
Dynamic interval analysis
by abstract interpretation⋆

Patrick Cousot1[0000−0003−0101−9953]

CS, CIMS, NYU, New York, NY, USA, pcousot@cims.nyu.edu, visiting IMDEA
Software, Madrid, Spain

Dedicated to Klaus Havelund
for his 65th birthday

Abstract. Interval arithmetic introduced by Ramon E. Moore in sci-
entific computing to put bounds on rounding errors in floating point
computations was a very first example of dynamic program analysis. We
show that it can be formalized by abstract interpretation.

Keywords: Abstract interpretation · Dynamic analysis · Interval Arith-
metics · Soundness.

1 Introduction

Ramon E. Moore [31,32,33] may have introduced the first dynamic analysis ever
to put bounds on rounding (or roundoff) errors in floating point computations
[24,37]. Similar to static analyses, this can be formalized and proved sound (but
incomplete) by abstract interpretation [6,8].

Given the formal structural trace semantics of a C-subset on reals, the interval
abstraction provides the best abstraction of these execution traces on reals into
execution traces on float intervals. Unfortunately, this best interval abstraction is
not implementable since it is not inductive and requires computations on reals to
guarantee that the interval abstraction is the best possible (i.e. the float intervals
are the smallest possible that include the real computation).

By calculus, we design a formal structural trace semantics of this C-subset
on float interval which over-approximates the best abstraction of real traces
into float interval traces. All computations on reals are over-approximated by
performing the computation on two ends of an interval [l, h] where l and h are
floating point numbers so that this abstract interval semantics is implementable.
For tests and loops both true and false alternatives may be taken while only one
would be taken with reals. Although incomplete and sometimes imprecise, this
is sound.

The difference with dynamic analysis [21] is that, interval arithmetics collects
interval information about real executions but does not check this collected infor-
mation for a specification. Instead, it is used to replace the real computation. But
⋆ Supported by NSF Grant CCF-1617717.
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the formalization by abstract interpretation is exactly the same. As discussed in
the conclusion, abstraction is used to relate the original and the instrumented
semantics as well as the instrumented semantics and the specification and so the
original semantics and the specification via a monitor [5].

2 Syntax and Trace Semantics of the Programming
Language

Syntax Programs are a subset of C with the following context-free syntax.
x, y,… ∈ X variable (X not empty)

A ∈ A ∶∶=0.1 | x | A1 - A2 arithmetic expression
B ∈ B ∶∶=A1 < A2 | B1 nand B2 boolean expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl∶∶=Sl S | 𝜖 statement list
P ∈ P ∶∶=Sl program

The float constant 0.1 is 0.000(1100)∞ in binary so has no exact finite binary
representation. It is approximated as 0.1.0000000149011611938476562500…. A
break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main (void) { P } is a valid C program (after adding
variable declarations that we omit for concision). We call “[program] component”
S ∈ Pc ≜ S∪Sl∪P either a statement, a statement list, or a program. We let ◁
be the syntactic relation between immediate syntactic components. For example,
if S = if (B) S𝑡 else S𝑓 then B◁ S, S𝑡 ◁ S, and S𝑓 ◁ S.

Program labels Labels ℓ ∈ L are not part of the language, but useful to discuss
program points reached during execution. For each program component S, we
define
atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S;
inJSK the set of program points inside S (including atJSK but excluding aftJSK and

brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.
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Here is an example,

S

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

while ℓ0 (⋯ )

S𝑏
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
{ ℓ1

S1
⏞⏞⏞⋯ ℓ2

S2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞break ;⋯ ℓ3

S3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞break ;

S4
⏞⏞⏞⋯ } ℓ5

S5
⏞⏞⏞⋯

ℓ0 = atJSK = aftJS4K, ℓ1 = atJS1K = atJS𝑏K, ℓ2 = atJS2K = aftJS1K, ℓ3 = atJS3K,
ℓ5 = atJS5K = brk-toJS𝑏K = aftJSK, escJS𝑏K = tt, brks-ofJS𝑏K = {ℓ2, ℓ3}, escJSK = ff,
inJS𝑏K = {ℓ1,… , ℓ2,… , ℓ3,…}, inJSK = labsJS𝑏K = {ℓ0, ℓ1,… , ℓ2,… , ℓ3,…},
labsJSK = {ℓ0, ℓ1,… , ℓ2,… , ℓ3,… , ℓ5}
Float intervals Let F1 be the set of floating point numbers (including −∞ and
+∞, but excluding NaN (Not a Number)2 and −0, +03). The float intervals are

I ≜ {∅} ∪ {[𝑥, 𝑥] ∣ 𝑥, 𝑥 ∈ F ⧵ {−∞, +∞} ∧ 𝑥 ⩽ 𝑥}
∪ {[−∞, 𝑥] ∣ 𝑥 ∈ F ⧵ {−∞}} ∪ {[𝑥, +∞] ∣ 𝑥 ∈ F ⧵ {+∞}}

with the empty interval ∅ and the intervals [−∞, −∞] ∉ I and [∞,∞] ∉ I are
excluded.

The order on intervals is ∅ ⊑𝑖 ∅ ⊑𝑖 [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] if and only if 𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽
𝑦. We have the complete lattice ⟨I, ⊑𝑖, ∅, [−∞, +∞], ⨅𝑖, ⨆𝑖⟩.

Values Programs compute on values 𝕍. Values can be reals R, floating point
numbers (F ⧵ {NaN, −0, +0}) ∪ {0}4), or float intervals I. For simplicity, we assume
that execution stops in case of error (e.g. when dividing by zero).

Traces A trace 𝜋 is a non-empty sequence of states where states ⟨ℓ, 𝜌⟩ ∈ 𝕊𝕍 ≜
(L × Ev𝕍) are pairs of a program label ℓ ∈ L designating the next action to
be executed in the program and an environment 𝜌 ∈ Ev𝕍 ≜ X → 𝕍 assigning
values 𝜌(x) ∈ 𝕍 to variables x ∈ X. A trace 𝜋 can be finite 𝜋 ∈ 𝕊+𝕍 or infinite
𝜋 ∈ 𝕊∞𝕍 (recording a non-terminating computation) so 𝕊+∞𝕍 ≜ 𝕊+𝕍 ∪ 𝕊∞𝕍 . We let

|𝜋| = 𝑛 ∈ N∗ be the length of a finite trace 𝜋 =
𝑛−1
⌢⋅
𝑖=0
𝜋𝑖 = 𝜋0…𝜋𝑛−1 ∈ 𝕊+𝕍 and

|𝜋| = ∞ for infinite traces 𝜋 = ⌢⋅
𝑖∈N
𝜋𝑖 = 𝜋0…𝜋𝑛… ∈ 𝕊∞𝕍 . Trace concatenation ⌢⋅ is

defined as follows
1 For simplicity, we consider only one category of floats say of type float in C, ignoring
double, long double, etc.

2 For simplicity, we ignore NaN and assume that execution stops in case a NaN would
be returned when executing an expression.

3 For simplicity, we ignore −0, +0 used to determine whether +∞ or −∞ is returned
when dividing a nonzero number by a zero.

4 Therefore +0 = −0 = 0 and 0 is positive for the rule of signs



4 P. Cousot

𝜋1𝜎1 ⌢⋅ 𝜎2𝜋2 undefined if 𝜎1 ≠ 𝜎2 𝜋1 ⌢⋅ 𝜎2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕊∞𝕍 is infinite
𝜋1𝜎1 ⌢⋅ 𝜎1𝜋2 ≜ 𝜋1𝜎1𝜋2 if 𝜋1 ∈ 𝕊+𝕍 is finite

In pattern matching, we sometimes need the empty trace ∋. For example the
match 𝜎𝜋𝜎′ = 𝜎 holds when 𝜋 = ∋ and 𝜎 = 𝜎′.

Formal definition of the real and float prefix trace semantics The prefix
trace semantics 𝓢∗𝕍JSK for reals 𝕍 = R or float 𝕍 = F is defined below. The defi-
nition is structural (by induction on the syntax) using fixpoints for the iteration.
𝓢∗RJSK and 𝓢∗FJSK will be abstracted in the prefix trace interval semantics 𝓢∗IJSK
in Section 7.
• The value of an arithmetic expression A in environment 𝜌 ∈ Ev𝕍 ≜ X → 𝕍 is
𝓐𝕍JAK𝜌 ∈ 𝕍:

𝓐𝕍J0.1K𝜌 ≜ 0.1𝕍 𝓐𝕍JxK𝜌 ≜ 𝜌(x) 𝓐𝕍JA1 - A2K𝜌 ≜𝓐𝕍JA1K𝜌 −𝕍 𝓐𝕍JA2K𝜌 (1)

where 0.1𝕍 denotes the real 0.1 and −𝕍 the difference in 𝕍. For example −F is the
difference found on IEEE-754 machines and must take rounding mode (and the
machine specificities [30]) into account.
• The prefix traces of an assignment statement S ∶∶= ℓ x = A ; (where atJSK = ℓ)
either stops in an initial state ⟨ℓ, 𝜌⟩ or is this initial state ⟨ℓ, 𝜌⟩ followed by
the next state ⟨aftJSK, 𝜌[x ← 𝓐𝕍JAK𝜌]⟩ recording the assignment of the value
𝓐𝕍JAK𝜌 of the arithmetic expression to variable x when reaching the label aftJSK
after the assignment5.

𝓢∗𝕍JSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐𝕍JAK𝜌]⟩ ∣ 𝜌 ∈ Ev𝕍} (2)

• The prefix trace semantics of a break statement S ∶∶= ℓ break ; either stops
at ℓ or goes on to the break label brk-toJSK (which is defined syntactically as the
exit label of the closest enclosing iteration).

𝓢∗𝕍JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} (3)

• The value of an boolean expression B in environment 𝜌 is the boolean 𝓑𝕍JBK𝜌 ∈
B ≜ {tt, ff}:

𝓑𝕍JA1 < A2K𝜌 ≜𝓐𝕍JA1K𝜌 <𝓐𝕍JA2K𝜌 (4)
𝓑𝕍JB1 nand B2K𝜌 ≜𝓑𝕍JB1K𝜌 ↑𝓑𝕍JB2K𝜌

where < is strictly less than on reals and floats while ↑ is the “not and” boolean
operator.
• The prefix trace semantics of a conditional statement S ∶∶= if ℓ (B) S𝑡 is
• either the trace ⟨ℓ, 𝜌⟩ when the observation of the execution stops on entry
ℓ = atJSK of the program component S for initial environment 𝜌;

5 If we had NaNs and 𝓐𝕍JAK𝜌 returns a NaN, the second term would include a condition
𝓐𝕍JAK𝜌 ≠ NaN to terminate execution on error.
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• or, when the value of the boolean expression B for 𝜌 is false ff, the initial state
⟨ℓ, 𝜌⟩ followed by the state ⟨aftJSK, 𝜌⟩ at the label aftJSK after the conditional
statement;
• or finally, when the value of the boolean expression B for 𝜌 is true tt, the

initial state⟨ℓ, 𝜌⟩ followed by a prefix trace of S𝑡 starting atJS𝑡K in environment
𝜌 (and possibly ending aftJS𝑡K = aftJSK).
𝓢∗𝕍JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑𝕍JBK𝜌 = ff} (5)

∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑𝕍JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗𝕍JS𝑡K}
Observe that definition (5) includes the case of termination of the true branch S𝑡
and so also of termination of the conditional S since aftJSK = aftJS𝑡K. Moreover, if
the conditional S is within an iteration and contains a break statement in the true
branch S𝑡 then brk-toJSK = brk-toJS𝑡K, so from ⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJS𝑡K, 𝜌′⟩ ∈ 𝓢∗𝕍JS𝑡K
and 𝓑JBK𝜌 = tt, we infer that ⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJSK, 𝜌′⟩ ∈ 𝓢∗𝕍JSK.
• The prefix trace semantics of the empty statement list Sl = 𝜖 is reduced to
the states at that empty statement (which is also after that empty statement
since atJSlK = aftJSlK).

