
Abstract Interpretation Based Static Analysis
Parameterized by Semantics

(abstract)

Patrick Cousot

École normale supérieure, DMI, 45 rue d’Ulm, 75230 Paris cedex 05, France
cousot@dmi.ens.fr http://www.dmi.ens.fr/~cousot

Abstract. We review how the dependence upon semantics has been
taken into account in abstract interpretation based program analysis
and next propose to design general purpose abstract interpreters taking
semantics as a parameter, either that of the program to be analyzed or
that of a programming language.

1 Semantics Used for Static Analysis by Abstract
Interpretation

A contribution of abstract interpretation was to understand that program static
analyzers can be formally designed by discrete approximation of programming
language semantics. An impressive number of semantics has been used right at
the beginning of the formalization of abstract interpretation. To cite a few:

– small-step operational semantics of transition systems1 (called “state tran
sition function” in [6 , sec. 3.2, p. 240]);

– prefix-closed finite execution trace semantics (called “computation sequence”
in [6 , sec. 3.2, p. 240] and “paths” in [9 , sec. 2, p. 270]);

– first-order fixpoint2 symbolic execution tree semantics [7 , sec. 6, pp. 6–7];
– first-order fixpoint big-step operational semantics of transition systems (call-

ed “initial to final state transition function” in [6 , sec. 3.2, p. 240]);
– first-order fixpoint collecting semantics (called “static semantics” in [6 , sec.

4, p. 240]);
– first-order fixpoint strongest post-condition predicate transformer seman

tics of transition systems (called “deductive semantics” in [6 , sec. 6, pp.
242–243] and “forward deductive semantics” in [9 , sec. 3.1, pp. 270–271])
and second-order fixpoint3 ones for recursive procedures (called “deductive
semantics” in [8 , sec. 3, pp. 243–251]);

1 More precisely of partitioned deterministic transition systems 〈States , I-states ,
n-state〉 where States is a partitioned set of states, I-states ⊆ States is the set of
initial states and n-state ∈ States −→ States is the state transition function. For
the example application to flowcharts considered in [6] , the states are partitioned
accordingly, by program control points.

2 i.e. x = f(x) where f ∈ D −→ D.
3 i.e. f(x) = F (f)(x) where F ∈ (D −→ D) −→ (D −→ D).



– first-order fixpoint weakest pre-condition predicate transformer semantics of
transition systems4 (called “backward deductive semantics” in [9 , sec. 3.2,
p. 271]);

– axiomatic semantics (called “invariance proof method” in [11 , sec. F, p.
258–266]);

– second-order fixpoint denotational semantics [23];
– second-order fixpoint relational semantics [15];
– higher-order denotational semantics [2 ,16];

This variety of semantics is almost unavoidable because program static analysis
deals with many different run-time properties and one looks for the semantics for
which the considered program property is most easily expressible. The spectrum
of semantics to be taken into consideration is even much larger when analyzing
other families of languages besides imperative and functional ones like logical
[19 ,12] and parallel [10 ,11] languages.

2 Programming Language and Semantics Independent
Static Analysis Frameworks

It is very difficult to provide both programming language and semantics indepen
dent static analysis frameworks which are general enough to be easily adapted
to specific instances. Our approach has been as follows:

– We refrain from presenting the theory of abstract interpretation in the spe
cific context of a particular semantics of a peculiar programming language.
This is in contrast with approaches almost exclusively devoted to the deno
tational semantics of the lambda-calculus such as, for instance, [1 ,22 ,23 ,24].

– We first attempted to consider a universal model of programs in the form of
transition systems [3]. This is quite effective for imperative, logic, constraint,
functional (e.g. through term graph rewriting or interaction nets) and shared
or distributed parallel programming languages, but fails for the higher-order
domain-theoretic denotational semantics of functional languages.

