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For program specification and verification, logic is a natural choice. However, for static analysis
by abstract interpretation [10, 11], logic is rarely used, even as a user interface. We discuss the
weaknesses of logic from this perspective.

1 Which logic for specification?
Choosing a decidable logic, such as Presburger arithmetic [20], to express program properties has
the great advantage that user specified invariants can be mechanically checked. However, one can
write a program that computes the multiplication * using iteration and addition + but the invariant
is not expressible in Presburger arithmetic. Of course one can consider a richer specification logic by
adding ∗ to the logic, but then iteration of * yields exponentiation ** which is not in the logic, etc.
The common choice of first-order logic is limited by the lack of a recursion mechanism necessary
to reason on programs [23]. Transitive closure is not expressible [19]. The next generalization is
to use Datalog [22]. But by choosing more and more expressive logics for specification language,
one looses the decidability and completeness of provers, has to resort to user-interaction, which is
generally excluded in automatic static program analysis tools.

Finally, to discuss the soundness of static analyzers, second-order logic is required. For example
[1], a Hoare triple, {P}C{Q} must satisfy ∀P,Q ∈ ℘(S) . ∀x ∈ P . ∀y ∈ S . x

C
−−→ y ⇒ y ∈ Q where

S is a set of states and C
−−→ the natural big-step semantics of command C. So called hyperproperties

[3] would require P ∈ ℘(℘(S)).

2 Which logic for property representation in a static ana-
lyzer?

Once a logic has been chosen for specification it, or a more expressive one, can be used as an internal
representation of abstract properties.

An anonymous referee mentioned, with good reason, that “it is often convenient to use logic for
describing, for instance how the domain of positive boolean functions can be used for analysis of
the variable dependencies that arise within logic programs. By using global analysis via abstract
interpretation a Prolog system like Ciao can reason with much richer information than, for example,
traditional types as well as procedure-level properties such as determinacy, termination and non-
failure. It is beneficial in this case that abstract interpretation algorithms are handled within the
underlying logic programming preprocessor or and compiler” [18].
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The great advantage of logical representations of program properties is obviously uniformity.
Any program property can be represented by (the abstract syntax) of a formula in the logic. For
example, the simple connectives (∨, ∧, ¬, etc.) are very simple tree manipulations.

However, uniformity has the disadvantage that many algorithms manipulating these properties
are based on specific representations. For example, linear equalities or inequalities will use matrices
to represent a set of constraints and a frame of higher-dimensional polyhedra [16]. The efficiency of
the algorithms is highly dependant on an adequate representation of the properties. For example
the disjunction ∨ becomes an elaborated convex-hull algorithm. So, algorithmically, syntax-based
representation uniformity is not tenable.

The concept of reduced product in abstract interpretation [11] was developed for expressing a
conjunction of properties with non-uniform representations.

This problem was solved in the same way by SMT solvers, initially with Nelson-Oppen reduction
[25, 13] and later with more general reductions when incorporating incomplete theories. Because
the community has developed common interfaces for SMT solver competitions, such as SMTLIB2
[2], why not adopt them for specification? The obvious reason is that these formats were designed
for machine interfaces, not memory representation, and are unreadable by the casual programmer.

3 Abstract domains
The algebraic concept of abstract domain in abstract interpretation and their combinations [11] were
designed to handle non-uniform representations of program properties. Translating the concept in
logic is difficult because the abstract properties have to be expressed in a concrete logic. If it is
easy to express that x is in a given interval by a ⩽ x ∧ x ⩽ b, it is harder to express the concept of
“to be a number between a and b”. Abstract interpretation uses sets to express properties so this is
x ∈ P or x ̸∈ P with P ≜ {x | a ⩽ x ∧ x ⩽ b} easily encoded as a pair of numbers [a, b]. Of course
set theory is expressed in logic so the task is not impossible but the encoding would introduce a
useless layer of difficulty. Operations in abstract domains are predictable algorithms. This is hardly
the case for theorem proving in logic. Explaining why an SMT solver failed may be a titanic task
[17].

An important idea about abstract domains is that of a hierarchy of abstractions, using Galois
connections or concretization functions e.g. [5]. If a concretization can easily be used to relate logics
at different levels of abstraction, this is much harder for Galois connections since in general logic
formulas have no normal form (a ⩽ x ∧ x ⩽ b is also x ⩽ b ∧ a ⩽ x or a < x+ 1 ∧ x− 1 < b, etc.).
Reasoning on equivalence classes of formulæ with same interpretation to get a best abstraction is not
impossible in logic but not entirely natural and algorithmically costly. Without Galois connections,
calculational design [7] is impossible, completeness is much harder to prove, etc.

4 Induction
The central problem in program analysis is to infer inductive arguments in proofs. Of course one
can ask the user to provide inductive arguments. This makes verification simpler than program
analysis [14]. This is a common approach in the small but is infeasible in the large for program of
several million lines [12].

An approximate induction or co-induction is formalized in abstract interpretation by widen-
ing, narrowing and their duals [6]. For example widening has a simple geometric interpretation:
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extrapolated in the direction of growth.
This is very hard to translate in terms of logic since the changes in the syntax of the formula

are not necessarily related to the changes in the semantics of the formula. The complexity of an
object and its logical denotation may be completely unrelated. Short formulæ may be very difficult
to prove because they encode very complex objects while huge formulæ may be very easy to prove.
An example is Craig interpolation [21], which is a dual narrowing [6], but one for which the result
is not unique, without best choice, which is problematic and multiplies the necessary attempts for
finding the right induction. So for induction, even simple ones such as widening, narrowing, and
their duals, the evolution of the formula during fixpoint iteration provides no clue for induction.
Moreover, this evolution of the iterates must be monitored for induction [15] and it is hard to use a
logic to reason on itself. The same problem arises in the even simpler context of typing where types
are represented syntactically by terms. For example the hidden widening in Milner’s type inference
system is syntactic identity of monotypes [24, 4] whereas liquid types [26] can handle only finitary
abstract domains to avoid widening, which is known to be a severe expressivity limitation [9].

5 Conclusion
Logic reduces the representations of properties and formal reasonings to purely syntactic manipula-
tions. Although logic is widely accepted for program verification and analysis, this is often limitative
in static analysis by abstract interpretation. we prefer set theoretic and algebraic approaches to ab-
stract interpretation for expressivity, efficiency, and scalability reasons. Of course this does not
prevent us to widely use logic as a metalanguage, to study and prove the soundness or completeness
of verification and static analysis methods [8].
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