𝓢∗𝕍JSlK ≜ {⟨atJSlK, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} (6)

• The prefix traces of the prefix trace semantics of a non-empty statement list
Sl ∶∶= Sl′ S are the prefix traces of Sl′ or the finite maximal traces of Sl′ followed
by a prefix trace of S.

𝓢∗𝕍JSlK ≜ 𝓢∗𝕍JSl′K ∪𝓢∗𝕍JSl′K ⌢⋅ 𝓢∗𝕍JSK (7)
𝓢 ⌢⋅ 𝓢′ ≜ {𝜋 ⌢⋅ 𝜋′ ∣ 𝜋 ∈ 𝓢 ∧ 𝜋′ ∈ 𝓢′ ∧ 𝜋 ⌢⋅ 𝜋′ is well-defined}

Notice that if 𝜋 ∈ 𝓢∗𝕍JSl′K, 𝜋′ ∈ 𝓢∗𝕍JSK, and 𝜋 ⌢⋅ 𝜋′ ∈ 𝓢∗𝕍JSlK then the last state
of 𝜋 must be the first state of 𝜋′ and this state is atJSK = aftJSl′K and so the
trace 𝜋 must be a maximal terminating execution of Sl′ i.e. S is executed if and
only if Sl′ terminates.
• The prefix finite trace semantic definition 𝓢∗𝕍JSK (8) of an iteration state-
ment of the form S ∶∶= while ℓ (B) S𝑏 where ℓ = atJSK is the ⊆-least solution
lfp⊆𝓕∗𝕍JSK to the equation 𝑋 = 𝓕∗𝕍JSK(𝑋). Since 𝓕∗𝕍JSK ∈ ℘(𝕊+) → ℘(𝕊+) is ⊆-
monotone (if 𝑋 ⊆ 𝑋′ then 𝓕∗𝕍JSK(𝑋) ⊆ 𝓕∗𝕍JSK(𝑋′) and ⟨℘(𝕊+), ⊆, ∅, 𝕊+, ∪, ∩⟩
is a complete lattice, lfp⊆𝓕∗𝕍JSK exists by Tarski’s fixpoint theorem and can be
defined as the limit of iterates [7]. In definition (8) of the transformer 𝓕∗𝕍JSK,
case (8.a) corresponds to a loop execution observation stopping on entry, (8.b)
corresponds to an observation of a loop exiting after 0 or more iterations, and
(8.c) corresponds to a loop execution observation that stops anywhere in the
body S𝑏 after 0 or more iterations. This last case covers the case of an itera-
tion terminated by a break statement (to aftJSK after the iteration statement).
This last case also covers the case of termination of the loop body S𝑏 at label
aftJS𝑏K = atJwhile ℓ (B) S𝑏K = ℓ so that the iteration goes on.

𝓢∗𝕍Jwhile ℓ (B) S𝑏K = lfp⊆𝓕∗𝕍Jwhile ℓ (B) S𝑏K (8)
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𝓕∗𝕍Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev𝕍} (8.a)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ = ℓ}6 (8.b)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧

⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗𝕍JS𝑏K ∧ ℓ′ = ℓ} (8.c)

• The other cases are similar.
• Observe than the only difference between real (𝕍 = R) and float (𝕍 = F)
computations is the constant 0.1𝕍 and the difference −𝕍 , which for floats depends
on the rounding mode (round-to +∞, round-to −∞, round-to 0, or round-to-
nearest). For simplicity, we assume that the rounding mode is fixed, not changed
during execution, and correctly taken into account by these operations.

Maximal trace semantics Let 𝕍 be R, F, or I. The maximal trace semantics
𝓢+∞𝕍 JSK = 𝓢+𝕍JSK ∪ 𝓢∞𝕍 JSK is derived from the prefix trace semantics 𝓢∗𝕍JSK by
keeping the longest finite traces 𝓢+𝕍JSK and passing to the limit 𝓢∞𝕍 JSK of prefix-
closed traces for infinite traces.

𝓢+𝕍JSK ≜ {𝜋ℓ ∈ 𝓢∗𝕍JSK ∣ (ℓ = aftJSK) ∨ (escJSK ∧ ℓ = brk-toJSK)} (9)
𝓢∞𝕍 JSK ≜ lim(𝓢∗𝕍JSK) (10)

where the limit is limT ≜ {𝜋 ∈ 𝕊∞𝕍 ∣ ∀𝑛 ∈ N . 𝜋[0..𝑛] ∈ T}. (11)

The intuition for (11) is the following. Let S be an iteration. 𝜋 ∈ 𝓢∞𝕍 JSK =
lim𝓢∗𝕍JSK where 𝜋 is infinite if and only if, whenever we take a prefix 𝜋[0..𝑛] of
𝜋, it is a possible finite observation of the execution of S and so belongs to the
prefix trace semantics 𝜋[0..𝑛] ∈ 𝓢∗𝕍JSK.
3 Float intervals

Let ↰⌉⌉𝑥 (which may be −∞) be the largest float smaller than or equal to 𝑥 ∈ R

(or ↰⌉⌉𝑥 = 𝑥 for 𝑥 ∈ F) and 𝑥⌈⌈↱ (which may be +∞) be the smallest float greater
than or equal to 𝑥 ∈ R (or 𝑥⌈⌈↱ = 𝑥 for 𝑥 ∈ F). We let ↰⌉𝑥 be the largest floating-
point number strictly less than 𝑥 ∈ F (which may be −∞) and 𝑥⌈↱ be the smallest
floating-point number strictly larger than 𝑥 ∈ F (which may be +∞). We assume
that

↰⌉⌉𝑥 −F 𝑦⌈⌈↱ ⩽ ↰⌉⌉(𝑥 −𝕍 𝑦) (𝕍 is R or F) (12)
𝑥⌈⌈↱ −F ↰⌉⌉𝑦 ⩾ (𝑥 −𝕍 𝑦)⌈⌈↱

(x ∈ [𝑥, 𝑥] ∧ y ∈ [𝑦, 𝑦] ∧ x < y) ⇒ (x ∈ [𝑥,min(𝑥, 𝑦)] ∧ y ∈ [max(𝑥, 𝑦), 𝑦]) (13)
(x ∈ [𝑥, 𝑥] ∧ y ∈ [𝑦, 𝑦] ∧ x < y) ⇒ (x ∈ [𝑥,min(𝑥, 𝑦⌈↱)] ∧ y ∈ [max(↰⌉𝑥, 𝑦), 𝑦]) (13.bis)
6 A definition of the form 𝑑(�⃗�) ≜ {𝑓(�⃗�′) ∣ 𝑃(�⃗�′, �⃗�)} has the variables �⃗�′ in 𝑃(�⃗�′, �⃗�) bound

to those of 𝑓(�⃗�′) whereas �⃗� is free in 𝑃(�⃗�′, �⃗�) since it appears neither in 𝑓(�⃗�′) nor (by
assumption) under quantifiers in 𝑃(�⃗�′, �⃗�). The �⃗� of 𝑃(�⃗�′, �⃗�) is therefore bound to the
�⃗� of 𝑑(�⃗�).
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Machine implementations of IEEE-754 floating point arithmetics [24] are some-
times incorrect [14,30]. So the above hypotheses (12) and (13) on floats must
be adjusted accordingly, for example replacing (13) by (13.bis). In particular
(13.bis) follows the recommendation of [30, Sect. 6.1.2]. If x < y then the value
of x is smaller than its maximal value 𝑥 and the maximal 𝑦 value of y, by
precaution, certainly smaller or equal to the next float greater that 𝑦.

4 Abstraction of real traces by float interval traces

Given a real trace semantics i.e. a set Π ∈ ℘(𝕊+∞R ), we define a float interval trace
semantics by abstracting the real 𝑥 ∈ R values by an interval [↰⌉⌉𝑥, 𝑥⌈⌈↱]. More
precisely, since abstract interpretation is about the abstraction of properties,
the strongest property {𝑥} ∈ ℘(R) of this value is over-approximated by a weaker
interval property, that is {𝑥} ⊆ [↰⌉⌉𝑥, 𝑥⌈⌈↱], or equivalently 𝑥 ∈ [↰⌉⌉𝑥, 𝑥⌈⌈↱]. Formally

𝛼I(𝑥) ≜ [↰⌉⌉𝑥, 𝑥⌈⌈↱] real abstraction by float interval (14)
𝛾I([𝑥, 𝑥]) ≜ {𝑥 ∈ R ∣ 𝑥 ⩽ 𝑥 ⩽ 𝑥}
�̇�I(𝜌) ≜ 𝜆 x ∈ X .𝛼I(𝜌(x)) environment abstraction
̇𝛾I(𝜌) ≜ {𝜌 ∈ X → R ∣ ∀x ∈ X . 𝜌(x) ∈ 𝛾I(𝜌(x))}

�̈�I(⟨ℓ, 𝜌⟩) ≜ ⟨ℓ, �̇�I(𝜌)⟩ state abstraction
̈𝛾I(⟨ℓ, 𝜌⟩) ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ ̇𝛾I(𝜌)}

�⃗�I(𝜋1…𝜋𝑛…) ≜ �̈�I(𝜋1)… �̈�I(𝜋𝑛)… [in]finite trace abstraction
⃗𝛾I(𝜋1…𝜋𝑛…) ≜ {𝜋1…𝜋𝑛… ∣ |𝜋| = |𝜋| ∧ ∀𝑖 = 1,… , 𝑛,… . 𝜋𝑖 ∈ ̈𝛾I(𝜋𝑖)}
�̊�I(Π) ≜ {�⃗�I(𝜋) ∣ 𝜋 ∈ Π} set of traces abstraction
̊𝛾I(Π) ≜ {𝜋 ∣ �⃗�I(𝜋) ∈ Π} = ⋃{ ⃗𝛾I(𝜋) ∣ 𝜋 ∈ Π}

Because the floats are a subset of the reals, we can use 𝛼I to abstract both real
and float traces in (14) (i.e. R becomes 𝕍 standing for R or F).