– We then considered formalization of abstract interpretation theory in terms
of the mathematical concepts used to present semantics. The premisses ap
pear in [9] where the basic assumption is that the semantics can be pre
sented in fixpoint form and [13] where it is considered in transfinite iterative
form. This is probably clearer in [16] where abstractions (for sets of func
tions, for binary relations, etc.) and combinations of abstractions (compo
sition, disjunctive completion, etc.) are considered independently of a par
ticular semantics and then applied to comportment analysis of the typed
lambda-calculus. No new concept is necessary to handle apparently different
program analysis methods such as set-based analysis [18] or type inference
[5].

4 This time nondeterministic transition systems obtained e.g. by inversion of determin
istic imperative programs, see [9 , example 3.2.0.1, p. 271].

389



– A further step towards semantic independence is to recognize that a given se
mantics can be presented compositionally in many different inductive styles
such as fixpoints, equational systems, constraints, closure conditions, rule-based
formal systems, games, etc., which are all formally equivalent and preserved
by abstraction [17].

– Even more important is the fact that semantics can be organized hierarchi
cally and may be considered, after suitable generalization, as abstract inter
pretations of one another. Starting in [4] from a maximal trace semantics
of a transition system, we derive a big-step semantics, termination and non
termination semantics, natural, demoniac and angelic relational semantics
and equivalent nondeterministic denotational semantics, D. Scott’s deter
ministic denotational semantics, generalized/conservative/liberal predicate
transformer semantics, generalized/total/partial correctness axiomatic se
mantics and corresponding proof methods. All semantics are presented in
uniform fixpoint form and the correspondence between these semantics are
established by abstract interpretation.

By presenting the semantics of the programming languages in the same math
ematical framework and by considering the comparable semantics as abstrac
tions/refinements of one-another, we guarantee the semantic coherence of the
various independent analyzes which can be performed on a program and offer
the possibility of composing and combining them consistently in the lattice of
abstract interpretations [9 , sec. 8, pp. 278–279].

3 Static Analysis Parameterized by Abstract Domains

In the classical approach, a program analyzer is usually designed for a specific
programming language and its soundness is based upon a specific standard
semantics. The analyzer maps programs P of a given programming language
to the abstract semantics (or an approximation) S�[[P ]] specifying the program
properties discovered by the analysis:

P
program

�−− Abstract
interpreter−→ S�[[P ]]

abstract semantics
(approximation)

The abstract interpreter is usually designed in two phases. In the first phase, a
translator maps the program concrete syntax to an abstract semantics specifica
tion S�[[P ]] , e.g. a system of equations or unsolved contraints which, in a second
phase, is solved to compute the abstract semantics S�[[P ]]:

P
program

�−−Translator−→ S�[[P ]]
abstract

semantics
specification

�−−Solver−→ S�[[P ]]
abstract
semantics
(approximation)

390



The analyzer may be generic, more or less precise analyzes being obtained by
considering various abstract algebras (i.e. abstract domains together with the
corresponding abstract operations) which can be integrated in the analyzer as
independent modules. In this case the generic analyzer takes modules implement
ing an abstract algebra and programs as parameters to produce information
about run-time execution.

4 Static Analysis Parameterized by the Program
Semantics

To achieve independence vis-à-vis the semantics, a proposed alternative ap
proach consists in introducing the concrete program semantics as a parameter
to the abstract interpreter.

S
concrete

semantics
specification

× S �→ S�[[S]]
abstract
semantics
specification
function

�−− Abstract
interpreter−→ S�[[S]]

abstract
semantics
(approximation)

An abstract domain together with a meta-language e.g., a fixpoint calculus on
the abstract domain, have to be designed so as to express the input concrete
semantics specification S and the abstract semantics specification function S �→
S�[[S]]. The correctness of the abstract semantics specification is proved with
respect to the meta-semantics of the meta-language.

The concrete semantics S of a program which is fed to the analyzer can be
designed “by hand”. It is then considered as a specification to be analyzed, which
is often the case in model-checking, where the abstraction process is sometimes
taken for granted without formal justification. Most often in automatic program
static analysis, the abstract semantics will be automatically generated by a
front-end pre-processor which has to be proved correct and rewritten for different
programming languages:

P
program

�−−Translator−→ S[[P ]]
concrete semantics
specification

In both cases the abstract semantics S�[[S[[P ]]]] of the program P corresponds
to a given static approximation which is necessary for inexpressive abstract
domains or to master the analysis cost [14 , sec. 3, pp. 271–274].

