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Abstract. Security monitors have been used to check for safety program
properties at runtime, that is for any given execution trace. Such security
monitors check a safety temporal property specified by a finite automa-
ton or, equivalently, a regular expression. Checking this safety temporal
specification for all possible execution traces, that is the program se-
mantics, is a static analysis problem, more precisely a model checking
problem, since model checking specializes in temporal properties. We
show that the model checker can be formally designed by calculus, by
abstract interpretation of a formal trace semantics of the programming
language. The result is a structural sound and complete model checker,
which proceeds by induction on the program syntax (as opposed to the
more classical approach using computation steps formalized by a tran-
sition system). By Rice theorem, further hypotheses or abstractions are
needed to get a realistic model checking algorithm.
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Model checking [9,41] consists in proving that a model of a given program/com-
puter system satisfies a temporal specification1. Traditionally, the model of the
given program/computer system is a transition system and its semantics is the
set of traces generated by the transition system. The temporal specification is
usually one of the many variants of temporal logics such as the Linear Time
Temporal logic (LTL), the Computation Tree Logic (CTL), or the combination
CTL∗ of the two. The semantics of the temporal specification is a set of traces.
The problem is therefore to check that the set of traces of the semantics of the
given program/computer system is included in the set of traces of the semantics
of the temporal specification. This is a Galois connection-based abstraction and
so a model checking algorithm can be designed by calculus. To show that we
consider a non-conventional temporal specification using regular expressions [31]
and a structural fixpoint prefix-closed trace semantics which differs from the
⋆ Supported by NSF Grant CCF-1617717.
1 We define model checking as the verification of temporal properties and do not

reduce it to the reachability analysis (as done e.g. in [10, Ch. 15, 16, 17, etc.]) since
reachability analysis predates model checking [14] including for the use of transition
systems [12].
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traditional small-step operational semantics specified by a transition system.
There are properties of traces that are not expressible in temporal logic but are
easily expressible using regular expressions [46].

2 Syntax and Trace Semantics of the Programming
Language

Syntax Programs are a subset of C with the following context-free syntax.

x, y,… ∈ X variable (X not empty)
A ∈ A ∶∶=1 | x | A1 - A2 arithmetic expression
B ∈ B ∶∶=A1 < A2 | B1 nand B2 boolean expression
E ∈ E ∶∶=A | B expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl∶∶=Sl S | 𝜖 statement list
P ∈ P ∶∶=Sl program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program. We call “[program]
component” S ∈ Pc ≜ S∪Sl∪P either a statement, a statement list, or a program.
We let ◁ be the syntactic relation between immediate syntactic components. For
example, if S = if (B) S𝑡 else S𝑓 then B◁ S, S𝑡 ◁ S, and S𝑓 ◁ S.

Program labels Labels are not part of the language, but useful to discuss
program points reached during execution. For each program component S, we
define

atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S;
inJSK the set of program points inside S (including atJSK but excluding aftJSK and

brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.
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Prefix trace semantics Prefix traces are non-empty finite sequences 𝜋 ∈ 𝕊+
of states where states ⟨ℓ, 𝜌⟩ ∈ 𝕊 ≜ (L × Ev) are pairs of a program label ℓ ∈ 𝕊
designating the next action to be executed in the program and an environment
𝜌 ∈ Ev ≜ X → 𝕍 assigning values 𝜌(x) ∈ 𝕍 to variables x ∈ X. A trace 𝜋 can be
finite 𝜋 ∈ 𝕊+ or infinite 𝜋 ∈ 𝕊∞ (recording a non-terminating computation) so
𝕊+∞ ≜ 𝕊+ ∪ 𝕊∞. Trace concatenation ⌢⋅ is defined as follows
𝜋1𝜎1 ⌢⋅ 𝜎2𝜋2 undefined if 𝜎1 ≠ 𝜎2 𝜋1 ⌢⋅ 𝜎2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕊∞ is infinite
𝜋1𝜎1 ⌢⋅ 𝜎1𝜋2 ≜ 𝜋1𝜎1𝜋2 if 𝜋1 ∈ 𝕋+ is finite

In pattern matching, we sometimes need the empty trace ∋. For example if 𝜎𝜋𝜎′
= 𝜎 then 𝜋 = ∋ and so 𝜎 = 𝜎′.

Formal definition of the prefix trace semantics The prefix trace semantics
𝓢∗JSK is given structurally (by induction on the syntax) using fixpoints for the
iteration.
• The prefix traces of an assignment statement S ∶∶= ℓ x = A ; (where atJSK = ℓ)
either stops in an initial state ⟨ℓ, 𝜌⟩ or is this initial state ⟨ℓ, 𝜌⟩ followed by the
next state ⟨aftJSK, 𝜌[x ←𝓐JAK𝜌]⟩ recording the assignment of the value 𝓐JAK𝜌
of the arithmetic expression to variable x when reaching the label aftJSK after
the assignment.

𝓢∗JSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩ ∣ 𝜌 ∈ Ev} (1)

The value of an arithmetic expression A in environment 𝜌 ∈ Ev ≜ X → 𝕍 is
𝓐JAK𝜌 ∈ 𝕍:

𝓐J1K𝜌 ≜ 1 𝓐JxK𝜌 ≜ 𝜌(x) 𝓐JA1 - A2K𝜌 ≜𝓐JA1K𝜌 −𝓐JA2K𝜌 (2)

• The prefix trace semantics of a break statement S ∶∶= ℓ break ; either stops
at ℓ or goes on to the break label brk-toJSK (which is defined as the exit label of
the closest enclosing iteration).

