K𝝔(𝜋0) ∧ x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′, ℓ′𝜋1⟩)}

The potential and definite liveness are abstractions of the maximal trace seman-
tics 𝓢 = 𝓢+∞JSK is by merge over all traces

𝛼∃luse,modJSK 𝓢 𝐿𝑏, 𝐿𝑒 = ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ potential liveness (15)

𝛼∀luse,modJSK 𝓢 𝐿𝑏, 𝐿𝑒 = ⋂
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ definite liveness (16)

Potential and definite deadness are defined dually.

𝛼∃duse,modJSK 𝓢 𝐷𝑏, 𝐷𝑒 = ¬𝛼∀luse,modJSK 𝓢 ¬𝐷𝑏, ¬𝐷𝑒 potential deadness (17)
𝛼∀duse,modJSK 𝓢 𝐷𝑏, 𝐷𝑒 = ¬𝛼∃luse,modJSK 𝓢 ¬𝐷𝑏, ¬𝐷𝑒 definite deadness (18)

If S and S′ have the same aft, esc, and brk-to labelling, they have the same
𝛼luse,mod, 𝛼∃luse,mod, 𝛼∀luse,mod, 𝛼∃duse,mod, and 𝛼∃luse,mod.

Unfolding the recursive definition (14) , we get

Lemma 1 If 𝜋1 = ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−1−−−−−−−−→ ℓ𝑛 and ⟨𝜋0, 𝜋1⟩ ∈ 𝓢∗JSK then

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ = {x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] .

x∉modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗) ∧ x∈useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)}
∪ (ℓ𝑛 = aftJSK ? 𝐿𝑒 : ∅) ∪ (escJSK ∧ ℓ𝑛 = brk-toJSK ? 𝐿𝑏 : ∅). ⊓⊔

Proof (of Lem. 1) For the basis 𝑛 = 1, only the first clause (a) of (14) is applicable
with 𝜋1 = ℓ1, [1, 𝑛 − 1] is empty, and 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ = (ℓ1 = aftJSK ?
𝐿𝑒 : ∅) ∪ (escJSK ∧ ℓ1 = brk-toJSK ? 𝐿𝑏 : ∅) which is precisely what is given by
Lem. 1 since [1, 𝑛 − 1] = ∅ so the first term is empty.

For the induction step 𝑛+1 > 1, we have 𝜋1 = ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ ℓ3
𝑎3−−−−−→ …

𝑎𝑛−−−−−→ ℓ𝑛+1
and only the second clause (b) of (14) is applicable so we get

Syntactic and Semantic Soundness of Structural Dataflow Analysis 9

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ Hassuming 𝑛 + 1 ⩾ 2I
= {x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0) ∨ (x ∉ modJ𝑎1K𝝔(𝜋0)) ∧ x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅
ℓ1
𝑎1−−−−−→ℓ2, ℓ2

𝑎2−−−−−→ ℓ3
𝑎3−−−−−→ …

𝑎𝑛−−−−−→ ℓ𝑛+1⟩)} H(14.b) when 𝑛 > 1I
= {(x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0)) ∨ (x ∉ modJ𝑎1K𝝔(𝜋0) ∧ ∃𝑖 ∈ [2, 𝑛] . ∀𝑗 ∈ [2, 𝑖 − 1] . x ∉

modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗)∧x ∈ useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖))∨
(ℓ𝑛+1 = aftJSK ? x ∈ 𝐿𝑒 : ff) ∨ (escJSK ∧ ℓ𝑛+1 = brk-toJSK ? x ∈ 𝐿𝑏 : ff)}

Hsince 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→, ℓ2 𝑎2−−−−−→ … 𝑎𝑛−−−−−→ ℓ𝑛+1⟩ = {x ∈ V ∣

∃𝑖 ∈ [2, 𝑛] . ∀𝑗 ∈ [2, 𝑖 − 1] . x ∉modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗) ∧ x ∈
useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)} ∪ (ℓ𝑛+1 = aftJSK ? 𝐿𝑒 : ∅) ∪ (escJSK ∧
ℓ𝑛+1 = brk-toJSK ? 𝐿𝑏 : ∅) by ind. hyp. for Lem. 1I

= {x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛] . ∀𝑗 ∈ [1, 𝑖−1] . x ∉ modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗)∧x ∈
useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)} ∪ (ℓ𝑛+1 = aftJSK ? 𝐿𝑒 : ∅) ∪ (escJSK ∧ ℓ𝑛+1 =
brk-toJSK ? 𝐿𝑏 : ∅)Hincorporating (x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0)) in the case 𝑖 = 1 for which
[1, 𝑖 − 1] = ∅ and 𝝔(𝜋0 ⌢⋅ ℓ1

𝑎1−−−−−→ ℓ2…
𝑎𝑖−1−−−−−−−→ ℓ𝑖) = 𝝔(𝜋0 ⌢⋅ ℓ1) = 𝝔(𝜋0).I

This proves Lem. 1 for the induction step and we conclude by recurrence on
𝑛. ⊓⊔

We also observe that potential liveness (hence dually definite deadness) can be
equivalently defined using maximal or prefix traces.