⟨℘(𝕊+∞𝕍 ), ⊆⟩ −−−−−→←−−−−−
�̊�I

̊𝛾I
⟨℘(𝕊+∞I ), ⊆⟩ (15)

Proof (of (15)).
�̊�I(Π) ⊆ Π
⇔ {�⃗�I(𝜋) ∣ 𝜋 ∈ Π} ⊆ Π Hdef. (14) of �̊�II
⇔ ∀𝜋 ∈ Π . �⃗�I(𝜋) ∈ Π Hdef. ⊆I
⇔ Π ⊆ {𝜋 ∣ �⃗�I(𝜋) ∈ Π} Hdef. ⊆I
⇔ Π ⊆ ̊𝛾I(Π) Hby defining ̊𝛾I(Π) ≜ {𝜋 ∣ �⃗�I(𝜋) ∈ Π}I
where
�⃗�I(𝜋) ∈ Π
⇔ ∃𝜋 ∈ Π . �⃗�I(𝜋) = 𝜋 Hdef. ∈I
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⇔ ∃𝜋 ∈ Π . 𝜋 ∈ ⃗𝛾I(𝜋) Hdef. �⃗�I(𝜋) and ⃗𝛾I(𝜋)I
⇔ 𝜋 ∈ ⋃

𝜋∈Π
⃗𝛾I(𝜋) Hdef. ∪I

and therefore
̊𝛾I(Π)

≜ {𝜋 ∣ �⃗�I(𝜋) ∈ Π} Hdef. 𝛾II
= {𝜋 ∣ 𝜋 ∈ ⋃

𝜋∈Π
⃗𝛾I(𝜋)} = ⋃{ ⃗𝛾I(𝜋) ∣ 𝜋 ∈ Π} Has shown aboveI ⊓⊔

5 Sound over-approximation in the concrete

Let Π = {⟨ℓ1, x = 0.1R⟩⟨ℓ2, x = 2.1R⟩, ⟨ℓ1, x = −0.1R⟩⟨ℓ2, x = 1.9R⟩}. Assume that
Π1 = 𝛼I(Π) = {⟨ℓ1, x = [0.09, 0.11]⟩⟨ℓ2, x = [2.09, 2.11]⟩, ⟨ℓ1, x = [−0.11, −0.09]⟩⟨ℓ2,
x = [1.89, 1.91]⟩} where each trace 𝜋 of Π is over-approximated by a trace �⃗�I(𝜋)
of Π1 with a ±0.01 rounding interval. We have Π ⊆ ̊𝛾I(Π1) so Π1 is a sound
over-approximation of Π. But Π2 = {⟨ℓ1, x = [−0.11, 0.11]⟩⟨ℓ2, x = [1.89, 2.11]⟩} is
also a sound over-approximation of Π since Π ⊆ ̊𝛾I(Π2). Although Π1 ∈ ℘(𝕊+∞I )
is more precise than Π2 ∈ ℘(𝕊+∞I ), they are not comparable as abstract elements
of ⟨℘(𝕊+∞I ), ⊆⟩ in (15). The intuition that Π1 is more precise than Π2 is by
comparison in the concrete that is ̊𝛾I(Π1) ⊆ ̊𝛾I(Π2). We now express this preorder
relation ⊑̊𝑖 between Π1 and Π2 which will allow us to over-approximate intervals
when needed.

Π ⊑̊𝑖 Π′ ≜ ̊𝛾I(Π) ⊆ ̊𝛾I(Π′) (16)
= ∀𝜋 ∈ Π . ∀𝜋 ∈ ⃗𝛾I(𝜋) . ∃𝜋′ ∈ Π′ . 𝜋 ∈ ⃗𝛾I(𝜋′)

Proof (of (16)).
Π ⊑̊𝑖 Π′

≜ ̊𝛾I(Π) ⊆ ̊𝛾I(Π′) H(16)I
= ⋃{ ⃗𝛾I(𝜋) ∣ 𝜋 ∈ Π} ⊆ ⋃{ ⃗𝛾I(𝜋) ∣ 𝜋 ∈ Π′} H(14) for sets of tracesI
= ∀𝜋 ∈ Π . ⃗𝛾I(𝜋) ⊆ ⋃{ ⃗𝛾I(𝜋) ∣ 𝜋 ∈ Π′} Hdef. ⊆I
= ∀𝜋 ∈ Π . ∀𝜋 ∈ ⃗𝛾I(𝜋) . 𝜋 ∈ ⋃{ ⃗𝛾I(𝜋′) ∣ 𝜋′ ∈ Π′} Hdef. ⊆I
= ∀𝜋 ∈ Π . ∀𝜋 ∈ ⃗𝛾I(𝜋) . ∃𝜋′ ∈ Π′ . 𝜋 ∈ ⃗𝛾I(𝜋′) Hdef. ⋃I ⊓⊔
It follows that we have a Galois connection (note that the abstract preorder and
concretization are different from (15))

⟨℘(𝕊+∞𝕍 ), ⊆⟩ −−−−−→←−−−−−
�̊�I

�̊�
⟨℘(𝕊+∞I ), ⊑̊

𝑖⟩ (17)

Proof (of (17)).
�̊�I(Π) ⊑̊𝑖 Π
⇔ {�⃗�I(𝜋) ∣ 𝜋 ∈ Π} ⊑̊𝑖 Π Hdef. (14) of �̊�II
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⇔ ∀𝜋 ∈ {�⃗�I(𝜋′) ∣ 𝜋′ ∈ Π} . ∀𝜋 ∈ ⃗𝛾I(𝜋) . ∃𝜋′ ∈ Π . 𝜋 ∈ ⃗𝛾I(𝜋′) Hdef. (16) of ⊑̊𝑖I
⇔ ∀𝜋′ ∈ Π . ∀𝜋 ∈ ⃗𝛾I(�⃗�I(𝜋′)) . ∃𝜋′ ∈ Π . 𝜋 ∈ ⃗𝛾I(𝜋′) Hdef. ∈I
⇔ Π ⊆ {𝜋′ ∣ ∀𝜋 ∈ ⃗𝛾I(�⃗�I(𝜋′)) . ∃𝜋′ ∈ Π . 𝜋 ∈ ⃗𝛾I(𝜋′)} Hdef. ⊆I
⇔ Π ⊆ �̊�(Π)
by defining �̊�(Π) ≜ {𝜋′ ∣ ∀𝜋 ∈ ⃗𝛾I(�⃗�I(𝜋′)) . ∃𝜋′ ∈ Π . 𝜋 ∈ ⃗𝛾I(𝜋′)}. ⊓⊔

Soundness is now �̊�I(𝓢∗𝕍JSK) ⊑̊𝑖 𝓢∗IJSK or equivalently 𝓢∗𝕍JSK ⊆ �̊�(𝓢∗IJSK). Our
objective is to calculate 𝓢∗IJSK by ⊑̊𝑖-over approximation of �̊�I(𝓢∗𝕍JSK). However
⊑̊𝑖 in (16) is impractical since it is defined by concretization to ℘(𝕊+∞𝕍 ). We
look for a definition Ť̊

𝑖 in the abstract only that provides a sufficient soundness
condition (Π Ť̊

𝑖 Π′) ⇒ (Π ⊑̊𝑖 Π′).

6 Sound over-approximation in the abstract

We define Π Ť̊
𝑖 Π′ so that the traces of Π′ have the same control as the traces of

Π but intervals are larger (and Π′ may contain extra traces due to the imprecision
of interval tests).

Formally, the interval order ⊑𝑖 is extended pointwise ⊑̇𝑖 to environments, and
to states ⊑̈𝑖 with same control points/program labels. Then it is extended ⊑⃗𝑖 to
traces of same length with same control but larger intervals, and finally to sets
of traces, by Hoare preorder [41].

[𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] ≜ 𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦 (18)
𝜌 ⊑̇𝑖 𝜌′ ≜ ∀x ∈ X . 𝜌(x) ⊑𝑖 𝜌′(x)

⟨ℓ, 𝜌⟩ ⊑̈𝑖 ⟨ℓ′, 𝜌′⟩ ≜ (ℓ = ℓ′) ∧ (𝜌 ⊑̇𝑖 𝜌′)
𝜋 ⊑⃗𝑖 𝜋′ ≜ (|𝜋| = |𝜋′|) ∧ (∀𝑖 ∈ [0, |𝜋|[ . 𝜋𝑖 ⊑̈

𝑖 𝜋′𝑖)
Π Ť̊
𝑖 Π′ ≜ ∀𝜋 ∈ Π . ∃𝜋′ ∈ Π′ . 𝜋 ⊑⃗𝑖 𝜋′

Lemma 1. (Π Ť̊
𝑖 Π′) ⇒ (Π ⊑̊𝑖 Π′). ⊓⊔

Proof (of Lem. 1). By (14) and (18), we have [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] implies 𝛾I([𝑥, 𝑥]) ⊆
𝛾I([𝑦, 𝑦]) and so 𝜌 ⊑̇𝑖 𝜌′ implies 𝛾I(𝜌) ⊆ ̇𝛾I(𝜌′) and therefore ⟨ℓ, 𝜌⟩ ⊑̈𝑖 ⟨ℓ′, 𝜌′⟩

implies 𝛾I(⟨ℓ, 𝜌⟩) ⊆ 𝛾I(⟨ℓ′, 𝜌′⟩) so that finally 𝜋 ⊑⃗𝑖 𝜋′ implies ⃗𝛾I(𝜋) ⊆ ⃗𝛾I(𝜋′). It
follows that
Π Ť̊
𝑖 Π′

⇔ ∀𝜋 ∈ Π . ∃𝜋′ ∈ Π′ . 𝜋 ⊑⃗𝑖 𝜋′ Hdef. (18) of Ť̊
𝑖I

⇒ ∀𝜋 ∈ Π . ∃𝜋′ ∈ Π′ . ⃗𝛾I(𝜋) ⊆ ⃗𝛾I(𝜋′) Hsince 𝜋 ⊑⃗𝑖 𝜋′ implies ⃗𝛾I(𝜋) ⊆ ⃗𝛾I(𝜋′)I
⇒ ∀𝜋 ∈ Π . ∃𝜋′ ∈ Π′ . ∀𝜋 ∈ ⃗𝛾I(𝜋) . 𝜋 ∈ ⃗𝛾I(𝜋′) Hdef. ⊆I
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⇒ ∀𝜋 ∈ Π . ∀𝜋 ∈ ⃗𝛾I(𝜋) . ∃𝜋″ ∈ Π′ . 𝜋 ∈ ⃗𝛾I(𝜋″)Hchoosing the same 𝜋″ = 𝜋′ for all 𝜋I
⇔ Π ⊑̊𝑖 Π′ H(16)I ⊓⊔
It follows that we have a Galois connection (note that the abstract preorder and
concretization are different from both (15) and (17))

⟨℘(𝕊+∞𝕍 ), ⊆⟩ −−−−−→←−−−−−
�̊�I

�̊�
⟨℘(𝕊+∞I ), Ť̊

𝑖⟩ (19)

Proof (of (19)).
�̊�I(Π) Ť̊𝑖 Π
⇔ {�⃗�I(𝜋) ∣ 𝜋 ∈ Π} Ť̊𝑖 Π Hdef. (14) of �̊�II
⇔ ∀𝜋 ∈ {�⃗�I(𝜋) ∣ 𝜋 ∈ Π} . ∃𝜋′ ∈ Π . 𝜋 ⊑⃗𝑖 𝜋′ Hdef. (18) of Ť̊

𝑖I
⇔ ∀𝜋 ∈ Π . ∃𝜋′ ∈ Π . �⃗�I(𝜋) ⊑⃗𝑖 𝜋′ Hdef. ∈I
⇔ Π ⊆ {𝜋 ∣ ∃𝜋′ ∈ Π . �⃗�I(𝜋) ⊑⃗𝑖 𝜋′} Hdef. ⊆I
⇔ Π ⊆ �̊�(Π)
by defining �̊�(Π) ≜ {𝜋 ∣ ∃𝜋′ ∈ Π . �⃗�I(𝜋) ⊑⃗𝑖 𝜋′}. ⊓⊔

7 Calculational design of the float interval trace semantics

The float interval trace semantics 𝓢∗IJSK of a program component S replaces
concrete real or float traces (as defined by 𝓢∗𝕍JSK) by interval traces. It is sound
if and only if the concrete traces are included in the abstract traces that is
𝓢∗𝕍JSK ⊆ ̊𝛾I(𝓢∗IJSK) or, equivalently, by (15), �̊�I(𝓢∗𝕍JSK) ⊆ 𝓢∗IJSK.