𝓢∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (3)

• The prefix trace semantics of a conditional statement S ∶∶= if ℓ (B) S𝑡 is
• either the trace ⟨ℓ, 𝜌⟩ when the observation of the execution stops on entry

of the program component for initial environment 𝜌;
• or, when the value of the boolean expression B for 𝜌 is false ff, the initial state
⟨ℓ, 𝜌⟩ followed by the state ⟨aftJSK, 𝜌⟩ at the label aftJSK after the conditional
statement;
• or finally, when the value of the boolean expression B for 𝜌 is true tt, the

initial state⟨ℓ, 𝜌⟩ followed by a prefix trace of S𝑡 starting atJS𝑡K in environment
𝜌 (and possibly ending aftJS𝑡K = aftJSK).

�̂�∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑JBK𝜌 = ff} (4)
∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ �̂�∗JS𝑡K}

Observe that definition (4) includes the case of a conditional within an itera-
tion and containing a break statement in the true branch S𝑡. Since brk-toJSK =
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brk-toJS𝑡K, from ⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJS𝑡K, 𝜌′⟩ ∈ 𝓢∗JS𝑡K and 𝓑JBK𝜌 = tt, we infer
that ⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJSK, 𝜌′⟩ ∈ 𝓢∗JSK.
• The prefix traces of the prefix trace semantics of a non-empty statement list
Sl ∶∶= Sl′ S are the prefix traces of Sl′ or the finite maximal traces of Sl′ followed
by a prefix trace of S.

�̂�∗JSlK ≜ �̂�∗JSl′K ∪ �̂�∗JSl′K ⌢⋅ 𝓢∗JSK (5)
𝓢 ⌢⋅ 𝓢′ ≜ {𝜋 ⌢⋅ 𝜋′ ∣ 𝜋 ∈ 𝓢 ∧ 𝜋′ ∈ 𝓢′ ∧ 𝜋 ⌢⋅ 𝜋′ is well-defined}

Notice that if 𝜋 ∈ �̂�∗JSl′K, 𝜋′ ∈ 𝓢∗JSK, and 𝜋 ⌢⋅ 𝜋′ ∈ �̂�∗JSlK then the last state of
𝜋 must be the first state of 𝜋′ and this state is atJSK = aftJSl′K and so the trace
𝜋 must be a maximal terminating execution of Sl′ i.e. S is executed only if Sl′
terminates.
• The prefix finite trace semantic definition 𝓢∗JSK (7) of an iteration statement
of the form S ∶∶= while ℓ (B) S𝑏 where ℓ = atJSK is the ⊆-least solution lfp⊆𝓕∗JSK
to the equation 𝑋 =𝓕∗JSK(𝑋). Since 𝓕∗JSK ∈ ℘(𝕊+) → ℘(𝕊+) is ⊆- monotone (if
𝑋 ⊆ 𝑋′ then 𝓕∗JSK(𝑋) ⊆ 𝓕∗JSK(𝑋′) and ⟨℘(𝕊+), ⊆, ∅, 𝕊+, ∪, ∩⟩ is a complete
lattice, lfp⊆𝓕∗JSK exists by Tarski’s fixpoint theorem and can be defined as the
limit of iterates [15]. In definition (7) of the transformer 𝓕∗JSK, case (7.a) corre-
sponds to a loop execution observation stopping on entry, (7.b) corresponds to
an observation of a loop exiting after 0 or more iterations, and (7.c) corresponds
to a loop execution observation that stops anywhere in the body S𝑏 after 0 or
more iterations. This last case covers the case of an iteration terminated by a
break statement (to aftJSK after the iteration statement).

𝓢∗Jwhile ℓ (B) S𝑏K = lfp⊆𝓕∗Jwhile ℓ (B) S𝑏K (6)

𝓕∗𝕊 Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} (a)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ = ℓ}2 (b)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧

⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ} (c)

• The other cases are similar.

Semantic properties As usual in abstract interpretation [16], we represent
properties of entities in a universe U by a subset of this universe. So a property
of elements of U belongs to ℘(U). For example “to be a natural” is the property
N ≜ {𝑛 ∈ Z ∣ 𝑛 ⩾ 0} of the integers Z. The property “𝑛 is a natural” is “𝑛 ∈ N”.
By program component (safety) property, we understand a property of their
prefix trace semantics 𝓢∗JSK ∈ ℘(𝕊+). So program properties belong to ℘(℘(𝕊+)).
The collecting semantics is the strongest program property, that is the singleton
{𝓢∗JSK}.
2 A definition of the form 𝑑(�⃗�) ≜ {𝑓(�⃗�′) ∣ 𝑃(�⃗�′, �⃗�)} has the variables �⃗�′ in 𝑃(�⃗�′, �⃗�) bound

to those of 𝑓(�⃗�′) whereas �⃗� is free in 𝑃(�⃗�′, �⃗�) since it appears neither in 𝑓(�⃗�′) nor (by
assumption) under quantifiers in 𝑃(�⃗�′, �⃗�). The �⃗� of 𝑃(�⃗�′, �⃗�) is therefore bound to the
�⃗� of 𝑑(�⃗�).
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3 Specifying computations by regular expressions

Stephen Cole Kleene introduced regular expressions and finite automata to spec-
ify execution traces (called events) of automata (called nerve nets) [31]. Kleene
proved in [31] that regular expressions and (non-deterministic) finite automata
can describe exactly the same classes of languages (see [43, Ch. 1, Sect. 4]). He
noted that not all computable execution traces of nerve nets can be (exactly)
represented by a regular expression. The situation is the same for programs for
which regular expressions (or equivalently finite automata) can specify a super-
set of the prefix state trace semantics 𝓢∗JSK of program components S ∈ Pc.