Lemma 2 𝛼∃luse,modJSK (𝓢+∞JSK) = 𝛼∃luse,modJSK (𝓢∗JSK). ⊓⊔

Proof of Lem. 2. To show that 𝛼∃luse,modJSK (𝓢+∞JSK) = 𝛼∃luse,modJSK (𝓢∗JSK) we
must, by (15), prove that

𝐴 = ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢+∞JSK𝛼

l
use,modJSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋⟩ = ⋃

⟨𝜋0, 𝜋′⟩ ∈𝓢∗JSK𝛼
l
use,modJSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋′⟩ = 𝐵.

– Assume x ∈ 𝐴 because of some ⟨𝜋0, 𝜋⟩ ∈ 𝓢+∞JSK. There are two cases.
• Either x ∈ 𝐴 follows from (14.a) and so the second alternative in (14.b)

has always been chosen before reaching the end of the trace 𝜋 with a label
ℓ = aftJSK or escJSK = tt and ℓ = brk-toJSK. In both cases, 𝜋 is maximal by
(11), ⟨𝜋0, 𝜋⟩ ∈ 𝓢∗JSK, and so x ∈ 𝐵 by (14).
• Otherwise, x ∈ 𝐴 follows from (14.b) where the second alternative has been

chosen finitely many times (so x is unmodified) until the first alternative
is chosen because x is used. Consider the prefix of 𝜋 up to that point of
use. By (13), it is, or an extension of it, 𝜋′ is in the prefix semantics ⟨𝜋0,
𝜋′⟩ ∈ 𝓢∗JSK and so from this trace we derive from (14.b) that x ∈ 𝐵.

10 P. Cousot

It follows that 𝐴 ⊆ 𝐵.
– Conversely, assume x ∈ 𝐵. Then there exists ⟨𝜋0, 𝜋′⟩ ∈ 𝓢∗JSK such that

x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋′⟩. Consider a maximal extension of 𝜋′ so that
there exists 𝜋″ with ⟨𝜋0, 𝜋′ ⋅ 𝜋″⟩ ∈ 𝓢+∞JSK. There are two cases, depending
of whether x ∈ 𝐵 in (14.a) or (14.b).
• If x ∈ 𝐵 because of (14.a) then the 𝜋′ ends at aftJSK or at brk-toJSK and so
𝜋′ is maximal that is ⟨𝜋0, 𝜋′⟩ ∈ 𝓢+∞JSK and so x ∈ 𝐴.
• If x ∈ 𝐵 because of (14.b) then x ∈ 𝐵 is used in 𝜋′ without being modified

before and so this is also the case in ⟨𝜋0, 𝜋′ ⋅ 𝜋″⟩ ∈ 𝓢+∞JSK, 𝜋″ = ∋, and
then x ∈ 𝐴 by (14).

In both cases, 𝐵 ⊆ 𝐴.
– By antisymmetry, 𝐴 = 𝐵. ⊓⊔

3.2 The semantic liveness/deadness abstractions

Semantically, an action 𝑎 uses variable y in a given environment 𝜌 if and only if
it is possible to change the value of y so as to change the effect of action 𝑎 on
program execution. For an assignment, the assigned value will be changed. For
a test, which has no side effect, the branch taken will be different. For example,
y ∉ useJx = y - yK 𝜌 and x ∉ useJx = xK 𝜌. Formally,

useJskipK 𝜌 ≜ ∅ (19)
useJx = AK 𝜌 ≜ {y ∣ ∃𝜈 ∈ 𝕍 .𝓐JAK 𝜌 ≠𝓐JAK 𝜌[y← 𝜈] ∧ 𝜌(x) ≠𝓐JAK 𝜌}

useJ𝑎K 𝜌 ≜ {y ∣ ∃𝜈 ∈ 𝕍 .𝓑J𝑎K 𝜌 ≠𝓑J𝑎K 𝜌[y← 𝜈]} 𝑎 ∈ {B, ¬(B)}

Notice that x ∈ useJ𝑎K in (19) compares two executions of action 𝑎 in different
environments so that (14) is a dependency analysis involving a trace and the
abstraction of another one by a different environment [10]. An action 𝑎 mod-
ifies variable x in an environment 𝜌 if and only the execution of action 𝑎 in
environment 𝜌 changes the value of x. This corresponds to

modJ𝑎K 𝜌 ≜ {x ∣ 𝑎 = (x = A) ∧ (𝜌(x) ≠𝓐JAK 𝜌)}
So the semantic potential liveness abstract semantics is

𝓢∃lJSK ≜ 𝛼∃luse,modJSK (𝓢+∞JSK) (20)

instantiating (15) with use as use and mod as mod (and similarly for the other
cases).

3.3 The classical syntactic liveness/deadness abstractions

Classical dataflow analysis as considered in [25] is purely syntactic i.e. approxi-
mates semantic properties by coarser syntactic ones based on the program syntax
only. The set 𝕦𝕤𝕖J𝑎K of variables used and the set 𝕞𝕠𝕕J𝑎K of variables assigned
to/modified in an action 𝑎 ∈ 𝔸 are postulated to be as follows (the parameter 𝜌
is useless but added for consistency with (14)).