Although, the soundness condition �̊�I(𝓢∗𝕍JSK) ⊆ 𝓢∗IJSK allows the abstract se-
mantics 𝓢∗IJSK to contain more traces, including with larger intervals, it requires
the abstract traces in �̊�I(𝓢∗𝕍JSK) (which are the best float interval abstractions
of real computations) to all belong to the abstract semantics 𝓢∗IJSK.

We introduced Ť̊
𝑖 in (18) to relax this requirement about the presence of

best interval trace abstractions of real computations in the abstract seman-
tics. The weaker requirement �̊�I(𝓢∗𝕍JSK) Ť̊

𝑖 𝓢∗IJSK) implies, by Lem. 1, that
�̊�I(𝓢∗𝕍JSK) ⊑̊𝑖 𝓢∗IJSK) so that, by (16), ̊𝛾I(�̊�I(𝓢∗𝕍JSK)) ⊆ ̊𝛾I(𝓢∗IJSK), which, to-
gether with 𝓢∗𝕍JSK ⊆ ̊𝛾I(�̊�I(𝓢∗𝕍JSK)) from the Galois connection (15) yields, by
transitivity, that 𝓢∗𝕍JSK ⊆ ̊𝛾I(𝓢∗IJSK).

This weaker soundness requirement �̊�I(𝓢∗𝕍JSK) Ť̊
𝑖 𝓢∗IJSK) yields a calcula-

tional design method where �̊�I(𝓢∗𝕍JSK) is Ť̊
𝑖-over-approximated so as to elimi-

nate any reference to the concrete semantics 𝓢∗𝕍JSK. We proceed by structural
induction on ◁, assuming �̊�I(𝓢∗𝕍JS′K) Ť̊𝑖 𝓢∗IJS′K for all S′ ◁ S.

To design 𝓢∗IJSK such that 𝛼I(𝓢RJSK) Ť̊𝑖 𝓢∗IJSK by structural induction, we
will need to prove a stronger result stating that any interval overapproxima-
tion of an initial state of a real computation can be extended into an interval
computation abstracting this real computation. Formally, we have
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∀⟨atJSK, 𝜌⟩𝜋 ∈ 𝑋 . ∀𝜌 ∈ EvI . (20)
(�̇�I(𝜌) ⊑̇𝑖 𝜌) ⇒ (∃𝜋 . 𝛼I(𝜋) ⊑⃗𝑖 𝜋 ∧ ⟨atJSK, 𝜌⟩𝜋 ∈ 𝑋)

which we will use for 𝑋 = 𝓢∗𝕍JSK and 𝑋 = 𝓢∗IJSK is well as for the concrete 𝑋
and abstract 𝑋 fixpoint iterates in (8) for iteration statements.

Interval abstraction of an arithmetic expression Given 𝜌 ∈ Ev𝕍 (where 𝕍
is R or F), let us evaluate 𝛼I(𝓐𝕍JAK𝜌) by structural induction on A and define
𝓐IJAK such that

𝛼I(𝓐𝕍JAK𝜌) ⊑𝑖 𝓐IJAK�̇�I(𝜌). (21)

𝛼I(𝓐𝕍J0.1K𝜌)
= 𝛼I(0.1𝕍) Hdef. 𝓐𝕍 in (1)I
= [↰⌉⌉0.1𝕍 , 0.1𝕍⌈⌈↱] Hreal abstraction by float interval in (14)I
≜ 𝓐IJ0.1K(�̇�I(𝜌)) Hby defining 𝓐IJ0.1K𝜌 ≜ [↰⌉⌉0.1𝕍 , 0.1𝕍⌈⌈↱]I
𝛼I(𝓐𝕍JxK𝜌)

= 𝛼I(𝜌(x)) Hdef. 𝓐𝕍 in (1)I
= �̇�I(𝜌)(x) Hdef. environment abstraction in (14)I
≜ 𝓐IJxK(�̇�I(𝜌)) Hby defining 𝓐IJxK𝜌 ≜ 𝜌(x)I
𝛼I(𝓐𝕍JA1 - A2K𝜌)

= 𝛼I(𝓐𝕍JA1K𝜌 −𝕍 𝓐𝕍JA2K𝜌) Hdef. 𝓐𝕍 in (1)I
= [↰⌉⌉(𝓐𝕍JA1K𝜌 −𝕍 𝓐𝕍JA2K𝜌), (𝓐𝕍JA1K𝜌 −𝕍 𝓐𝕍JA2K𝜌)⌈⌈↱]Hvalue abstraction by float interval in (14)I
⊑𝑖 [↰⌉⌉(𝓐𝕍JA1K𝜌) −F (𝓐𝕍JA2K𝜌)⌈⌈↱), (𝓐𝕍JA1K𝜌)⌈⌈↱ −F ↰⌉⌉(𝓐𝕍JA2K𝜌)]H(18) and hyp. (12)I
⊑𝑖 let [𝑥, 𝑥] =𝓐IJA1K�̇�I(𝜌) and [𝑦, 𝑦] =𝓐IJA2K�̇�I(𝜌) in [𝑥 −F 𝑦, 𝑥 −F 𝑦]HBy ind. hyp. [↰⌉⌉𝓐𝕍JA𝑖K𝜌,𝓐𝕍JA𝑖K𝜌⌈⌈↱] = 𝛼I(𝓐𝕍JA𝑖K𝜌) ⊑𝑖 𝓐IJA𝑖K�̇�I(𝜌),

𝑖 = 1, 2.I
= 𝓐IJA1K�̇�I(𝜌) −I 𝓐IJA2K�̇�I(𝜌) Hby defining [𝑥, 𝑥] −I [𝑦, 𝑦] ≜ [𝑥 −F 𝑦, 𝑥 −F 𝑦]I
≜ 𝓐IJA1 - A2K�̇�I(𝜌) Hby defining 𝓐IJA1 - A2K𝜌 ≜𝓐IJA1K𝜌 −I 𝓐IJA2K𝜌I
We observe that 𝓐IJAK is ⊑̇𝑖-increasing. ⊓⊔

If we had a division, we would have to handle NaN. A simple way is to stop
execution, by choosing 𝓐IJ1/0K𝜌 ≜ ∅. Another way would be to include the NaN
in the abstraction by considering N[𝑥, 𝑥] meaning a float between the bounds
while NaN[𝑥, 𝑥] would mean a float between the bounds or NaN. We chose the
first alternative, which is simpler.
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Interval trace semantics of an assignment statement We can now abstract
the semantics of real (𝕍 = R) or float (𝕍 = F) assignments by float intervals.
�̊�I(𝓢∗𝕍JSK) Hwhere S = ℓ x = A ;I

= {𝛼I(𝜋) ∣ 𝜋 ∈ 𝓢∗𝕍Jℓ x = A ;K} Hset of traces abstraction (14)I
= {𝛼I(𝜋) ∣ 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐𝕍JAK𝜌]⟩ ∣ 𝜌 ∈ Ev𝕍}}Hdef. 𝓢∗𝕍Jℓ x = A ;K in (2)I
= {⟨ℓ, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, �̇�I(𝜌)⟩⟨aftJSK, 𝛼I(𝜌[x←𝓐𝕍JAK𝜌])⟩ ∣ 𝜌 ∈ Ev𝕍}Hdef. (14) of trace abstractionI
= {⟨ℓ, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, �̇�I(𝜌)⟩⟨aftJSK, �̇�I(𝜌)[x← 𝛼I(𝓐𝕍JAK𝜌])⟩ ∣ 𝜌 ∈ Ev𝕍}Hdef. (14) of environment abstractionI
Ť̊
𝑖 {⟨ℓ, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, �̇�I(𝜌)⟩⟨aftJSK, �̇�I(𝜌)[x←𝓐IJAK�̇�I(𝜌)]⟩ ∣ 𝜌 ∈ Ev𝕍}Hdef. (18) of Ť̊

𝑖 and (21)I
Ť̊
𝑖 {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐IJAK𝜌]⟩ ∣ 𝜌 ∈ EvI}H{�̇�I(𝜌) ∣ 𝜌 ∈ Ev𝕍} ⊆ EvI by (14) for environment abstractionI
≜ 𝓢∗IJℓ x = A ;K Hby defining 𝓢∗IJℓ x = A ;K as in (2) for 𝕍 = II
(20) follows from 𝓐IJAK is ⊑̇𝑖-increasing. ⊓⊔

Interval trace semantics of a break statement
�̊�I(𝓢∗RJSK) Hwhere S = ℓ break ;I
≜ �̊�I({⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ EvR}) H(3)I
= �̊�I({⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvR}) ∪ 𝛼I({⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ EvR})Hthe abstraction preserves joins in the Galois connection (15)I
= {⟨ℓ, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ EvR} ∪ {⟨ℓ, �̇�I(𝜌)⟩⟨brk-toJSK, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ EvR} Hdef. (14) of �̊�II
Ť̊
𝑖 {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ EvI} H{�̇�I(𝜌) ∣ 𝜌 ∈ Ev𝕍} ⊆ EvII
≜ 𝓢∗IJSK Hby defining 𝓢∗IJSK as in (3) for 𝕍 = II
(20) follows from 𝜌 ∈ EvI and 𝜌 ⊑̇𝑖 𝜌′ implies 𝜌′ ∈ EvI. ⊓⊔

Interval trace semantics of the statement list Given sets of traces Π1, Π2 ∈
℘(𝕊∗𝕍), let us calculate
𝛼I(Π1 ⌢⋅ Π2)

= 𝛼I({𝜋1𝜎𝜋2 ∣ 𝜋1𝜎 ∈ Π1 ∧ 𝜎𝜋2 ∈ Π2} Hdef. ⌢⋅ I
= {𝛼I(𝜋1𝜎𝜋2) ∣ 𝜋1𝜎 ∈ Π1 ∧ 𝜎𝜋2 ∈ Π2} Hdef. 𝛼II
= {𝛼I(𝜋1𝜎) ⌢⋅ 𝛼I(𝜎𝜋2) ∣ 𝜋1𝜎 ∈ Π1 ∧ 𝜎𝜋2 ∈ Π2} Hdef. ⌢⋅ I
= {𝜋1 𝜎 ⌢⋅ 𝜎 𝜋2 ∣ 𝜋1 𝜎 ∈ 𝛼I(Π1) ∧ 𝜎𝜋2 ∈ 𝛼I(Π2)}Hletting 𝜋1𝜎 = 𝛼I(𝜋1𝜎) and 𝜎𝜋2 = 𝛼I(𝜎𝜋2)I
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= 𝛼I(Π1) ⌢⋅ 𝛼I(Π2) Hdef. ⌢⋅ I
The case of an empty statement list Sl ∶∶= 𝜖 is trivial and we get 𝓢∗IJSlK ≜
{⟨atJSlK, 𝜌⟩ ∣ 𝜌 ∈ EvI}. For a non-empty statement list Sl ∶∶= Sl′ S, we have
�̊�I(𝓢∗RJSlK)
≜ �̊�I(𝓢∗RJSl′K ∪𝓢∗RJSl′K ⌢⋅ 𝓢∗RJSK) H(7)I
= �̊�I(𝓢∗RJSl′K) ∪ �̊�I(𝓢∗RJSl′K ⌢⋅ 𝓢∗RJSK)Hthe abstraction preserves joins in the Galois connection (15)I
= �̊�I(𝓢∗RJSl′K) ∪ �̊�I(𝓢∗RJSl′K) ⌢⋅ �̊�I(𝓢∗RJSK) Has shown aboveI
Ť̊
𝑖𝓢∗IJSl′K ∪𝓢∗IJSl′K ⌢⋅ 𝓢∗IJSKHhyp. ind., (Π0 Ť̊