Example 1 (Security monitors). An example is Fred Schneider’s security moni-
tors [44,35] using a finite automata specification to state requirements of hard-
ware or software systems. They have been used to check for safety program
properties at runtime, that is for any given execution trace in the semantics
𝓢∗JSK. The safety property specified by the finite automaton or, equivalently,
an regular expression is temporal i.e. links events occurring at different times in
the computation (such as a file must be opened before being accessed and must
eventually be closed). ⊓⊔

Syntax of regular expressions Classical regular expressions denote sets of
strings using constants (empty string 𝜀, literal characters 𝑎, 𝑏, etc.) and operator
symbols (concatenation ∙, alternation ||, repetition zero or more times ∗ or one
or more times +). We replace the literal characters by invariant specifications
L : B stating that boolean expression B should be true whenever control reaches
any program point in the set L of program labels. The boolean expression B
may depend on program variables x, y,… ∈ X and their initial values denoted
x, y,… ∈ X where X ≜ {x ∣ x ∈ X}.

L ∈ ℘(L) sets of program labels
x, y,… ∈ X program variables
x, y,… ∈ X initial values of variables

B ∈ B boolean expressions such that 𝕧𝕒𝕣𝕤JBK ⊆ X ∪X

R ∈ R regular expressions (8)
R ∶∶= 𝜀 empty
| L : B invariant B at L
| R1R2 (or R1 ∙ R2) concatenation
| R1 || R2 alternative
| R∗1 | R+1 zero/one or more occurrences of R
| (R1) grouping

We use abbreviations to designate sets of labels such as ? : B ≜ L : B so
that B is invariant, ℓ : B ≜ {ℓ} : B so that B is invariant at program label ℓ,
¬ℓ : B ≜ L ⧵ {ℓ} : B when B holds everywhere but at program point ℓ, etc.
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Example 2. (? : tt)∗ holds for any program. (? : x >= 0)∗ states that the value
of x is always positive or zero during program execution. (? : x >= x)∗ states
that the value of x is always greater than or equal to its initial value x during
execution. (? : x >= 0)∗ ∙ ℓ : x == 0 ∙ (? : x < 0)∗ states that the value of x
should be positive or zero and if program point ℓ is ever reached then x should
be 0, and if computations go on after program point ℓ then x should be negative
afterwards. ⊓⊔
Example 3. Continuing Ex. 1 for security monitors, the basic regular expressions
are names 𝑎 of program actions. We can understand such an action 𝑎 as desig-
nating the set L of labels of all its occurrences in the program. If necessary, the
boolean expression B can be used to specify the parameters of the action. ⊓⊔
There are many regular expressions denoting the language {϶} containing only the
empty sequence ϶ (such that 𝜀, 𝜀𝜀, 𝜀∗, etc.), as shown by the following grammar.

R𝜀 ∋ R ∶∶= 𝜀 | R1R2 | R1 || R2 | R∗1 | R+1 | (R1) empty regular expressions
For specification we use only non-empty regular expressions R ∈ R+ since traces
cannot be empty.

R+ ∋ R ∶∶= L : B | 𝜀R2 | R1𝜀 | R1R2 | R1 || R2 | R+1 | (R1) non-empty r.e.

We also have to consider regular expressions R ∈ R∖| containing no alternative ||.
R∖| ∋ R ∶∶= 𝜀 | L : B | R1R2 | R∗1 | R+1 | (R1) ||-free regular expressions

Relational semantics of regular expressions The semantics (2) of expres-
sions is changed as follows (𝜚(x) denotes the initial values x of variables x and
𝜌(x) their current value, ↑ is the alternative denial logical operation)

𝓐J1K𝜚, 𝜌 ≜ 1 𝓐JA1 - A2K𝜚, 𝜌 ≜𝓐JA1K𝜚, 𝜌 −𝓐JA2K𝜚, 𝜌 (8)
𝓐JxK𝜚, 𝜌 ≜ 𝜚(x) 𝓑JA1 < A2K𝜚, 𝜌 ≜𝓐JA1K𝜚, 𝜌 <𝓐JA2K𝜚, 𝜌
𝓐JxK𝜚, 𝜌 ≜ 𝜌(x) 𝓑JB1 nand B2K𝜚, 𝜌 ≜𝓑JB1K𝜚, 𝜌 ↑𝓑JB2K𝜚, 𝜌

We represent a non-empty finite sequence 𝜎1…𝜎𝑛 ∈ 𝕊+ ≜ ⋃
𝑛∈N⧵{0}
[1, 𝑛] → 𝕊 of

states 𝜎𝑖 ∈ 𝕊 ≜ (L × Ev) by a map 𝜎 ∈ [1, 𝑛] → 𝕊 (which is the empty sequence
𝜎 = ϶ when 𝑛 = 0).

The relational semantics 𝓢rJRK ∈ ℘(Ev × 𝕊∗) of regular expressions R relates
an arbitrary initial environment 𝜚 ∈ Ev to a trace 𝜋 ∈ 𝕊∗ by defining how the
states of the trace 𝜋 are related to that initial environment 𝜚.