Syntactic and Semantic Soundness of Structural Dataflow Analysis 11

𝕦𝕤𝕖Jx = AK 𝜌 ≜ 𝕧𝕒𝕣𝕤JAK 𝕦𝕤𝕖JskipK 𝜌 ≜ ∅ 𝕦𝕤𝕖JBK 𝜌 ≜ 𝕦𝕤𝕖J¬(B)K 𝜌 ≜ 𝕧𝕒𝕣𝕤JBK
𝕞𝕠𝕕Jx = AK 𝜌 ≜ {x} 𝕞𝕠𝕕JskipK 𝜌 ≜ ∅ 𝕞𝕠𝕕JBK 𝜌 ≜ 𝕞𝕠𝕕J¬(B)K 𝜌 ≜ ∅ (21)

where 𝕧𝕒𝕣𝕤JEK is the set of program variables occurring in arithmetic or boolean
expression E.

So the classical syntactic potential liveness abstract semantics is
𝓢∃∃𝕝JSK ≜ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) (22)

instantiating (15) with use as 𝕦𝕤𝕖 and mod as 𝕞𝕠𝕕 (and similarly for the other
cases).

3.4 Unsoundness of the syntactic liveness/deadness abstractions
One would expect soundness that is the potentially live variables determined
syntactically by [25] is a pointwise over-approximation of the potentially live
variables determined semantically but this is wrong 𝓢∃lJSK ⊈̇ 𝓢∃∃𝕝JSK, as shown
by Ex. 2. The problem is that

∃𝜌 ∈ Ev . y ∈ useJ𝑎K 𝜌 ⇒ ∀𝜌 ∈ Ev . y ∈ 𝕦𝕤𝕖J𝑎K 𝜌 (23)

but in general, as shown by Ex. 2, ∃𝜌 ∈ Ev . x ∈ 𝕞𝕠𝕕J𝑎K 𝜌 ∧ x ∉ modJ𝑎K 𝜌.
Proof of (23). Let us first remark that if x ∉ 𝕧𝕒𝕣𝕤JBK and ∀y ∈ V ⧵ {x} . 𝜌′(y) =
𝜌(y) then 𝓑JBK𝜌 =𝓑JBK𝜌′ and similarly for arithmetic expressions.

(23) is trivial for skip since useJskipK 𝜌 y = ff in (19). Otherwise, by contrapo-
sition, assume that y ∉ 𝕦𝕤𝕖J𝑎K𝜌.

If 𝑎 = x = A then y ∉ 𝕧𝕒𝕣𝕤JAK by (21) so ∀𝜈 ∈ 𝕍 . 𝓐JAK 𝜌 = 𝓐JAK 𝜌[y ← 𝜈],
proving ¬(useJx = AK 𝜌 y) by (19).

Similarly if 𝑎 = B or 𝑎 = ¬(B) then changing y does not change the value of
the boolean expression so y is not semantically used by (19). ⊓⊔

3.5 Soundness of the syntactic liveness/deadness abstractions
with respect to revised syntactic/semantic liveness/deadness
abstractions

To fix the problem 𝓢∃lJSK ⊈̇ 𝓢∃∃𝕝JSK, we can either change 𝛼∃luse,mod or 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕.
Changing 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕 would mean changing the classical potential live variable al-
gorithm [20,19,21] and all compilers using it. So we change 𝛼∃luse,mod so as to
explain exactly in what sense the unchanged classical potential live variable al-
gorithm is sound (even if this is not the most semantically intuitive one). We
remark that we have 𝛼∃luse,𝕞𝕠𝕕 ⊆̇ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕 so the classical potential live variable
algorithm 𝓢∃∃𝕝JSK which over-approximates 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) is sound. How-
ever, the program transformations that preserve mod but not 𝕞𝕠𝕕 may change
the liveness analysis. Therefore we define

𝓢∃𝕝JSK ≜ 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) (24)

12 P. Cousot

Theorem 1 If 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK then 𝓢∃𝕝JSK ⊆̇ 𝓢∃∃𝕝JSK.

Proof of Th. 1. We have to prove that 𝛼∃luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK, pointwise.
We first prove that 𝛼luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK. We proceed by induction (more
precisely bi-induction [15] to account for infinite traces).

For the basis

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩
= {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)} H(14.a)I
⊆ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩ H(14.a) and ⊆ reflexiveI

For the induction step

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩
= {x ∈ V ∣ x ∈ useJ𝑎K𝝔(𝜋0) ∨ (x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0) ∧ x ∈ 𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} H(14.b)I
⊆ {x ∈ V ∣ x ∈ 𝕦𝕤𝕖J𝑎K𝝔(𝜋0)∨ (x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0)∧x ∈ 𝛼luse,𝕞𝕠𝕕JSK𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} H(23)I
⊆ {x ∈ V ∣ x ∈ 𝕦𝕤𝕖J𝑎K𝝔(𝜋0)∨(x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0)∧x ∈ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} Hind. hyp.I

= 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩ H(14.b)I
It follows that

𝛼∃luse,𝕞𝕠𝕕JSK 𝓢 𝐿𝑏, 𝐿𝑒
= ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ H(15)I
⊆ ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ H𝛼luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSKI
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝓢 𝐿𝑏, 𝐿𝑒 H(15)I
If 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK then 𝛼∃luse,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK and there-
fore, by (24), 𝓢∃𝕝JSK ≜ 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK.
The other cases 𝓢∀𝕝JSK, 𝓢∃∃𝕕JSK, and 𝓢∀𝕕JSK are similar.