If the abstract domain and the meta-language are rich and expressive enough
to specify the standard semantics defining exact program executions, then the
concrete semantics specification can be chosen to be that of the standard seman
tics. One can then consider applications to interactive debugging or model-checking
of finite systems. Applications to automatic program analysis and model-checking

391



of infinite systems require powerful dynamic extrapolation operators (widening,
narrowing) to allow for effective computation of sound approximations of the ab
stract semantics [14 , sec. 4, pp. 275–278]). The considered abstract domain can
also be parameterized to achieve various degrees of approximation. Examples
of such abstract domains are A. Deutsch’s exponential unitary-prefix monomial
relations [20] , P. Cousot and R. Cousot’s constrained tree grammars [18] and
A. Venet’s cofibred domains [25] which can all be parameterized by numerical
domains.

This approach is much more flexible than specialized abstract interpreters
since the abstract interpreter which computes or approximates the abstract se
mantics is general purpose. Moreover the specialized abstract interpreter can be
derived by partial evaluation [21]. However, this approach requires the hand-coding
and manual correctness proof of a front-end pre-processor/translator for map
ping programs to a specification of their concrete semantics.

5 Static Analysis Parameterized by the Programming
Language Semantics

A further idea to achieve both programming language and semantics indepen
dence is to have the abstract interpreter take the program abstract syntax A , the
concrete semantics specification function mapping the program abstract syntax
A to a concrete semantics specification S[[A]] and the abstract semantics specifi
cation function S �→ S�[[S]] as parameters. The concrete semantics specification
S[[A]] can then be provided as parameter of the abstract semantics specification
S�[[S[[A]]]] in order to get the abstract semantics (or an approximation) S�[[A]]
specifying the program properties discovered by the analysis:

A
abstract

syntax

× A �→ S[[A]]
concrete

semantics
specification

function

× S �→ S�[[S]]
abstract
semantics
specification

�−− Abstract
interpreter−→ S�[[A]]

abstract
semantics
(approximation)

Again the abstract domain and abstract semantics specification language have
to be expressive enough to be able to specify A , A �→ S[[A]] and S �→ S�[[S]].
Suitable choices of widenings/narrowing lead to a simplification of the expression
S�[[S[[A]]]] by simple expansion so as to obtain an abstract semantics specification
on which the solvers considered in the previous sections can directly operate.
The only remaining part to be coded is a translator from concrete to abstract
syntax:

P
program

(concrete syntax)

�−−Translator−→ A[[P ]]
program
(abstract syntax)

Great flexibility is achieved through that design ranging from specialized ab
stract interpreters obtained by partial evaluation, abstract interpreters working

392



with different kinds of semantics to general purpose language independent ab
stract interpreters using e.g. an intermediate language. Correctness proof are by
construction. The same abstract interpreter can then be used for many different
purposes from compile-time program analysis, to abstract debugging, abstract
model-checking, etc. Abstract interpretation and partial evaluation of the ab
stract interpreters is necessary to achieve full efficiency. Other stimulating and
interesting challenges are discussed.

References

1. S. Abramsky and C. Hankin. An introduction to abstract interrpetation , ch. 1.
Ellis Horwood, 1987. 389

2. G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of higher-order
functions. Sci. Comput. Prog. , 7:249–278, 1986. 389

3. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications , ch. 10, pp.
303–342. Prentice-Hall, 1981. 389

4. P. Cousot. Design of semantics by abstract interpretation, invited address. In
Mathematical Foundations of Programming Semantics, Thirteenth Annual Confer
ence (MFPS XIII) , Carnegie Mellon University, Pittsburgh, Pennsylvania, 1997.
390

5. P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL , pp.
316–331, Paris, 1997. ACM Press. 389

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL ,
pp. 238–252, Los Angeles, Calif. , 1977. ACM Press. 388

7. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. In ACM Symposium on Artificial Intelligence & Pro
gramming Languages, Rochester, N.Y. , SIGPLAN Notices 12(8):1–12, 1977. 388

8. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. In E.J. Neuhold, editor, IFIP Conference on Formal Description of
Programming Concepts , St-Andrews, N.B., Canada, pp. 237–277. North-Holland,
1977. 388

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL , pp. 269–282, San Antonio, Texas, 1979. ACM Press. 388 , 389 , 390

10. P. Cousot and R. Cousot. Semantic analysis of communicating sequential processes.
In J.W. de Bakker and J. van Leeuwen, editors, 7th ICALP , LNCS 85, pp. 119–133.
Springer-Verlag, 1980. 389

11. P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for
parallel programs. In A.W. Biermann, G. Guiho, and Y. Kodratoff, editors, Au
tomatic Program Construction Techniques, ch. 12, pp. 243–271. Macmillan, 1984.
389

12. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro
grams. J. Logic Prog. , 13(2–3):103–179, 1992. (The editor of JLP has mistakenly
published the unreadable galley proof. For a correct version of this paper, see
http://www.dmi.ens.fr/~cousot.). 389

13. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp. ,
2(4):511–547, 1992. 389

393



14. P. Cousot and R. Cousot. Comparing the Galois connection and widen
ing/narrowing approaches to abstract interpretation, invited paper. In M.
Bruynooghe and M. Wirsing, editors, Proc. Int. Work. PLILP ’92, Leuven, Bel
gium, LNCS 631, pages 269–295. Springer-Verlag, 1992. 391 , 392

15. P. Cousot and R. Cousot. Galois connection based abstract interpretations for
strictness analysis, invited paper. In D. Bjørner, M. Broy, and I.V. Pottosin, edi
tors, Proc. FMPA , Academgorodok, Novosibirsk, Russia, LNCS 735, pages 98–127.
Springer-Verlag, 1993. 389

16. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In Proc. 1994 ICCL, Toulouse,
France , pp. 95–112. IEEE Comp. Soc. Press, 1994. 389

17. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper, editor, Proc. 7th Int. Conf. CAV ’95 , Liège,
Belgium, LNCS 939, pp. 293–308. Springer-Verlag, 1995. 390

18. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proc. 7th FPCA , pp. 170–181, La
Jolla, Calif. ,1995. ACM Press. 389 , 392

19. S.K. Debray. Formal bases for dataflow analysis of logic programs. In G. Levi, ed
itor, Advances in Logic Programming Theory, International Schools for Computer
Scientists, section 3, pp. 115–182. Clarendon Press, 1994. 389

20. A. Deutsch. A storeless model of aliasing and its abstraction using finite repre
sentations of right-regular equivalence relations. In Proc. 1992 ICCL , Oakland,
Calif. , pp. 2–13. IEEE Comp. Soc. Press, 1992. 392

21. N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993. 392

22. N.D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for
program analysis. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors,
Semantic Modelling , volume 4 of Handbook of Logic in Computer Science , ch. 5,
pp. 527–636. Clarendon Press, 1995. 389

23. A. Mycroft. Abstract Interpretation and Optimising Transformations for Applica
tive Programs. Ph.D. Dissertation, CST-15-81, Department of Computer Science,
University of Edinburgh, Edinburg, Scotland, 1981. 389

24. F. Nielson. Two-level semantics and abstract interpretation. TCS — Fund. St. ,
69:117–242, 1989. 389

25. A. Venet. Abstract cofibred domains: Application to the alias analysis of untyped
programs. In R. Cousot and D.A. Schmidt, editors, Proc. SAS ’96 , Aachen, Ger
many, LNCS 1145, pp. 368–382. Springer-Verlag, 1996. 392

Published in the Proceedings of the 4th International Symposium on Static Anal
ysis, SAS’97 , Paris, France, 8-10 September 1997, P. van Hentenryck (Ed.),
Lecture Notes in Computer Science 1302, Springer-Verlag, pp. 388–394.

394