𝓢rJ𝜀K ≜ {⟨𝜚, ϶⟩ ∣ 𝜚 ∈ Ev} 𝓢rJRK1 ≜ 𝓢rJRK (9)
𝓢rJL : BK ≜ {⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∣ ℓ ∈ L ∧𝓑JBK𝜚, 𝜌} 𝓢rJRK𝑛+1 ≜ 𝓢rJRK𝑛 ⦿𝓢rJRK
𝓢rJR1R2K ≜ 𝓢rJR1K ⦿𝓢rJR2K 𝓢rJR∗K ≜ ⋃

𝑛∈N
𝓢rJRK𝑛

𝓢 ⦿𝓢′ ≜ {⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∣ ⟨𝜚, 𝜋⟩ ∈ 𝓢 ∧ ⟨𝜚, 𝜋′⟩ ∈ 𝓢′} 𝓢rJR+K ≜ ⋃
𝑛∈N⧵{0}

𝓢rJRK𝑛
𝓢rJR1 || R2K ≜ 𝓢rJR1K ∪𝓢rJR2K 𝓢rJ(R)K ≜ 𝓢rJRK
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Example 4. The semantics of the regular expression R ≜ ℓ : x = x ∙ ℓ′ : x = x + 1
is 𝓢rJRK = {⟨𝜚, ⟨ℓ, 𝜌⟩⟨ℓ′, 𝜌′⟩⟩ ∣ 𝜌(x) = 𝜚(x) ∧ 𝜌′(x) = 𝜚(x) + 1}. ⊓⊔

4 Definition of regular model checking

Let the prefix closure prefix(Π) of a set Π ∈ ℘(Ev × 𝕊+) of stateful traces be

prefix(Π) ≜ {⟨𝜚, 𝜋⟩ ∣ 𝜋 ∈ 𝕊+ ∧ ∃𝜋′ ∈ 𝕊∗ . ⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∈ Π} prefix closure.

The following Def. 1 defines the model checking problem P, 𝜚 ⊨ R as checking
that the semantics of the given program P ∈ P meets the regular specification
R ∈ R+ for the initial environment 𝜚3.

Definition 1 (Model checking).

P, 𝜚 ⊨ R ≜ ({𝜚} ×𝓢∗JPK) ⊆ prefix(𝓢rJR ∙ (? : tt)∗K)
The prefix closure prefix allows the regular specification R to specify traces sat-
isfying a prefix of the specification only, as in ℓ x = x + 1 ;ℓ′ ⊨ ℓ : x = x ∙
ℓ′ : x = x + 1 ∙ ℓ″ : x = x + 3. The extension of the specification by (? : tt)∗

allows for the regular specification R to specify only a prefix of the traces, as in
ℓ x = x + 1 ;ℓ′ x = x + 2 ; ℓ″ ⊨ ℓ : x = x ∙ ℓ′ : x = x + 1. Model checking is a boolean
abstraction ⟨℘(𝕊+), ⊆⟩ −−−−−−→←−−−−−−𝛼𝜚,R

𝛾𝜚,R
⟨B, ⇐⟩ where 𝛼𝜚,R(Π) ≜ ({𝜚} × Π) ⊆ prefix(𝓢rJR ∙

(? : tt)∗K)).
5 Properties of regular expressions

Equivalence of regular expressions We say that regular expressions are
equivalent when they have the same semantics i.e. R1 ≎ R2 ≜ (𝓢rJR1K = 𝓢rJR2K).
Disjunctive normal form dnf of regular expressions As noticed by Kleene
[31, p. 14], regular expressions can be put in the equivalent disjunctive normal
form of Hilbert—Ackermann. A regular expression is in disjunctive normal form
if it is of the form (R1 || … || R𝑛) for some 𝑛 ⩾ 1, in which none of the R𝑖, for
1 ⩽ 𝑖 ⩽ 𝑛, contains an occurrence of ||. Any regular expression R has a disjunctive
normal form dnf(R) defined as follows.

dnf(𝜀) ≜ 𝜀 dnf(L : B) ≜ L : B
dnf(R1 || R2) ≜ dnf(R1) || dnf(R2) dnf(R+) ≜ dnf(RR∗)

dnf(R∗) ≜ let R1 ||… || R𝑛 = dnf(R) in ((R1)∗…(R𝑛)∗)∗ dnf((R)) ≜ (dnf(R))
dnf(R1R2) ≜ let R11 ||… || R𝑛11 = dnf(R1) and R12 ||… || R𝑛22 = dnf(R2) in

𝑛1
||
𝑖=1

𝑛2
||
𝑗=1

R𝑖1R
𝑗
2

3 We understand ”regular model checking” as checking temporal specifications given
by a regular expression. This is different from [1] model checking transition systems
which states are regular word or tree languages.
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The Lem. 1 below shows that normalization leaves the semantics unchanged. It
uses the fact that (R1 || R2)∗ ≎ (R1∗R2∗)∗ where the R1 and R2 do not contain
any || [29, Sect. 3.4.6, p. 118]. It shows that normalization in (12) can be further
simplified by 𝜀R ≎ R𝜀 ≎ R and (𝜀)∗ ≎ 𝜀 which have equivalent semantics.

Lemma 1. dnf(R) ≎ R.

first and next of regular expressions Janusz Brzozowski [7] introduced the
notion of derivation for regular expressions (extended with arbitrary Boolean
operations). The derivative of a regular expression R with respect to a symbol
𝑎, typically denoted as 𝐷𝑎(R) or 𝑎−1R, is a regular expression given by a simple
recursive definition on the syntactic structure of R. The crucial property of these
derivatives is that a string of the form 𝑎𝜎 (starting with the symbol 𝑎) matches
an expression R iff the suffix 𝜎 matches the derivative 𝐷𝑎(R) [7,38,2].