Syntactic and Semantic Soundness of Structural Dataflow Analysis 13

4 Calculational design of the structural syntactic
potential liveness static analysis

By Th. 1, a liveness inference algorithm 𝓢∃∃𝕝JSK is sound whenever

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK,
equivalently

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK) ⊆̇ 𝓢∃∃𝕝JSK
by Lem. 2. So we can construct this algorithm 𝓢∃∃𝕝JSK by a calculus that sim-
plifies the term 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK). Since the semantics 𝓢∗JSK is structural, we
get a structural algorithm which proceeds by elimination, without any fixpoint
iteration. We first give the result in Figure 1 and then show the systematic
calculational design [8]. Notice that although the semantics is forward, the anal-
ysis is backward (see e.g. the statement list and iteration). We omit the unused
environment parameter of 𝕦𝕤𝕖 and 𝕞𝕠𝕕.

Structural syntactic potential liveness analysis
�̂�∃∃𝕝JSl ℓK 𝐿𝑒 ≜ �̂�∃∃𝕝JSl ℓK ∅, 𝐿𝑒 (25)

�̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖Jx = AK ∪ (𝐿𝑒 ⧵𝕞𝕠𝕕Jx = AK)
�̂�∃∃𝕝J;K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑒

�̂�∃∃𝕝JSl′ SK 𝐿𝑏, 𝐿𝑒 ≜ �̂�∃∃𝕝JSl′K 𝐿𝑏, (�̂�∃∃𝕝JSK 𝐿𝑏, 𝐿𝑒)
�̂�∃∃𝕝J 𝜖 K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑒

�̂�∃∃𝕝Jif (B) S𝑡K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑡K 𝐿𝑏, 𝐿𝑒
�̂�∃∃𝕝Jif (B) S𝑡 else S𝑓K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑡K 𝐿𝑏, 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑓K 𝐿𝑏, 𝐿𝑒

�̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
�̂�∃∃𝕝Jbreak ;K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑏
�̂�∃∃𝕝J{ Sl }K 𝐿𝑏, 𝐿𝑒 ≜ �̂�∃∃𝕝JSlK 𝐿𝑏, 𝐿𝑒 ⊓⊔

Fig. 1. Potential liveness

Theorem 2 �̂�∃∃𝕝JSK defined by (25) is syntactically sound that is 𝓢∃∃𝕝JSK =
𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK) ⊆̇ �̂�∃∃𝕝JSK.

Proof of Th. 2. By structural induction on S. We provide an example of a base
case (assignment) and an inductive case (iteration), all other cases are similar.

– For the assignment S ∶∶= ℓ x = A ;, let us calculate 𝓢∃∃𝕝JSK 𝐿𝑏, 𝐿𝑒
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK(𝓢∗JSK) 𝐿𝑏, 𝐿𝑒 H(22) and Lem. 2I
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ �̂�∗JSK} Hdef. (15) of 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSKI

14 P. Cousot

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK⟩} ∪ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK,
atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩} Hdef. (3) of 𝓢∗JSKI

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩}Hdef. (14.a) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK⟩ = ∅ I

= ⋃{y ∈ V ∣ y ∈ 𝕦𝕤𝕖Jx = AK𝝔(𝜋0atJSK) ∨ (y ∉ 𝕞𝕠𝕕Jx = AK𝝔(𝜋0atJSK) ∧ y ∈
𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK ⌢⋅ atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK, aftJSK⟩)}
Hdef. (14.b) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩I
= {y ∈ V ∣ y ∈ 𝕦𝕤𝕖Jx = AK ∨ (y ∉ 𝕞𝕠𝕕Jx = AK ∧ y ∈ 𝐿𝑒)}Hdef. (14.a) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, aftJSK⟩ ≜ {x ∈ V ∣ x ∈ 𝐿𝑒} = 𝐿𝑒 since

escJSK = ff and omitting the useless parameters of 𝕦𝕤𝕖 and 𝕞𝕠𝕕I
= 𝕦𝕤𝕖Jx = AK ∪ (𝐿𝑒 ⧵𝕞𝕠𝕕Jx = AK) Hdef. ∈I
= �̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 H(25), Q.E.D.I
⊆ is never used in this derivation so �̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 = 𝓢∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 is
the best (most precise) abstraction for the assignment.