𝑖 Π′0 ∧ Π1 Ť̊
𝑖 Π′1) implies (Π0 ⌢⋅ Π1 Ť̊

𝑖 Π′0 ⌢⋅ Π′1) and
(Π0 ∪ Π1 Ť̊

𝑖 Π′0 ∪ Π′1)I
(20) follows by ind. hyp. and def. ⌢⋅ . ⊓⊔

Interval abstraction of a boolean expression The situation is more com-
plicated for conditionals. While a test is true or false for 𝕍 = R and 𝕍 = F, it
might be true for part of a float interval and false for another part of this interval
when 𝕍 = I. Moreover in case of uncertainty (e.g. < is handled as ⩽) the two
part may overlap.

Therefore we assume that the abstract interpretation 𝓑IJBK of a boolean
expression B is defined such that

let ⟨𝜌tt , 𝜌ff⟩ =𝓑IJBK�̇�I(𝜌) in (22)
�̇�I(𝜌) ⊑̇𝑖 𝜌tt if 𝓑𝕍JBK𝜌 = tt
�̇�I(𝜌) ⊑̇𝑖 𝜌ff if 𝓑𝕍JBK𝜌 = ff

and (⟨𝜌tt , 𝜌ff⟩ =𝓑IJBK𝜌) ⇒ (𝜌tt ⊑̇𝑖 𝜌 ∧ 𝜌ff ⊑̇𝑖 𝜌)
stating that no concrete state passing the test is omitted in the abstract and
that the postcondition 𝜌tt or 𝜌ff is stronger than the precondition 𝜌 since, in
absence of side effects, the test cannot introduce any new state. Examples of
def. of 𝓑𝕍 are found e.g. in [3]. If 𝓑𝕍JBK𝜌 = tt (respectively ff), there is no
constraint on 𝜌ff (respectively 𝜌tt), the best choice being the ⊑̇𝑖-infimum empty
interval environment ∅̇.

Interval trace semantics of a conditional statement We can now abstract
the semantics of real tests using float intervals.
�̊�I(𝓢∗RJif ℓ (B) S𝑡K)
≜ �̊�I({⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvR} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣ 𝓑𝕍JBK𝜌 = ff} ∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣

𝓑𝕍JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗RJS𝑡K}) Hdef. 𝓢∗RJif ℓ (B) S𝑡K in (5)I
= {⟨ℓ, �̇�I(𝜌)⟩ ∣ 𝜌 ∈ EvR}∪{⟨ℓ, �̇�I(𝜌)⟩⟨aftJSK, �̇�I(𝜌)⟩ ∣𝓑𝕍JBK𝜌 = ff}∪{⟨ℓ, �̇�I(𝜌)⟩⟨atJS𝑡K,
�̇�I(𝜌)⟩𝛼I(𝜋) ∣𝓑𝕍JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗RJS𝑡K} H(14)I
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Ť̊
𝑖 {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌ff⟩ ∣ ∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇} ∪ {⟨ℓ,
𝜌⟩⟨atJS𝑡K, 𝜌tt⟩𝜋 ∣ ∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧ ⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗IJS𝑡K}H For the first term, by def. (18) of Ť̊

𝑖, we must prove that ∀𝜌 . ∃𝜌 . ⟨ℓ,
�̇�I(𝜌)⟩ ⊑̇𝑖 ⟨ℓ, 𝜌⟩. Since {�̇�I(𝜌) ∣ 𝜌 ∈ EvR} ⊆ EvI, we can simply choose
𝜌 = �̇�I(𝜌).

The second term may be empty, in which case 𝜌ff = ∅̇. Otherwise, by
def. (18) of Ť̊

𝑖, we must prove that ∀𝜌 . ∃𝜌 . ⟨ℓ, �̇�I(𝜌)⟩⟨atJS𝑡K, �̇�I(𝜌)⟩ ⊑⃗𝑖
⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌ff⟩. The control abstraction is the same. We can choose
𝜌 = �̇�I(𝜌) so that 𝓑𝕍JBK𝜌 = ff implies, by (22), that �̇�I(𝜌) ⊑𝑖 𝜌ff .

The third term may be empty, in which case 𝜌tt = ∅̇. Otherwise,
by def. (18) of ⊑𝑖, we must prove that ∀𝜌, 𝜋 . ∃𝜌, 𝜋 . ⟨ℓ, �̇�I(𝜌)⟩⟨atJS𝑡K,
�̇�I(𝜌)⟩𝛼I(𝜋) ⊑𝑖 ⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌tt⟩𝜋 where 𝓑𝕍JBK𝜌 = tt, ⟨atJS𝑡K, 𝜌⟩𝜋 ∈
𝓢∗RJS𝑡K, 𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩, and ⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗IJS𝑡K.

The control abstraction is the same. We can choose 𝜌 = �̇�I(𝜌) so that
𝓑𝕍JBK𝜌 = tt implies, by (22), that �̇�I(𝜌) ⊑̇𝑖 𝜌tt ⊑̇

𝑖 𝜌 so that �̇�I(𝜌) = 𝜌tt
since 𝜌 = �̇�I(𝜌).

It remains to find 𝜋 such that 𝛼I(𝜋) ⊑⃗𝑖 𝜋 and ⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗IJS𝑡K.
It is given by (20) where ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗RJS𝑡K implies for 𝜌 = �̇�I(𝜌) that
∃𝜋 . 𝛼I(𝜋) ⊑⃗𝑖 𝜋 ∧ ⟨atJSK, �̇�I(𝜌)⟩𝜋 ∈ 𝓢∗IJSK. It follows that 𝛼I(𝜋) ⊑⃗𝑖 𝜋 and
⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗IJS𝑡K since 𝜌 = �̇�I(𝜌). I

≜ 𝓢∗IJif ℓ (B) S𝑡KHsince the above term involves only computations in 𝕊I and none in 𝕊𝕍I
It remains to show that 𝓢∗IJif ℓ (B) S𝑡K satisfies (20), which is trivial for the first
two terms. For the third term, this follows from the induction hypothesis. ⊓⊔

By calculational design, we have got the interval test as follows

𝓢∗IJSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} (5bis)
∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌ff⟩ ∣ ∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇}
∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌tt⟩𝜋 ∣ ∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧

⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗IJS𝑡K}
Most libraries raise an error exception in case of split (or chose only one branch)
which we can formalize as an undefined behavior, à la C, where any behavior is
possible.

𝓢∗IJSK ≜ ⋯ (5.ter)
∪ {⟨ℓ, 𝜌⟩𝜋 ∣ ∃𝜌tt , 𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ̇⊓𝑖 𝜌ff ≠ ∅̇ ∧ 𝜋 ∈ 𝕊+∞I }

Fixpoint approximation For the iteration statement, we rely on the following
fixpoint abstraction theorem (adapted from the more general [9, Prop. 2]).

Theorem 1 (least fixpoint over-approximation in a cpo). Assume that
⟨C, ⊑, ⊥, ⊔⟩ is a cpo, 𝑓 ∈ C 𝑢𝑐−−−→ C is ⊔-upper continuous, I ∈ ℘(C) contains the
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iterates 𝑓0(⊥) = ⊥ and 𝑓𝑛+1(⊥) = 𝑓(𝑓𝑛(⊥)) of 𝑓 from ⊥, ⟨A, ≼, 0, ⋎⟩ is a cpo,
𝑓 ∈ A 𝑢𝑐−−−→ A is ⋎-upper continuous, ⊴ is a preorder on A, 𝛼 ∈ C → A, 𝛼(⊥) ⊴ 0,
∀𝑥 ∈ I, 𝑦 ∈ A . (𝛼(𝑥) ⊴ 𝑦) ⇒ (𝛼(𝑓(𝑥)) ⊴ 𝑓(𝑦), and for all ⊑-increasing chains ⟨𝑥𝑖,
𝑖 ∈ N⟩ of I and ≼-increasing chains ⟨𝑦𝑖, 𝑖 ∈ N⟩ of A, 𝛼(⨆

𝑖∈N
𝑥𝑖) ⊴

ň

𝑖∈N
𝑦𝑖. Then

𝛼(lfp⊑ 𝑓) ⊴ lfp≼ 𝑓. ⊓⊔

Remark 1. If 𝑓 is ⊴-increasing, and ∀𝑥 ∈ I . 𝛼 ∘ 𝑓(𝑥) ⊴ 𝑓 ∘ 𝛼(𝑥) (semi-
commutativity) then ∀𝑥 ∈ I . 𝛼(𝑥) ⊴ 𝑦 ⇒ 𝑓(𝛼(𝑥)) ⊴ 𝑓(𝑦) ⇒ 𝛼(𝑓(𝑥)) ⊴ 𝑓(𝑦).
Since, in general, this property does not hold for all 𝑥 ∈ C and it is used for the
iterates of 𝑓 only, I ∈ ℘(C) can be used to restrict the elements of C for which
the property is required to hold. ⊓⊔

Proof (of Th. 1). By Scott-Kleene fixpoint, 𝑓 ∈ C 𝑢𝑐−−−→ C is ⊔-continuous function
on a cpo ⟨C, ⊑, ⊥, ⊔⟩ so 𝑓 has a least fixpoint lfp⊑ 𝑓 = ⨆

𝑛∈N
𝑓𝑛(⊥). Similarly,

lfp≼ 𝑓 =
ň

𝑛∈N
𝑓𝑛(0). We have 𝛼(𝑓0(⊥)) = 𝛼(⊥) ⊴ 0 = 𝑓0(0). Then 𝑓𝑛(⊥) ∈ I and

𝛼(𝑓𝑛(⊥)) ⊴ 𝑓𝑛(0) by ind. hyp. so that 𝛼(𝑓𝑛+1(⊥)) = 𝛼(𝑓(𝑓𝑛(⊥))) ⊴ 𝑓(𝑓𝑛(0)) =
𝑓𝑛+1(0). By recurrence ∀𝑛 ∈ N . 𝛼(𝑓𝑛(⊥)) ⊴ 𝑓𝑛(0). Since the fixpoint iterates are
increasing, it follows, by hypothesis, that 𝛼(lfp⊑ 𝑓) = 𝛼(⨆