Following this idea, assume that a non-empty regular expression R ∈ R+ has
been decomposed into disjunctive normal form (R1 || … || R𝑛) for some 𝑛 ⩾ 1, in
which none of the R𝑖, for 𝑖 ∈ [1, 𝑛], contains an occurrence of ||. We can further
decompose each R𝑖 ∈ R+ ∩ R∖| into ⟨L : B, R′𝑖⟩ = fstnxt(R𝑖) such that

– L : B recognizes the first state of sequences of states recognized by R𝑖;
– the regular expression R′𝑖 recognizes sequences of states after the first state

of sequences of states recognized by R𝑖.
We define fstnxt for non-empty ||-free regular expressions R ∈ R+∩R∖| by structural
induction, as follows.

fstnxt(L : B) ≜ ⟨L : B, 𝜀⟩ (10)
fstnxt(R1R2) ≜ fstnxt(R2) if R1 ∈ R𝜀

fstnxt(R1R2) ≜ let ⟨R𝑓1 , R𝑛1⟩ = fstnxt(R1) in ( R𝑛1 ∈ R𝜀 ? ⟨R
𝑓
1 , R2⟩ : ⟨R

𝑓
1 , R𝑛1 ∙ R2⟩ )

if R1 ∉ R𝜀
fstnxt(R+) ≜ let ⟨R𝑓, R𝑛⟩ = fstnxt(R) in ( R𝑛 ∈ R𝜀 ? ⟨R𝑓, R∗⟩ : ⟨R𝑓, R𝑛 ∙ R∗⟩ )
fstnxt((R)) ≜ fstnxt(R)

The following Lem. 2 shows the equivalence of an alternative-free regular ex-
pression and its first and next decomposition.

Lemma 2. Let R ∈ R+ ∩R∖| be a non-empty ||-free regular expression and ⟨L : B,
R′⟩ = fstnxt(R). Then R′ ∈ R∖| is ||-free and R ≎ L : B ∙ R′.

6 The model checking abstraction

The model checking abstraction in Section 4 is impractical for structural model
checking since e.g. when checking that a trace concatenation 𝜋1⌢⋅𝜋2 of a statement
list Sl ∶∶= Sl′ S for a specification R where 𝜋1 is a trace of Sl′ and 𝜋2 is a trace of
S, we first check that 𝜋1 satisfies R and then we must check 𝜋2 for a continuation
R2 of R which should be derived from 𝜋1 and R. This is not provided by the
boolean abstraction 𝛼𝜚,R which needs to be refined as shown below.
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Example 5. Assume we want to check ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3 for the
regular specification ? : x = x ∙ ? : x = x + 1 ∙ ? : x = x + 3 by first checking the
first statement and then the second. Knowing the boolean information that
ℓ1 x = x + 1 ;ℓ2 model checks for ? : x = x ∙ ? : x = x + 1 is not enough. We
must also know what to check the continuation ℓ2 x = x + 2 ;ℓ3 for. (This is
? : x = x + 1 ∙ ? : x = x + 3 that is if x is equal to the initial value plus 1 at ℓ2, it
is equal to this initial value plus 3 at ℓ3.) ⊓⊔

The model-checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a trace 𝜋 with initial environment 𝜚 for a
||-free specification R ∈ R∖| is a pair ⟨𝑏, R′⟩ where the boolean 𝑏 states whether the
specification R holds for the trace 𝜋 and R′ specifies the possible continuations
of 𝜋 according to R, 𝜀 if none.

Example 6. For Sl = ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3, we have 𝓢∗JSlK = {⟨ℓ1, 𝜌⟩⟨ℓ2,
𝜌[x← 𝜌(x)+1]⟩⟨ℓ3, 𝜌[x← 𝜌(x)+3]⟩ ∣ 𝜌 ∈ Ev} and 𝓜𝑡⟨𝜌, ? : x = x ∙ ? : x = x+1 ∙
? : x = x + 3⟩(⟨ℓ1, 𝜌⟩⟨ℓ2, 𝜌[x ← 𝜌(x) + 1]⟩⟨ℓ3, 𝜌[x ← 𝜌(x) + 3]⟩) = ⟨tt, 𝜀⟩ (we have

ignored the initial empty statement list in Sl to simplify the specification). ⊓⊔

The fact that 𝓜𝑡⟨𝜚, R⟩𝜋 returns a pair ⟨𝑏, R′⟩ where R′ is to be satisfied by
continuations of 𝜋 allows us to perform program model checking by structural
induction on the program in Section 8. The formal definition is the following.

Definition 2 (Regular model checking).
– Trace model checking (𝜚 ∈ Ev is an initial environment and R ∈ R+ ∩ R∖|

is a non-empty and ||-free regular expression):

𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ (11)
𝓜𝑡⟨𝜚, R⟩∋ ≜ ⟨tt, R⟩
𝓜𝑡⟨𝜚, R⟩𝜋 ≜ let ⟨ℓ1, 𝜌1⟩𝜋′ = 𝜋 and ⟨L : B, R′⟩ = fstnxt(R) in 𝜋 ≠ ∋

( ⟨𝜚, ⟨ℓ1, 𝜌1⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R′⟩𝜋′ : ⟨ff, R′⟩ )

– Set of traces model checking (for an ||-free regular expression R ∈ R∖|):

𝓜∖|⟨𝜚, R⟩Π ≜ {⟨𝜋, R′⟩ | 𝜋 ∈ Π ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} (12)

– Program component S ∈ Pc model checking (for an ||-free regular expres-
sion R ∈ R∖|):

𝓜∖|JSK⟨𝜚, R⟩ ≜𝓜∖|⟨𝜚, R⟩(𝓢∗JSK) (13)

– Set of traces model checking (for regular expression R ∈ R):

𝓜⟨𝜚, R⟩Π ≜ let (R1 ||… || R𝑛) = dnf(R) in (14)
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩Π}
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– Model checking of a program component S ∈ Pc (for regular expression
R ∈ R):

𝓜JSK⟨𝜚, R⟩ ≜𝓜⟨𝜚, R⟩(𝓢∗JSK) (18) ⊓⊔

The model checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a stateful trace 𝜋 in (14) returns a pair ⟨𝑏,
R′⟩ specifying whether 𝜋 satisfies the specification R (when 𝑏 = tt) or not (when
𝑏 = ff). So if 𝓜𝑡⟨𝜌, R⟩(𝜋) = ⟨ff, R′⟩ in (15) then the trace 𝜋 is a counter example
to the specification R. R′ specifies what a continuation 𝜋′ of 𝜋 would have to
satisfy for 𝜋 ⌢⋅ 𝜋′ to satisfy R (nothing specific when R′ = 𝜀).