– For the iteration S ∶∶= while ℓ (B) S𝑏, we apply the semi-commutation fixpoint
approximation Theorem 1 of [9] to the fixpoint definition (9) of the prefix trace
semantics of the iteration. For the semi-commutation where we can assume that
𝑋 is an iterate of 𝓕∗Jwhile ℓ (B) S𝑏K from ∅ and therefore 𝑋 ⊆ 𝓢∗JSK, we have

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)) 𝐿𝑏, 𝐿𝑒
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)} H(15)I
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ}} ∪ (𝑎)
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ ¬(B)−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ}} ∪ (𝑏)
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt∧⟨𝜋1ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K, 𝜋3⟩∈𝓢∗JS𝑏K∧ℓ′ = ℓ}}(𝑐)H(9)I
We go on by cases.
• For the case (𝑎), we have
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ}}H(a)I

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ⟩ ∣ 𝜋1ℓ ∈ 𝕋+} Hwhere ℓ = atJwhile ℓ (B) S𝑏KI
= {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)} H(14.a)I
= ∅ Hℓ = atJSK ≠ aftJSK and ℓ = atJSK ≠ brk-toJSK for iterationI

Syntactic and Semantic Soundness of Structural Dataflow Analysis 15

• For the case (𝑏) where 𝑋 ⊆ 𝓢∗JSK is a subset of the iterates, we have

⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ ¬(B)−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ}}

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ ¬(B)−−−−−−−−→ aftJSK⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ff} Hdef. ∈ and ℓ′ = ℓ = atJSKI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛−1] . ∀𝑗 ∈ [1, 𝑖−1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖J𝑎𝑖K}∪𝐿𝑒∪ ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ff}

Hby Lem. 1 where ℓ𝜋2ℓ
¬(B)
−−−−−−−−→ aftJSK = ℓ1 𝑎1−−−−−→ ℓ2 𝑎2−−−−−→ … 𝑎𝑛−2−−−−−−−−→ ℓ𝑛−1 =

ℓ
𝑎𝑛−1 = ¬(B)−−−−−−−−−−−−−−−−−−→ ℓ𝑛 where ℓ = ℓ1 and ℓ𝑛 = aftJSK, ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ⊆ 𝓢∗JSK so

⟨𝜋1ℓ, ℓ𝜋2ℓ
¬(B)
−−−−−−−−→ aftJSK⟩ ∈ 𝓢∗JSK, and escJSK = ffI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 2] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ {x ∈ V ∣
∀𝑗 ∈ [1, 𝑛−2] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖JBK}∪𝐿𝑒 ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) =
ff} H[1, 𝑛 − 1] = [1, 𝑛 − 2] ∪ {𝑛 − 1}, 𝑎𝑛−1 = ¬(B), and 𝕦𝕤𝕖J¬(B)K = 𝕦𝕤𝕖JBKI
⊆ ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 2] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋}} ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒Hignoring the check ∀𝑗 ∈ [1, 𝑛 − 2] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K that x has not been

modified before its use in ¬(B), that the test B is false, and ℓ𝜋2ℓ ≜
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−2−−−−−−−−→ ℓ𝑛−1 with ℓ = ℓ1 and ℓ𝑛−1 = ℓI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 HLem. 1I
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 H(15)I
• For the case (𝑐) where 𝑋 ⊆ 𝓢∗JSK is a subset of the iterates, we have

⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt ∧ ⟨𝜋1ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K, 𝜋3⟩ ∈𝓢∗JS𝑏K ∧ ℓ′ = ℓ}}
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K}Hdef. ∈ and ℓ′ = ℓ = atJSKI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ (ℓ𝑛 =
aftJSK ? 𝐿𝑒 : ∅) ∪ (escJSK ∧ ℓ𝑛 = brk-toJSK ? 𝐿𝑏 : ∅) ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ

B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K∧ ℓ𝜋2ℓ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 =
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−1−−−−−−−−→ ℓ𝑛} Hby Lem. 1 I

16 P. Cousot

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ

B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ𝜋2ℓ =
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑚−1−−−−−−−−−→ ℓ𝑚 ∧ ℓ B−−−−→ atJS𝑏K = ℓ𝑚 𝑎𝑚 = B−−−−−−−−−−−−→ ℓ𝑚+1 ∧ 𝜋3 = ℓ𝑚+1

𝑎𝑚+1−−−−−−−−−→
…
𝑎𝑛−1−−−−−−−−→ ℓ𝑛}

Hby decomposing the trace according to its pattern, ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→

atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K so ℓ𝑛 ≠ aftJSK, and escJSK = ffI
= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1,𝑚 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ {x ∈ V ∣
∀𝑗 ∈ [1,𝑚 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑚K} ∪ {x ∈ V ∣ ∃𝑖 ∈ [𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈
[1, 𝑖−1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt∧⟨𝜋3,

𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ𝜋2ℓ = ℓ1 𝑎1−−−−−→ ℓ2 𝑎2−−−−−→ … 𝑎𝑚−1−−−−−−−−−→ ℓ𝑚 ∧ ℓ B−−−−→

atJS𝑏K = ℓ𝑚 𝑎𝑚 = B−−−−−−−−−−−−→ ℓ𝑚+1 ∧ 𝜋3 = ℓ𝑚+1
𝑎𝑚+1−−−−−−−−−→ …

𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hby decomposing [1, 𝑛 − 1] = [1,𝑚 − 1] ∪ {𝑚} ∪ [𝑚 + 1, 𝑛 − 1]I
⊆ ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1,𝑚 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧ ℓ𝜋2ℓ = ℓ1

𝑎1−−−−−→ ℓ2
𝑎2−−−−−→ …

𝑎𝑚−1−−−−−−−−−→ ℓ𝑚} ∪ 𝕦𝕤𝕖JBK ∪ ⋃{{x ∈ V ∣ ∃𝑖 ∈
[𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ B−−−−→

atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ 𝜋3 = ℓ𝑚+1 𝑎𝑚+1−−−−−−−−−→ … 𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hdef. ∪, ignoring the check ∀𝑗 ∈ [1,𝑚 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K that x has
not been modified before its use in 𝑎𝑚 = B, ignoring the value of
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ttI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪⋃{{x ∈ V ∣ ∃𝑖 ∈
[𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ (ℓ𝑛 = aftJS𝑏K ?