𝑛∈N
𝑓𝑛(⊥)) =

ň

𝑛∈N
𝑓𝑛(0) =

lfp≼ 𝑓. ⊓⊔

Interval trace semantics of the iteration statement We define I in Th. 1
by assuming that iterate 𝑋 satisfies the induction hypothesis (20), which is triv-
ially satisfied by the first iterate ∅.
�̊�I(𝓕∗𝕍Jwhile ℓ (B) S𝑏K𝑋)

= �̊�I({⟨ℓ, 𝜌⟩ | 𝜌 ∈ EvR} ∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ =
ℓ} ∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈
𝓢∗RJS𝑏K ∧ ℓ′ = ℓ}) Hdef (8) of 𝓕∗𝕍Jwhile ℓ (B) S𝑏KI

= �̊�I({⟨ℓ, 𝜌⟩ | 𝜌 ∈ EvR}) ∪ 𝛼I({𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 =
ff ∧ ℓ′ = ℓ}) ∪ 𝛼I({𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗RJS𝑏K ∧ ℓ′ = ℓ}) Hjoin preservation in the Galois connection (15)I

The first two terms have already been handled in the case of a conditional
statement if ℓ (B) S𝑡. It remains the third term (simplified with ℓ′ = ℓ), which,
in the non-empty case is as follows.
�̊�I({𝜋2⟨ℓ, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨ℓ, 𝜌⟩ ∈ 𝑋∧𝓑JBK𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗RJS𝑏K})

= {𝛼I(𝜋2)⟨ℓ, �̇�I(𝜌)⟩⟨atJS𝑏K, �̇�I(𝜌)⟩𝛼I(𝜋3) | 𝜋2⟨ℓ, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗RJS𝑏K} Hdef. (14) of �̊�II

Ť̊
𝑖 {𝜋2⟨ℓ, 𝜌⟩⟨atJS𝑏K, 𝜌tt⟩𝜋3) | 𝜋2⟨ℓ, 𝜌⟩ ∈ 𝛼I(𝑋) ∧ ∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ ⟨atJS𝑏K,
𝜌tt⟩𝜋3 ∈ 𝓢∗IJS𝑏K}
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HBy def. (18) of Ť̊
𝑖, we must prove that �⃗�I(𝜋2)⟨ℓ, �̇�I(𝜌)⟩⟨atJS𝑏K,

�̇�I(𝜌)⟩�⃗�I(𝜋3) ⊑𝑖 𝜋2⟨ℓ, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3) where 𝓑𝕍JBK𝜌 = tt, ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗RJS𝑏K, 𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩, and ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗IJS𝑏K.

The control abstraction is the same. We can choose 𝜌 = �̇�I(𝜌) so that
𝓑𝕍JBK𝜌 = tt implies, by (22), that �̇�I(𝜌) ⊑̇𝑖 𝜌tt ⊑̇

𝑖 𝜌 so that �̇�I(𝜌) = 𝜌tt
since 𝜌 = �̇�I(𝜌).

We choose 𝜋2 = �⃗�I(𝜋2) so that 𝜋2⟨ℓ, 𝜌⟩ ∈ 𝑋 implies, by def. (14) of
𝛼I, that 𝜋2⟨ℓ, 𝜌⟩ ∈ �̊�I(𝑋) with �⃗�I(𝜋2⟨ℓ, 𝜌⟩) ⊑⃗

𝑖 𝜋2⟨ℓ, 𝜌⟩ since 𝜌 = �̇�I(𝜌) and
⊑⃗𝑖 is reflexive.

It remains to find 𝜋3 such that �⃗�I(𝜋3) ⊑⃗
𝑖 𝜋3 and ⟨atJS𝑡K, 𝜌tt⟩𝜋3 ∈

𝓢∗IJS𝑡K. It is given by (20) where ⟨atJS𝑡K, 𝜌⟩𝜋3 ∈ 𝓢∗RJS𝑏K implies for
𝜌 = �̇�I(𝜌) that ∃𝜋3 . �⃗�I(𝜋3) ⊑⃗

𝑖 𝜋3 ∧ ⟨atJSK, �̇�I(𝜌)⟩𝜋3 ∈ 𝓢∗IJSK. It follows
that �⃗�I(𝜋3) ⊑⃗

𝑖 𝜋3 and ⟨atJS𝑡K, 𝜌tt⟩𝜋3 ∈ 𝓢∗IJS𝑏K since 𝜌 = �̇�I(𝜌) I
Since the above terms involves only computations in 𝕊I and none in 𝕊𝕍 , we can
define (again an undefined behavior can be introduced for overlapping tests)

𝓕∗IJwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} (8bis)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌ff⟩ |

𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧ ∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇ ∧ ℓ′ = ℓ}
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧
∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗IJS𝑏K ∧ ℓ′ = ℓ}

so that �̊�I(𝓕∗RJwhile ℓ (B) S𝑏K𝑋) =𝓕∗IJwhile ℓ (B) S𝑏K(𝛼I(𝑋)). We have to show
that the next iterate 𝓕∗IJwhile ℓ (B) S𝑏K𝑋 satisfies (20), which is trivial for the
first two terms. For the third term this follows from the induction hypothesis. It
follows that

𝓢∗IJwhile ℓ (B) S𝑏K = �̊�I(𝓢∗RJwhile ℓ (B) S𝑏K) (23)Hby def.I
= �̊�I(lfp⊆𝓕∗RJwhile ℓ (B) S𝑏K) Hby (8)I
Ť̊
𝑖 lfp ⊆̇𝓕∗IJwhile ℓ (B) S𝑏K Hby Th. 1I

It remains to show that 𝓢∗IJwhile ℓ (B) S𝑏K satisfies (20). We have shown that
it holds for all fixpoint iterates. Moreover, it is trivially preserved by trace set
union. ⊓⊔

In conclusion of this section, 𝓢∗I is similar to 𝓢∗𝕍 in (2)—(7) except for state-
ments involving tests for which we have (5bis) or (5ter) and (8bis).

8 On floating point computations

Unfortunately real computations are usually performed using floating point
arithmetics. One computes only one floating point value hoping it is not too
far from the real one. This problem has been deeply studied in static analysis
[10,11,13,15,16,18,19,20,17,29]. Another dynamic analysis solution is to check
the precision with an interval analysis.



Dynamic interval analysis by abstract interpretation 17

Consider the execution with reals (at least their semantics), floats and float
intervals, maybe with different possible execution traces for float intervals due
to the nondeterminacy of tests. These interval executions abstract both the real
and float executions.

If there is only one interval execution trace or we can prove that the real and
float executions follow exactly the same control path then the real execution is
in the join of the interval executions to which the float execution belongs to,
when projected on all program points.

Otherwise, the real and float executions may have followed different paths but
both are guaranteed to belong to the union of all interval executions projected
on all program points.

In both cases this provides an estimate of the rounding error of the float
execution compared to the ideal real execution. Of course the estimate might
be rough since specific properties of the computation are not taken into account
(e.g. [25, pp. 91–94]).

9 Abstraction to a transition system

One could argue that a sound maximal trace semantics of interval arithmetics
does not describe an implementation. However, we can abstract to a small-step
operational semantics that is a transition system describing elementary steps of
an implementation.

A transition system is a triple ⟨Σ, Ι, 𝜏−−−−→⟩ where Σ is a non-empty set of
states 𝜎, Ι ⊆ Σ is a set of initial states, and 𝜏−−−−→ ∈ ℘(Σ×Σ) is a transition relation
between a state and its possible successors.

A transition system ⟨Σ, Ι, 𝜏−−−−→⟩ can be used to define a state prefix trace
semantics as follows.

𝛾𝜏(⟨Σ, Ι, 𝜏−−−−→⟩) ≜ {𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 ∣ 𝑛 ∈ N ∧ 𝜋0 ∈ Ι ∧ ∀𝑖 ∈ [0, 𝑛[ . 𝜋𝑖
𝜏−−−−→ 𝜋𝑖+1} (24)

(where 𝜎 𝜏−−−−→ 𝜎′ is a shorthand for ⟨𝜎, 𝜎′⟩ ∈ 𝜏−−−−→.)
Conversely a prefix trace semantics 𝑆 can be abstracted in a transition sys-

tem

𝛼𝜏(𝑆) ≜ ⟨Σ, Ι, 𝜏−−−−→⟩ (25)

where
Σ ≜ {𝜋𝑖 ∣ ∃𝑛 ∈ N, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+1,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝑆} (or 𝕊)
Ι ≜ {𝜋0 ∣ ∃𝑛 ∈ N, 𝜋1,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝑆}
𝜏−−−−→ ≜ {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝑆}

This is a Galois connection

⟨℘(𝕋+), ⊆⟩ −−−−−→⟶←−−−−−−−𝛼𝜏
𝛾𝜏
⟨{⟨Σ, Ι, 𝜏−−−−→⟩ ∣ Σ ∈ ℘(𝕊) ∧ Ι ⊆ Σ ∧ 𝜏−−−−→ ⊆ Σ × Σ}, ⊆̇⟩
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In general information is lost by the abstraction of a prefix trace semantics to a
transition system (take for example Π = {𝑎, 𝑎𝑎} so that 𝛾𝜏 ∘ 𝛼𝜏(Π) = 𝑎+ is the set
of all non-empty finite sequences of “𝑎”s). However, this is not the case since the
maximal semantics has been defined as the limit of prefix-closed traces, finite
maximal final traces are not strict prefixes of any other trace, and so, final states
have no possible successor.

Notice that the abstraction of the prefix trace semantics of a program into
a transition system will only comprehend reachable states. So the transition se-
mantics for a language is the join of all transition systems of the prefix trace
semantics of all programs in the semantics. This may still be a strict overap-
proximation.

The transition semantics of the programming language P with program com-
ponents Pc is

𝛼𝜏(𝓢∗𝕍JSK) = ⟨𝕊, {⟨atJSK, 𝜌⟩ ∣ S ∈ Pc ∧ 𝜌 ∈ Ev}, �̂�𝜏𝕍JSK⟩
defined by structural induction on program components S ∈ Pc as follows.

9.1 Transition semantics of an assignment statement S ∶∶= ℓ x = A ;

�̂�𝜏𝕍JSK = {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩ ∣ 𝜌 ∈ Ev𝕍} (26)

Proof (of (26)).

�̂�𝜏𝕍JSK
= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSK} H(25)I
= {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩ ∣ 𝜌 ∈ Ev𝕍} H(2)I ⊓⊔
9.2 Transition semantics of a statement list Sl ∶∶= Sl′ S

�̂�𝜏𝕍JSlK = �̂�𝜏𝕍JSl′K ∪ �̂�𝜏𝕍JSK (27)

Proof (of (27)).