Notice that 𝓜𝑡⟨𝜚, R⟩𝜋 checks whether the given trace 𝜋 satisfies the regular
specification R for initial environment 𝜚. Because only one trace is involved, this
check can be done at runtime using a monitoring of the program execution. This
is the case Fred Schneider’s security monitors [44] in Ex. 1 (using an equivalent
specification by finite automata).

The set of traces model checking 𝓜∖|⟨𝜚, R⟩Π returns the subset of traces of
Π satisfying the specification R for the initial environment 𝜚. Since all program
executions 𝓢∗JPK are involved, the model checking 𝓜∖|JPK⟨𝜚, R⟩ of a program P
becomes, by Rice theorem, undecidable.

The regular specification R is relational in that it may relate the initial and
current states (or else may only assert a property of the current states when R
never refer to the initial environment 𝜚). If 𝜋⟨ℓ, 𝜌⟩𝜋′ ∈ 𝓢∗JSK is an execution trace
satisfying the specification R then R in (18) determines a relationship between the
initial environment 𝜚 and the current environment 𝜌. For example R = ⟨{atJSK},
B⟩ ∙ R′ with 𝓑JBK𝜚, 𝜌 = ∀x ∈ X . 𝜚(x) = 𝜌(x) expresses that the initial values of
variables x are denoted x. 𝓑JBK𝜚, 𝜌 = tt would state that there is no constraint
on the initial value of variables. The difference with the invariant specifications
of is that the order of computations is preserved. R can specify in which order
program points may be reached, which is impossible with invariants 4.

The model checking abstraction (15) which, given an initial environment
𝜚 ∈ Ev and an ||-free regular specification R ∈ R∖|, returns the set of traces
satisfying this specification is the lower adjoint of the Galois connection

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
𝓜∖|⟨𝜚, R⟩

𝛾𝓜∖|⟨𝜚, R⟩
⟨℘(𝕊+), ⊆⟩ for R ∈ R∖| in (15) (16)

4 By introduction of an auxiliary variable C incremented at each program step one
can simulate a trace with invariants. But then the reasoning is not on the original
program P but on a transformed program P. Invariants in P holding for a given value
of 𝑐 of C also hold at the position 𝑐 of the traces in P. This king of indirect reasoning
is usually heavy and painful to maintain when programs are modified since values of
counters are no longer the same. The use of temporal specifications has the advantage
of avoiding the reasoning on explicit positions in the trace.
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If ⟨C, ⩽⟩ is a poset, ⟨A, ⊑, ⊔, ⊓⟩ is a complete lattice, ∀𝑖 ∈ [1, 𝑛] . ⟨C, ⩽⟩ −−−−−→←−−−−−𝛼𝑖
𝛾𝑖 ⟨A,

⊑⟩ then ⟨C, ⩽⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ⊑⟩ where 𝛼 ≜

𝑛
⨆̇
𝑖=1
𝛼𝑖 and 𝛾 =

𝑛
⨅̇
𝑖=1
𝛾𝑖, pointwise. This implies

that
⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨℘(𝕊+), ⊆⟩ for R ∈ R in (17) (17)

To follow the tradition that model checking returns a boolean answer this ab-
straction can be composed with the boolean abstraction

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−→←−−−−−−−−−
𝛼𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨B, ⇐⟩ (18)

where 𝛼𝓜⟨𝜚, R⟩(𝑋) ≜ ({𝜚} × 𝑋) ⊆𝓜⟨𝜚, R⟩(𝑋).

7 Soundness and completeness of the model checking
abstraction

The following Th. 1 shows that the Def. 1 of model checking a program semantics
for a regular specification is a sound and complete abstraction of this semantics.

Theorem 1 (Model checking soundness (⇐) and completeness (⇒)).

P, 𝜚 ⊨ R⇔ 𝛼𝓜⟨𝜚, R⟩(𝓢∗JPK)
At this point we know, by (18) and Th. 1 that a model checker 𝓜JSK⟨𝜚, R⟩

is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JSK) of the program component
semantics 𝓢∗JSK which provides a counter example in case of failure. This allows
us to derive a structural model checker �̂�JPK⟨𝜚, R⟩ in Section 8 by calculational
design.

8 Structural model checking

By Def. 1 of the model checking of S, 𝜚 ⊨ R of a program P ∈ P for a regular
specification R ∈ R+ and initial environment 𝜚, Th. 1 shows that a model checker
𝓜JPK⟨𝜚, R⟩ is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JPK) of the program
semantics 𝓢∗JPK. This abstraction does not provide a model checking algorithm
specification.

The standard model checking algorithms [10] use a transition system (or a
Kripke structure variation [32]) for hardware and software modeling and pro-
ceeding by induction on computation steps.

In contrast, we proceed by structural induction on programs, which will be
shown in Th. 2 to be logically equivalent (but maybe more efficient since fixpoints
are computed locally). The structural model checking�̂�JPK⟨𝜚, R⟩ of the program
P proceeds by structural induction on the program structure:
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{
{
{

�̂�JSK⟨𝜚, R⟩ ≜ �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩
S ∈ Pc

where the transformer �̂� uses the results of model checking of the immediate
components S′ ◁ S and involves a fixpoint computation for iteration statements.

The following Th. 2 shows that the algorithm specification is correct, that
is �̂�JSK = 𝓜JSK for all program components S. So together with Th. 1, the
structural model checking is proved sound and complete.