𝐿𝑒 : ∅) ∪ (escJS𝑏K ∧ ℓ𝑛 = brk-toJS𝑏K ? 𝐿𝑏 : ∅) ∣ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈

𝓢∗JS𝑏K ∧ 𝜋3 = ℓ𝑚+1 𝑎𝑚+1−−−−−−−−−→ … 𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hby Lem. 1 for the first term since aftJSK ≠ ℓ and brk-toJSK ≠ ℓ and
over-approximating the third termI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JS𝑏K 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K, 𝜋3⟩ ∣ ⟨𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K, 𝜋3⟩ ∈
𝓢∗JS𝑏K} Hby Lem. 1I
⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝑋}∪𝕦𝕤𝕖JBK∪⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JS𝑏K 𝐿𝑏, 𝐿𝑒⟨𝜋0,
𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝓢∗JS𝑏K} Hover-approximating the semantics 𝑋 and 𝓢∗JS𝑏KI
⊆ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕S𝑏] (𝓢∗JS𝑏K) 𝐿𝑏, 𝐿𝑒) H(15)I
⊆ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒

Syntactic and Semantic Soundness of Structural Dataflow Analysis 17

Hstructural induction hypothesis of Th. 2I
• Gathering the three cases (𝑎), (𝑏), and (𝑐), we have proved the semi-commutation

condition

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)) 𝐿𝑏, 𝐿𝑒 ⊆
𝐿𝑒 ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒) ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪
�̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒

So we define

𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋 ≜ 𝐿𝑒 ∪ 𝑋 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
to get �̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 ≜ lfp⊆𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒. The iterates
are
𝑋0 = ∅
𝑋1 =𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋0 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
𝑋2 =𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋2 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒 = 𝑋1

Therefore the least fixpoint is the constant

�̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
as stated in (25), Q.E.D. ⊓⊔

We conclude that algorithm (25) is sound with respect to the revised syntac-
tic/semantic definition 𝓢∃𝕝JSK of liveness in (24).

Theorem 3 𝓢∃𝕝JSK = 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) ⊆̇ �̂�∃∃𝕝JSK.
Proof (of Th. 3)
𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK)

= 𝛼∃luse,𝕞𝕠𝕕 (𝓢∗JSK) HLem. 2I
⊆̇ �̂�∃∃𝕝JSK HTh. 2 and Th. 1I ⊓⊔
5 Calculational design of the syntactic structural

deadness static analysis

By complement duality we obtain the syntactic definite deadness analysis which
is the information actually needed in compilers.

18 P. Cousot

Structural syntactic definite deadness analysis
�̂�∀𝕕JSl ℓK 𝐷𝑒 = �̂�∀𝕕JSl ℓK V , 𝐷𝑒 (26)

�̂�∀𝕕Jx = A ;K 𝐷𝑏, 𝐷𝑒 = ¬ 𝕦𝕤𝕖Jx = AK ∩ (𝐷𝑒 ∪𝕞𝕠𝕕Jx = AK)
�̂�∀𝕕J;K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑒

�̂�∀𝕕JSl′ SK 𝐷𝑏, 𝐷𝑒 = �̂�∀𝕕JSl′K 𝐷𝑏, (�̂�∀𝕕JSK 𝐷𝑏, 𝐷𝑒)
�̂�∀𝕕J 𝜖 K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑒

�̂�∀𝕕Jif (B) S𝑡K 𝐷𝑏, 𝐷𝑒 = ¬ 𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩ �̂�∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒
�̂�∀𝕕Jif (B) S𝑡 else S𝑓K 𝐷𝑏, 𝐷𝑒 = ¬ 𝕦𝕤𝕖JBK ∩ �̂�∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒 ∩ �̂�∀𝕕JS𝑓K 𝐷𝑏, 𝐷𝑒

�̂�∀𝕕Jwhile (B) S𝑏K 𝐷𝑏, 𝐷𝑒 = ¬ 𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩ �̂�∀𝕕JS𝑏K 𝐷𝑏, 𝐷𝑒
�̂�∀𝕕Jbreak ;K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑏
�̂�∀𝕕J{ Sl }K 𝐷𝑏, 𝐷𝑒 = �̂�∀𝕕JSlK 𝐷𝑏, 𝐷𝑒 ⊓⊔

Theorem 4 (Structural syntactic definite deadness analysis) For
all program components S, define 𝓢∀𝕕JSK 𝐷𝑏, 𝐷𝑒 ≜ ¬𝓢∃∃𝕝JSK ¬𝐷𝑏, ¬𝐷𝑒. 𝓢∀𝕕
is equivalently defined by �̂�∀𝕕 in (26).