�̂�𝜏𝕍JSlK
= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSlK} H(25)I
= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSl′K ∪ {𝜋 ⋅ ⟨atJSK,
𝜌⟩ ⋅ 𝜋′ ∣ 𝜋 ⋅ ⟨atJSK, 𝜌⟩ ∈ 𝓢∗𝕍JSl′K∧ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∈ 𝓢∗𝕍JSK}} Hdef. (7) of 𝓢∗𝕍JSlKI

= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSl′K} ∪ {𝜋𝑖 −−→
𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ {𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∣ 𝜋 ⋅ ⟨atJSK,
𝜌⟩ ∈ 𝓢∗𝕍JSl′K ∧ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∈ 𝓢∗𝕍JSK}} Hdef. ∪I

= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSl′K} ∪ {𝜋𝑖 −−→
𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ {⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∣ ⟨atJSK,
𝜌⟩ ⋅ 𝜋′ ∈ 𝓢∗𝕍JSK}}
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Hsince all transitions originating from 𝜋 ⋅ ⟨atJSK, 𝜌⟩ = 𝜋 ⋅ ⟨aftJSl′K, 𝜌⟩ ∈
𝓢∗𝕍JSl′K have already been collected in the first term of the ∪I

= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSl′K} ∪ {𝜋𝑖 −−→
𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSK}Hsince all traces of 𝓢∗𝕍JSK start with state ⟨atJSK, 𝜌⟩I

= �̂�𝜏𝕍JSl′K ∪ �̂�𝜏𝕍JSK H(25) and ind. hyp. I ⊓⊔
9.3 Transition semantics of an iteration statement S ∶∶= while ℓ (B) S𝑏

and a break statement S ∶∶= ℓ break ;

Real (𝕍 = R) and float (𝕍 = F) semantics.

�̂�𝜏𝕍Jwhile ℓ (B) S𝑏K = {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝜌⟩ |𝓑JBK 𝜌 = ff} (28)
∪ {⟨ℓ, 𝜌⟩ −−→ ⟨atJS𝑏K, 𝜌⟩ |𝓑JBK 𝜌 = tt} ∪ �̂�𝜏𝕍JS𝑏K

�̂�𝜏𝕍Jbreak ;K = {⟨ℓ, 𝜌⟩ −−→ ⟨brk-toJSK, 𝜌⟩ | 𝜌 ∈ Ev𝕍} (29)

By definition of aftJS𝑏K = atJwhile ℓ (B) S𝑏K = ℓ, there is no need for a transition
from after the loop body S𝑏 to the start ℓ of the loop.

Float interval (𝕍 = I) semantics. For float intervals, the transition is non-
deterministic.

�̂�𝜏IJwhile ℓ (B) S𝑏K = {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝜌ff⟩ | ∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩} (30)
∪ {⟨ℓ, 𝜌⟩ −−→ ⟨atJS𝑏K, 𝜌tt⟩ | ∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩} ∪ �̂�𝜏IJS𝑏K

Proof (of (30)). (The proof of (28) and (29) is similar).
�̂�𝜏𝕍JSK Hwhere S ∶∶= while ℓ (B) S𝑏I

= {𝜋𝑖 −−→ 𝜋𝑖+1 ∣ ∃𝑛 ∈ N∗, 𝜋0,… , 𝜋𝑖−1, 𝜋𝑖+2,… , 𝜋𝑛 . 𝜋0⋯𝜋𝑛 ∈ 𝓢∗𝕍JSK} H(25)I
= {⟨ℓ𝑖, 𝜌𝑖⟩ −−→ ⟨ℓ𝑖+1, 𝜌𝑖+1⟩ ∣ ∃𝑛 ∈ N∗, ⟨ℓ0, 𝜌0⟩,… , ⟨ℓ𝑖−1, 𝜌𝑖−1⟩, ⟨ℓ𝑖+2, 𝜌𝑖+2⟩,… , ⟨ℓ𝑛, 𝜌𝑛⟩ . ⟨ℓ0,
𝜌0⟩⋯ ⟨ℓ𝑛, 𝜌𝑛⟩ ∈ 𝓢∗𝕍JSK} Hdef. (2)—(4), (5bis), ((6)), (7), (8bis) of 𝓢∗𝕍I
Following the fixpoint definition of 𝓢∗𝕍Jwhile ℓ (B) S𝑏K, we have to collect the

transitions after 0 or one more iteration in (8bis), so the proof is on the number
of fixpoint iterations of 𝓕∗IJwhile ℓ (B) S𝑏K 𝑋, knowing that, by induction, the
transitions of all traces in 𝑋 have already been collected.

– For the basis, {⟨ℓ, 𝜌⟩ | 𝜌 ∈ EvI} yields no transition;
– {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌ff⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧ ∃𝜌tt . 𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ ℓ′ = ℓ} yields

transitions {⟨ℓ, 𝜌⟩ −−→ ⟨atJS𝑏K, 𝜌ff⟩ | ∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩}. The transitions
of 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 have already been collected. 𝜌 can be chosen arbitrarily for
the converse inclusion;

– {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌tt⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧ ∃𝜌ff . 𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ ⟨atJS𝑏K,
𝜌tt⟩𝜋3 ∈ 𝓢∗𝕍JS𝑏K ∧ ℓ′ = ℓ} yields the transitions of 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 which have
already been collected by induction on the iterates, the transitions of ⟨atJS𝑏K,
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𝜌tt⟩𝜋3 ∈ 𝓢∗𝕍JS𝑏K which have already been collected in �̂�𝜏𝕍JS𝑏K by structural
induction, plus the transitions {⟨ℓ, 𝜌⟩ −−→ ⟨atJS𝑏K, 𝜌tt⟩ | ∃𝜌ff . 𝓑IJBK𝜌 = ⟨𝜌tt ,
𝜌ff⟩}. ⊓⊔

The transition semantics of a program P ∶∶= Sl ℓ, an empty statement list Sl ∶∶=
𝜖 , a skip statement S ∶∶= ℓ;, conditional statements S ∶∶= if ℓ (B) S𝑡 and

S ∶∶= if ℓ (B) S𝑡 else S𝑓, and a compound statement S ∶∶= { Sl }. are similar.

9.4 The transition semantics generates the trace semantics

Theorem 2. The prefix trace semantics 𝓢∗𝕍 of Sections 2 and 7 is generated by
the transition semantics �̂�𝜏𝕍 of Section 9.

Proof (of Th. 2). The proof is by structural induction on the program com-
ponents S ∈ Pc of the language P. Let ⟨𝕊, �̂�𝜏𝕍JSK, ΙJSK⟩ where ΙJSK ≜ {⟨atJSK,
𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} be the transition system of the program components S, as de-
fined in Section 9. Let 𝓢∗(⟨𝕊, �̂�𝜏𝕍JSK, ΙJSK⟩) be the set of stateful prefix traces
generated by this transition system, as defined in (24). We must show that
𝓢∗(⟨𝕊, �̂�𝜏𝕍JSK, ΙJSK⟩) = 𝓢∗𝕍JSK for the structural stateful prefix semantics 𝓢∗𝕍JSK
defined in Sections 2 and 7.

We observe that traces of length 1 in 𝓢∗𝕍JSK are all of the form {⟨ℓ, 𝜌⟩ | 𝜌 ∈
Ev𝕍} which are exactly the same for 𝑛 = 0 is (24). So, in the following, we just

have to consider prefix traces of length strictly greater than 1.
For the assignment statement S ∶∶= ℓ x = A ;, we have

{𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 ∣ 𝑛 ∈ N ∧ 𝜋0 ∈ ΙJSK ∧ ∀𝑖 ∈ [0, 𝑛[ . ⟨𝜋𝑖, 𝜋𝑖+1⟩ ∈ �̂�𝜏𝕍JSK} H(24)I
= {𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 ∣ 𝑛 ∈ N ∧ 𝜋0 ∈ ΙJSK ∧ ∀𝑖 ∈ [0, 𝑛[ . ⟨𝜋𝑖, 𝜋𝑖+1⟩ ∈ {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK,

𝓐JAK𝜌⟩ ∣ 𝜌 ∈ Ev𝕍}} H(26)I
= {𝜋0𝜋1 ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝓐JAK𝜌⟩ ∣ 𝜌 ∈ Ev𝕍}}Hsince ℓ = atJSK ≠ aftJSK and 𝜋0 = ⟨ℓ, 𝜌⟩ ∈ ΙJSK by def. ΙJSKI
= {⟨ℓ, 𝜌⟩⟨aftJSK, 𝓐JAK𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} Hdef. ∈I
= 𝓢∗𝕍JSK ⧵ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} H(2)I
so we conclude that (24) generates 𝓢∗𝕍JSK since in the proof we have left apart
the trivial case of traces {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev𝕍} of length 1.

For the statement list Sl ∶∶= Sl′ S, we have

{𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 ∣ 𝑛 ∈ N ∧ 𝜋0 ∈ ΙJSlK ∧ ∀𝑖 ∈ [0, 𝑛[ . ⟨𝜋𝑖, 𝜋𝑖+1⟩ ∈ �̂�𝜏𝕍JSlK} H(24)I
= {𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 ∣ 𝑛 ∈ N ∧ 𝜋0 ∈ ΙJSlK ∧ ∀𝑖 ∈ [0, 𝑛[ . ⟨𝜋𝑖, 𝜋𝑖+1⟩ ∈ �̂�𝜏𝕍JSl′K ∪ �̂�𝜏𝕍JSK}H(27)I
= {𝜋′0 ⋅ ⋯ ⋅ 𝜋′𝑛′ ∣ 𝑛′ ∈ N ∧ 𝜋′0 ∈ ΙJSlK ∧ ∀𝑖 ∈ [0, 𝑛′[ . ⟨𝜋′𝑖, 𝜋′𝑖+1⟩ ∈ �̂�𝜏𝕍JSl′K} ∪
{𝜋′0 ⋅ ⋯ ⋅ 𝜋′𝑛′ ⌢⋅ 𝜋″0 ⋅ ⋯ ⋅ 𝜋″𝑚 ∣ 𝑛′ ∈ N ∧ 𝜋′0 ∈ ΙJSlK ∧ ∀𝑖 ∈ [0, 𝑛′[ . ⟨𝜋′𝑖, 𝜋′𝑖+1⟩ ∈
�̂�𝜏𝕍JSl′K ∧ 𝑚 ∈ N ∧ 𝜋″0 ∈ ΙJSK ∧ ∀𝑖 ∈ [0,𝑚[ . ⟨𝜋″𝑖, 𝜋″𝑖+1⟩ ∈ �̂�𝜏𝕍JSK}
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Hsince all states involved in ⟨ℓ, 𝜌⟩ ∈ �̂�𝜏𝕍JSl′K have ℓ ∈ labsJSl′K and
similarly all states involved in ⟨ℓ, 𝜌⟩ ∈ �̂�𝜏𝕍JSK have ℓ ∈ labsJSK and
𝜋0 = 𝜋′0 ∈ ΙJSlK = ΙJSl′K so that labsJSl′K ∩ labsJSK = {aftJSl′K} = {atJSK}
implies that the first transitions in 𝜋′0 ⋅ ⋯ ⋅ 𝜋′𝑛′ from 𝜋0 = 𝜋′0 must be
transitions in �̂�𝜏𝕍JSl′K.
Then there are two cases. The first case is when 𝜋′0 ⋅⋯⋅𝜋′𝑛′ never reaches
a final state of 𝜋′𝑛′ ≠ 𝜋″0 of Sl′ so that 𝜋′0 ⋅⋯⋅𝜋′𝑛′ = 𝜋0 ⋅⋯⋅𝜋𝑛. Otherwise,
a final state 𝜋′𝑛′ = 𝜋″0 is reached for which ℓ = aftJSl′K = atJSK so
𝜋′0 ⋅ ⋯ ⋅ 𝜋′𝑛′ ⌢⋅ 𝜋″0 ⋅ ⋯ ⋅ 𝜋″𝑚 = 𝜋0 ⋅ ⋯ ⋅ 𝜋𝑛 since after 𝜋′𝑛′ = 𝜋″0 the
transitions in 𝜋″0 ⋅ ⋯ ⋅ 𝜋″𝑚, if any when 𝑚 > 0, must belong to �̂�𝜏𝕍JSK.
Both cases includes the empty statement list Sl′ ∶∶= 𝜖 for which 𝑛′ = 0I