Theorem 2. ∀S ∈ Pc, R ∈ R, 𝜚 ∈ Ev . �̂�∖|JSK⟨𝜚, R⟩ =𝓜∖|JSK⟨𝜚, R⟩ and �̂�JSK⟨𝜚,
R⟩ =𝓜JSK⟨𝜚, R⟩.
The proof of Th. 2 is by calculational design and proceeds by structural induction
on the program component S. Assuming 𝓜JS′K = �̂�JS′K for all immediate
components S′ ◁ S of statement, the proof for each program component S has
the following form.

𝓜JSK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JSK) H(18)I
= 𝓜⟨𝜚, R⟩(𝓕JSK( ∏

S′◁ S
𝓢∗JS′K)⟨𝜚, R⟩)

Hby structural definition 𝓢∗JSK =𝓕JSK(∏S′◁ S𝓢∗JS′K) of the stateful
prefix trace semantics in Section 2I

= ... Hcalculus to expand definitions, rewrite and simplify formulæ by
algebraic lawsI

= �̂�JSK( ∏
S′◁ S

𝓜JS′K)⟨𝜚, R⟩
Hby calculational design to commute the model checking abstraction
on the result to the model checking of the arguments of 𝓢∗JSKI

= �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩ Hind. hyp.I
≜ �̂�JSK⟨𝜚, R⟩ Hby defining �̂�JSK ≜ �̂�JSK(∏S′◁ S �̂�JS′K)I

For iteration statements, 𝓕JSK(∏S′◁ S𝓢∗JS′K)⟨𝜚, R⟩ is a fixpoint, and this
proof involves the fixpoint transfer theorem [16, Th. 7.1.0.4 (3)] based on the
commutation of the concrete and abstract transformer with the abstraction. The
calculational design of the structural model checking �̂�JSK is shown below.

Definition 3 (Structural model checking).
– Model checking a program P ∶∶= Sl ℓ for a temporal specification R ∈ R

with alternatives.
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�̂�JPK⟨𝜚, R⟩ ≜ let (R1 ||… || R𝑛) = dnf(R) in (19)
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩}

Proof. In case (22) of a program P ∶∶= Sl ℓ, the calculational design is as
follows.

𝓜JPK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JPK) H(18)I
= let (R1 ||… || R𝑛) = dnf(R) in

𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JPK)}H (17)I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hdef. of 𝓢∗JPK ≜ 𝓢∗JSlKI

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hind. hyp.I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩} H(16)I

= �̂�JPK⟨𝜚, R⟩ H(22)I ⊓⊔
Definition 3 (Structural model checking, contn’d)

– Model checking an empty temporal specification 𝜀.

�̂�∖|JSK⟨𝜚, 𝜀⟩ ≜ {⟨𝜋, 𝜀⟩ | 𝜋 ∈ 𝓢∗JSK} (20)

– It is assumed below that R ∈ R∖| ∩ R+ is a non-empty, alternative ||-free
regular expression.

– Model checking a statement list Sl ∶∶= Sl′ S

�̂�∖|JSlK⟨𝜚, R⟩ ≜�̂�∖|JSl′K⟨𝜚, R⟩ (21)
∪ {⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ | ⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩, R′⟩ ∈�̂�∖|JSl′K⟨𝜚, R⟩ ∧

⟨⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ ∈�̂�∖|JSK⟨𝜚, R′⟩}
– Model checking an empty statement list Sl ∶∶= 𝜖

�̂�∖|JSlK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (22)
{⟨⟨atJSlK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSlK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
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(In practice the empty statement list 𝜖 needs not be specified so we could
eliminate that need by ignoring 𝜖 in the specification R and defining�̂�∖|JSlK⟨𝜚,
R⟩ ≜ {⟨⟨atJSlK, 𝜌⟩, R⟩ | 𝜌 ∈ Ev}.)
– Model checking an assignment statement S ∶∶= ℓ x = A ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (23)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK} (a)
∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧ (b)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, R″⟩ | R′ ∉ R𝜀 ∧ (c)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩⟩ ∈ 𝓢rJL′ : B′K}

For the assignment S ∶∶= ℓ x = A ; in (26), case (a) checks the prefixes that stops
at ℓ whereas (b) and (c) checks the maximal traces stopping after the assignment.
In each trace checked for the specification R, the states are checked successively
and the continuation specification is returned together with the checked trace,
unless the check fails. Checking the assignment S ∶∶= ℓ x = A ; in (26) for ⟨L : B,
R′⟩ = fstnxt(R) consists in first checking L : B at ℓ and then checking on R′ after
the statement. In case (b), R′ is empty so trivially satisfied. Otherwise, in case
(c), ⟨L′ : B′, R″⟩ = fstnxt(R′) so L′ : B′ is checked after the statement while R″
is the continuation specification.
Proof. In case (26) of an assignment statement S ∶∶= ℓ x = A ;, the calcula-
tional design is as follows.

𝓜∖|JSK ⟨𝜚, R⟩
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSlK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(16) and (15) I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev}∪{⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ ∣ 𝜌 ∈ Ev∧𝑣 =𝓐JAK𝜌∧⟨tt,

R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(1)I
= {⟨⟨ℓ, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩⟨ℓ, 𝜌⟩} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝜌 ∈ Ev ∧ 𝑣 = 𝓐JAK𝜌⟨tt, R′⟩ = 𝓜𝑡⟨𝜚, R⟩⟨ℓ,
𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩} Hdef. ∪ and ∈I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨tt, R′⟩ = let ⟨L : B, R″⟩ = fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? ⟨tt,
R″⟩ : ⟨ff, R′⟩ )} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨tt, R′⟩ = let ⟨L : B, R″⟩ =
fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ : ⟨ff, R″⟩ )}H(14)I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R)∧⟨𝜚,
⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ = ⟨tt, R′⟩ )}Hdef. = and 𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ by (14)I
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= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R)∧⟨𝜚,
⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : let ⟨L′ : B′, R‴⟩ = fstnxt(R″) in ⟨𝜚, ⟨aftJSK,
𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K )} H(14)I