Proof of Th. 4. The proof is by structural induction and essentially consists in
applying De Morgan laws for complement. For example,

𝓢∀𝕕Jif (B) S𝑡K 𝐷𝑏, 𝐷𝑒
= ¬𝓢∃∃𝕝Jif (B) S𝑡K ¬𝐷𝑏, ¬𝐷𝑒 Hdefinition of 𝓢∀𝕕JSK as dual of 𝓢∃∃𝕝JSKI
= ¬(𝕦𝕤𝕖JBK ∪ ¬𝐷𝑒 ∪𝓢∃∃𝕝JS𝑡K ¬𝐷𝑏, ¬𝐷𝑒) H(25)I
= ¬𝕦𝕤𝕖JBK ∩ ¬¬𝐷𝑒 ∩ ¬𝓢∃∃𝕝JS𝑡K ¬𝐷𝑏, ¬𝐷𝑒) HDe Morgan lawsI
= ¬𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩𝓢∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒 Hstructural induction hypothesisI
All other cases are similar. ⊓⊔

6 Is liveness analysis correctly used for code optimization?
6.1 Liveness specification
We have considered three possible specifications of liveness. A purely semantic
one 𝓢∃l in (20) with respect to which the liveness analysis algorithm (25) is
unsound and a syntactic one 𝓢∃∃𝕝 in (22) as well as a revised syntactic/semantic
liveness specification 𝓢∃𝕝 in (24) for which, by Th. 1 and 2, the liveness analysis
algorithm (25) is sound. The problem is that, as shown in Section 3.4, the
syntactic specification of liveness 𝓢∃∃𝕝 in (22) is unsound with respect to the
purely semantic specification 𝓢∃l in (20). This is problematic since applications
of the liveness analysis algorithm (25) are not designed with respect to what the
algorithm does, but with respect to the specification of what it is supposed to
do. Therefore, a potential problem is in the use of the liveness analysis algorithm
(25) with a semantic definition 𝓢∃l in (20) of soundness for which it is incorrect.

https://en.wikipedia.org/wiki/De_Morgan's_laws
https://en.wikipedia.org/wiki/De_Morgan's_laws

Syntactic and Semantic Soundness of Structural Dataflow Analysis 19

6.2 What could go wrong when optimizing programs?

Consider a compiler that successively performs

1. a (syntactic) liveness analysis 𝓢∃∃𝕝;
2. next, a code optimization by removal

(a) of assignments to variables that are dead after this assignment,
(b) of assignments to variables that do not change the value of this vari-

able (using Kildall’s constancy analysis [22] or a more precise symbolic
constancy analysis [18,31]);

3. next, a register allocation such that
(a) simultaneously live variables are stored in different registers,
(b) when no register is left and one is needed, one of those containing the

value of a dead variable is preferred (to avoid saving the value of the
variable to its memory location as would be needed for live variables).

For the following program (where all variables are dead on exit)

semantically syntactically
live dead live dead

x=0; scanf(y);
if (x==0){
ℓ1 ... x and y neither used nor modified ... ℓ1 {x} {y} {y} {x}
ℓ2 x = y - y; } ℓ2 {x} {y} {y} {x}

else {
x=42;

}
ℓ3 print(x); ℓ3 {x} {y} {x} {y}

x is semantically live at ℓ1, ℓ2, and ℓ3 since it is never modified (in particular
not modified at ℓ2) before being used at ℓ3. However it is syntactically dead at
ℓ1 and ℓ2 since it is not used before being assigned at ℓ2. Code elimination (2b)
will suppress the assignment at ℓ2 since the value of x is unchanged. Assume x
is in a register at ℓ1 and a fresh register is needed but none is left available. By
(3b) the register containing x may be selected since its value need not be saved
to memory because x is syntactically dead at ℓ1. Then the value of x is lost at
ℓ3, a compilation bug. The problem is the notion of modification assimilated to
an assignment in (21) and syntactic liveness 𝓢∃∃𝕝 in (22) when this assignment
is redundant and may be eliminated from the object program.

This error does not occur with semantic liveness 𝓢∃l in (20) which declares
x live at ℓ1 so the register containing its value will be saved to memory (and
reloaded at ℓ3).

20 P. Cousot

6.3 Why does it not go wrong?

One solution is to prevent program transformations (such as (2b) and (3b) above)
that do not preserve the soundness of the semantic liveness 𝓢∃l in (20). Since
(2b) does not depend on the liveness analysis, it can be moved before. Another
solution is to redo the liveness analysis after any program transformation that
does not preserve the information. A better solution is adopted in CompCert [23]:
the liveness analysis and code elimination are performed simultaneously and the
liveness analysis is designed to be valid after code elimination. The soundness of
the liveness analysis is stated and proved as “after code elimination, the program
execution does not depend on the values of the variables declared dead by the
analysis”. More generally, a program transformation based on a sound static
program analysis must be formally proved to be correct. This can be done in the
framework of abstract interpretation [14].

7 Conclusion

We have shown that Gary Kildall approach to data flow analysis by abstrac-
tion over a path and merge over all paths [22] as well as Bernhard Steffen’s
approach “Data Flow Analysis is Model Checking” [28,29] (requiring finite ab-
stract domains) formalized by David Schmidt as “Data Flow Analysis is Model
Checking of Abstract Interpretations” [25], (including its recent reformulation
[5]), hide subtleties in the definition of soundness, which may lead to incorrect
semantics-based compiler optimizations.