= 𝓢∗𝕍JSl′K ∪ {𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∣ 𝜋 ⋅ ⟨atJSK, 𝜌⟩ ∈ 𝓢∗𝕍JSl′K ∧ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∈ 𝓢∗𝕍JSK}Hind. hyp. I
= 𝓢∗𝕍JSlK H(7)I ⊓⊔

For the iteration statement S ∶∶= while ℓ (B) S𝑏, we use the fact the prefix
traces with entry label ℓ = atJSK = aftJS𝑏K have the form

𝜋(𝑛)𝜋′(𝑛) ∈ �̂�∗𝕍JSK (31)

where
– 𝜋(𝑛) ≜ (⟨ℓ, 𝜌𝑖⟩

𝐵−−−−→ ⟨atJS𝑏K, 𝜌𝑖⟩𝜋(𝑖)⟨ℓ, 𝜌𝑖+1⟩) 𝑛−1
𝑖=1

is the trace of the first 𝑛 ⩾ 0

iterations (reduced to ⟨ℓ, 𝜌0⟩ for 𝑛 = 0) such that ∀𝑖 ∈ [1, 𝑛 − 1] . (⟨atJS𝑏K,
𝜌𝑖⟩𝜋(𝑖)⟨ℓ, 𝜌𝑖+1⟩)

𝑛−1

𝑖=1
is the maximal finite trace of the 𝑖-th iteration in the loop

body S𝑏;
– ℓ𝜋′(𝑛) traces the prefix execution of the 𝑛-th iteration in the loop body S𝑏

or a loop exit, so

ℓ𝜋′(𝑛) ∈ {⟨ℓ, 𝜌𝑛⟩} ∪ {⟨ℓ, 𝜌𝑛⟩
𝐵−−−−→ ⟨atJS𝑏K, 𝜌𝑛⟩ ∣𝓑JBK𝜌𝑛 = tt}

∪ {⟨ℓ, 𝜌𝑛⟩
¬(B)
−−−−−−−−→ ⟨aftJSK, 𝜌𝑛⟩ ∣𝓑JBK𝜌𝑛 = ff}

∪ {⟨ℓ, 𝜌𝑛⟩
𝐵−−−−→ ⟨atJS𝑏K, 𝜌𝑛⟩𝜋″(𝑛) |

𝓑JBK𝜌𝑛 = tt ∧ ⟨ℓ, 𝜌𝑛⟩
𝐵−−−−→ ⟨atJS𝑏K, 𝜌𝑛⟩𝜋″(𝑛) ∈ �̂�∗𝕍JS𝑏K}

∪ {⟨ℓ, 𝜌𝑛⟩
B−−−−→ ⟨atJS𝑏K, 𝜌𝑛⟩𝜋3 break−−−−−−−−−−−→ ⟨brk-toJSK, 𝜌𝑚⟩ |𝓑JBK𝜌𝑛 = tt ∧

⟨atJS𝑏K, 𝜌𝑛⟩𝜋3 break−−−−−−−−−−−→ ⟨brk-toJSK, 𝜌𝑚⟩ ∈ �̂�∗𝕍JS𝑏K}
Obviously the traces in (31) can be generated by the transition system.

Conversely, let ⟨ℓ0, 𝜌0⟩⋯ ⟨ℓ𝑛, 𝜌𝑛⟩ be a trace generated by the transition system
for an iteration S so that ℓ0 = atJSK. By reductio ad absurdum, let 𝑘 < 𝑛 such
that ⟨ℓ0, 𝜌0⟩⋯ ⟨ℓ𝑘, 𝜌𝑘⟩ is in 𝓢∗𝕍JSK but ⟨ℓ0, 𝜌0⟩⋯ ⟨ℓ𝑘, 𝜌𝑘⟩⟨ℓ𝑘+1, 𝜌𝑘+1⟩ is not. By
recurrence, there exists 𝜋𝑘ℓ𝑘 such that 𝜌𝑘 = 𝝔(𝜋0ℓ0 ⌢⋅ 𝜋𝑘ℓ𝑘). Since we have the
transition ⟨ℓ𝑘, 𝜌𝑘⟩ −−→ ⟨ℓ𝑘+1, 𝜌𝑘+1⟩ there is one statement S′ in Section 9 from
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which this transition comes from such that ℓ𝑘 ∈ labsJS′K. The contradiction is
that a similar step is possible in ∈ 𝓢∗𝕍JSK. We have to go on by considering all
possible cases for S′. Since the reasoning is similar for all these cases, let us
consider the typical cases (26) and (28).

In case (26), ℓ𝑘 is at an assignment statement S′ ∶∶= ℓ x = A ;. Because of
unicity of the labelling, the transition ⟨ℓ𝑘, 𝜌𝑘⟩ −−→ ⟨ℓ𝑘+1, 𝜌𝑘+1⟩ in (26) cannot come
from any other statement. The contradiction is that (2) provides a transition in
𝓢∗𝕍JSK that abstracts to the desired transition ⟨ℓ𝑘, 𝜌𝑘⟩ −−→ ⟨ℓ𝑘+1, 𝜌𝑘+1⟩.

The reasoning is the same in case (28) for {⟨ℓ, 𝜌⟩ −−→ ⟨aftJSK, 𝜌⟩ |𝓑JBK 𝜌 = ff}
and {⟨ℓ, 𝜌⟩ −−→ ⟨atJS𝑏K, 𝜌⟩ |𝓑JBK 𝜌 = tt}. Otherwise, ℓ𝑘 ∈ labsJS𝑏K and we consider
recursively the contradiction within S′ = �̂�𝜏𝕍JS𝑏K. The reasoning is the same for
the float interval semantics. ⊓⊔

It follows from Th. 2 that we could have followed the traditional way of defining
a small-step operational semantics by first postulating the transition semantics
of Section 9, then deriving the stateful prefix trace semantics by (24), and finally
deriving the maximal trace semantics by taking limits as in (9) and (10).

10 Conclusion

Dynamic interval analysis can be extended to ball analysis (also known as
midpoint-radius interval arithmetic) [39,40].

Most applications of dynamic interval analysis involve tests (including the
loop condition) on intervals but consider only the deterministic case where only
one branch is taken. For example interval libraries raise an exception when more
than one alternative should be taken in tests [2]. This can be understood as a
trivial widening to all possible continuations after the test. When expressed as
a transition system, the choice can be implemented e.g. by backtracking, which
is natural in logic or constraint programming [35,36,38].

Our formalization of the float interval semantics as an abstraction of the real
semantics uses an approximation preorder Ť̊

𝑖 different from the fixpoint order-
ing ⊆ (also called computational ordering). This is a rare example in abstract
interpretation with [9,34].

Dynamic interval analysis is different from other instrumented dynamic anal-
yses for runtime verification [1,12,21,22] in that it does collect interval informa-
tion upon executions, but does not check the collected information against a
specification. Instead it replaces that execution (on reals or floats) by another
one (on float intervals).

More generally, runtime verification of single executions collects information
on the execution to check the execution against a formal specification, or to pro-
tect against errors [23]. Since only safety properties can be checked at runtime,
this instrumented semantics can be formalized by abstract interpretation of the
program prefix trace semantics 𝓢∗𝕍JSK.

– The abstraction 𝛼ℎ(𝜋0⋯𝜋𝑛) ∈ 𝔻 instruments the prefix 𝜋0⋯𝜋𝑛 of a trace 𝜋
in a domain 𝔻;
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– The instrumented trace 𝛼ℎ(𝜋) ≜ ⟨𝜋0, 𝛼ℎ(𝜋0)⟩⟨𝜋1, 𝛼ℎ(𝜋0𝜋1)⟩⟨𝜋2, 𝛼ℎ(𝜋0𝜋1𝜋2)⟩⋯
⟨𝜋𝑛, 𝛼ℎ(𝜋0𝜋1⋯𝜋𝑛)⟩⋯ on states 𝕊ℎ ≜ 𝕊𝕍 ×𝔻 collects this information during
execution;

– The instrumented semantics is 𝓢ℎJSK ≜ 𝛼ℎ(𝓢∗𝕍JSK) ∈ ℘(𝕊ℎ+) where 𝛼ℎ(Π) ≜
{𝛼ℎ(𝜋) ∣ 𝜋 ∈ Π} is the set of instrumented traces of the semantics 𝓢∗𝕍JSK ∈
℘(𝕊+). It follows that ⟨℘(𝕊+), ⊆⟩ −−−−−→←−−−−−𝛼ℎ

𝛾ℎ ⟨℘(𝕊ℎ+), ⊆⟩.
We have provided the example of interval arithmetics. Another example would
compute with float and collect rounding errors to guard against meaningless
computations. An execution involving integers would collect their minimum and
maximum values.

Moreover, the instrumented semantics must be checked by providing
– a specification 𝑆 (such as an invariant, temporal logic, etc.);
– A specification abstraction ⟨℘(𝕊ℎ+), ⊆⟩ −−−−−→←−−−−−𝛼𝑆

𝛾𝑆 ⟨B, ⇐⟩ into Booleans checking
that the specification is satisfied at runtime. In practice abstraction providing
more information than a binary decision would be preferable.

The best dynamic analysis semantics 𝓢𝑑JSK is then 𝓢𝑑JSK ≜ 𝛼𝑆(𝛼ℎ(𝓢JSK)). An
instrumented dynamic analysis can be directly derived from the instrumented
semantics by considering a single execution at a time.

An example would be the specification of bounds for integer variables in a
language like Pascal. The best dynamic analysis semantics 𝓢𝑑JSK is implemented
by runtime checks.

It might be that 𝛼𝑆(𝛼ℎ(𝓢JSK)) is not computable or too expensive to compute.
An example is regular model checking [5] where executions are monitored by a
regular expression specifying sequences of invariants (and more generally any
temporal logic specification can be handled as in [5]).

In that case, what can define an approximation preorder Ť̊
𝑖 (allowing for ap-

proximate instrumentation and check) and soundness would then be 𝛼𝑆(𝛼ℎ(𝓢JSK))
Ť̊
𝑖 𝓢𝑑JSK. For example, verification by regular model checking [5] would become

debugging by bounding executions or ignoring some checks.
By deriving the transition system from the instrumented checking semantics

𝓢𝑑JSK, we have a formal specification of the code to be generated for the runtime
analysis, thus paving the way for certified runtime analysis (similar to certified
compilation [27] or certified static analysis [26]). Notice that trace abstractions
are more general than simulations [28]. Notice that trace abstractions are more
general than simulations [28] for such correctness proofs.

A static analysis would be derived by a further finitary abstraction of all exe-
cutions defined by the instrumented semantics 𝛼ℎ(𝓢JSK) (e.g. using extrapolators
and interpolators [4] or abstraction into Noetherian abstract domains).

The reduced product of the static and dynamic semantics would formalize
the idea that the dynamic semantics can be simplified thanks to a preliminary
static analysis. A single execution of this reduced product would certainly be
more efficient since some runtime tests would have been eliminated in the re-
duced product. For the integer interval example, this would definitely reduce the
number of runtime checks.
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