Moreover, the use of transition systems in model checking forgets about the
program structure and so cannot be used directly to formally derive structural
elimination algorithms which may be more efficient than fixpoint algorithms.
Of course elimination would not be necessarily feasible in presence of arbitrary
branching in or out of loops. But nevertheless, by the chaotic iteration theorem
[7], the result remains valid for all loops with forward branching only.

We have argued that “Data Flow Analysis is an Abstract Interpretation of
a Trace Semantics”, as first propounded by [12, Section 7.2.0.6.3] solves the
soundness and design problems thanks to a not so natural replacement of “se-
mantically modified” by “syntactically assigned to”. Therefore liveness analysis
must be performed after program assignment transformations.

Since the program cannot be modified after the classical syntactic liveness
analysis since the analysis can become wrong after the transformation, an alter-
native, à la CompCert [23], is to use dependency: the soundness of the liveness
analysis is stated and proved as “the program execution does not depend on the
values of the variables declared dead by the analysis”.

More generally, this is another illustration that program property specifica-
tion is better performed directly on a semantics rather than, as is the case in
dataflow analysis, on any of its abstractions.

Let us leave the conclusion to an anonymous reviewer. “It is an old story
that the dataflow analysis framework (”syntactic” dataflow analysis in paper’s

Syntactic and Semantic Soundness of Structural Dataflow Analysis 21

characterization) is way too weak. For modern programming languages, control
flow is not syntactic but a part of semantics. Dataflow analysis assumes the
control flow to be available before the analysis hence a stalemate for modern
languages with higher order functions, dynamic bindings, or dynamic gotos;
dataflow analysis has neither a systematic guide to prove the correctness of an
analysis nor systematic approach to manage the precision of the analysis. On
the other hand, the semantics-based design theory (abstract interpretation) is
general enough to handle any kind of source languages and powerful enough to
prove the correctness and to manage its precision.”

Acknowledgement. I thank Sandrine Blazy, Xavier Leroy, and Francesco Ran-
zato for lively discussions. I thank the reviewers for their livable comments. This
work was supported in part by NSF Grant CNS-1446511. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National Science
Foundation.

References

1. Allen, F.E.: Control flow analysis. SIGPLAN Not. 5(7), 1–19 (1970)
2. Allen, F.E.: A basis for program optimization. In: IFIP Congress (1). pp. 385–390

(1971)
3. Allen, F.E.: Interprocedural data flow analysis. In: Rosenfeld, J.L. (ed.) Informa-

tion Processing 74. pp. 398–402. North-Holland Pub. Co. (1974)
4. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM

19(3), 137–147 (1976)
5. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow

analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018)
6. Brookes, S.D.: Traces, pomsets, fairness and full abstraction for communicating

processes. In: CONCUR. Lecture Notes in Computer Science, vol. 2421, pp. 466–
482. Springer (2002)

7. Cousot, P.: Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. Res. rep. R.R. 88, Laboratoire IMAG,
Université scientifique et médicale de Grenoble, Grenoble, France (Sep 1977), 15
p.

8. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam (1999)

9. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

10. Cousot, P.: Abstract semantic dependency. In: SAS. Lecture Notes in Computer
Science, this volume. Springer (2019)

11. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics 81(1), 43–57 (1979)

12. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282. ACM Press (1979)

13. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL. pp. 12–25.
ACM (2000)

22 P. Cousot

14. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: POPL. pp. 178–190. ACM (2002)

15. Cousot, P., Cousot, R.: Bi-inductive structural semantics. Inf. Comput. 207(2),
258–283 (2009)

16. Filé, G., Ranzato, F.: The powerset operator on abstract interpretations. Theor.
Comput. Sci. 222(1-2), 77–111 (1999)

17. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (2000)

18. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. ACM Trans. Program. Lang. Syst. 18(4), 477–518 (1996)

19. Kennedy, K.: Node listings applied to data flow analysis. In: POPL. pp. 10–21.
ACM Press (1975)

20. Kennedy, K.: A comparison of two algorithms for global data flow analysis. Int. J.
of Comp. Math. Section A, Volume 3, 5–15 (1976)

21. Kennedy, K.: A comparison of two algorithms for global data flow analysis. SIAM
J. Comput. 5(1), 158–180 (Mar 1976)

22. Kildall, G.A.: A unified approach to global program optimization. In: POPL. pp.
194–206. ACM Press (1973)

23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

24. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. 18(3), 277–316 (1986)

25. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: POPL. pp. 38–48. ACM (1998)

26. Scholz, B., Blieberger, J.: A new elimination-based data flow analysis framework
using annotated decomposition trees. In: CC. Lecture Notes in Computer Science,
vol. 4420, pp. 202–217. Springer (2007)

27. Sharir, M.: Structural analysis: A new approch to flow analysis in optimizing com-
pilers. Comput. Lang. 5(3), 141–153 (1980)

28. Steffen, B.: Data flow analysis as model checking. In: TACS. Lecture Notes in
Computer Science, vol. 526, pp. 346–365. Springer (1991)

29. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

30. Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific J. of
Math. 5, 285–310 (1955)

31. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