= let ⟨L : B, R′⟩ = fstnxt(R) in
{⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, 𝜀⟩ | 𝑣 =𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∈ R𝜀}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R″⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∉
R𝜀 ∧ let ⟨L′ : B′, R″⟩ = fstnxt(R′) in ⟨𝜚, ⟨aftJSK, 𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K}Hdef. ∪I

= �̂�∖|JSK ⟨𝜚, R⟩ H(26)I ⊓⊔
Definition 3 (Structural model checking, continued)

– Model checking a conditional statement S ∶∶= if ℓ (B) S𝑡

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (24)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ |𝓑JBK𝜌 = tt ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ ∈�̂�∖|JS𝑡K⟨𝜚, R′⟩}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | |𝓑JBK𝜌 = ff ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R″⟩ |𝓑JBK𝜌 = ff ∧ R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

– Model checking a break statement S ∶∶= ℓbreak ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (25)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, R″⟩ | R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨brk-toJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

– Model checking an iteration statement S ∶∶= while ℓ (B) S𝑏
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�̂�∖|JSK⟨𝜚, R⟩ ≜ lfp⊆ (�̂�∖|JSK⟨𝜚, R⟩) (26)
�̂�∖|JSK⟨𝜚, R⟩ 𝑋 ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (27)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K} (a)
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧

𝓑JBK 𝜌 = ff}
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (b)

𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R′⟩ = fstnxt(R″) ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (c)
𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R‴⟩ = fstnxt(R″) ∧ R‴ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R′⟩ = fstnxt(R‴) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧ (d)
𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (e)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, 𝜀⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (f)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, R⁗⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R⁗ ∉ R𝜀 ∧
⟨L′ : B′, R‴⟩ = fstnxt(R⁗) ∧ ⟨𝜚, ⟨atJS𝑏K, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩}

The model checking of an iteration statement S ∶∶= while ℓ (B) S𝑏 in (30)
checks one more iteration (after checking the previous ones as recorded by 𝑋)
while the fixpoint (29) repeats this check for all iterations. Case (a) checks the
prefixes that stops at loop entry ℓ. (b) and (c) check the exit of an iteration
when the iteration condition is false, (b) when the specification stops at loop
entry ℓ before leaving and (c) when the specification goes further. (d), (e) and
(f) check one more iteration when the iteration condition is true. In case (d), the
continuation after the check of the iterates is empty so trivially satisfied by any
continuation of the prefix trace. In case (e), the continuation after the check of
the iterates just impose to verify L : B on iteration entry and nothing afterwards.
In case (f) the continuation after the check of the iterates requires to verify L : B
at the loop entry, L′ : B′ at the body entry, and the rest R‴ of the specification
for the loop body (which returns the possibly empty continuation specification
R′). The cases (b) to (f) are mutually exclusive.
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9 Notes on implementations and expressivity
Of course further hypotheses and refinements would be necessary to get an effec-
tive algorithm as specified by the Def. 3 of structural model checking. A common
hypothesis in model checking is that the set of states 𝕊 is finite. Traces may still
be infinite so the fixpoint computation (29) may not converge. However, infinite
traces on finite states must involve an initial finite prefix followed by a finite
cycle (often called a lasso). It follows that the infinite set of prefix traces can
be finitely represented by a finite set of maximal finite traces and finite lassos.
Regular expressions L : B can be attached to the states as determined by the
analysis, and there are finitely many of them in the specification. These finiteness
properties can be taken into account to ensure the convergence of the fixpoint
computation in (29).

A symbolic representation of the states in finite/lasso stateful traces may be
useful as in symbolic execution [30] or using BDDs [6] for boolean encodings
of programs. By Kleene theorem [43, Theorem 2.1, p. 87], a convenient repre-
sentation of regular expressions is by (deterministic) finite automata e.g. [34].
Symbolic automata-based algorithms can be used to implement a data structure
for operations over sets of sequences [26].

Of course the hypothesis that the state space is finite and small enough to
scale up and limit the combinatorial blow up of the finite state-space is unre-
alistic [11]. In practice, the set of states 𝕊 is very large, so abstraction and a
widening/dual narrowing are necessary. A typical trivial widening is bounded
model checking (e.g. widen to all states after 𝑛 fixpoint iterations) [5]. Those of
[36] are more elaborated.

10 Conclusion
We have illustrated the idea that model checking is an abstract interpretation,
as first introduced in [17]. This point of view also yields specification-preserving
abstract model checking [18] as well as abstraction refinement algorithms [23].

Specifications by temporal logics are not commonly accepted by program-
mers. For example, in [37], the specifications had to be written by academics.
Regular expressions or path expressions [8] or more expressive extensions might
turn out to be more familiar. Moreover, for security monitors the false alarms of
the static analysis can be checked at runtime [44,35].

Convergence of model checking requires expressivity restrictions on both the
considered models of computation and the considered temporal logics. For some
expressive models of computation and temporal logics, state finiteness is not
enough to guarantee termination of model checking [17,24]. Finite enumeration
is limited, even with symbolic encodings. Beyond finiteness, scalability is always a
problem with model checking and the regular software model checking algorithm
�̂� is no exception, so abstraction and induction are ultimately required to
reason on programs.

Most often, abstract model checking uses homomorphic/partitioning abstrac-
tions e.g. [4]. This is because the abstraction of a transition system on concrete
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states is a transition system on abstract states so model checkers are reusable in
the abstract. However, excluding edgy abstractions as in [13], state-based finite
abstraction is very restrictive [24] and do not guarantee scalability (e.g. SLAM
[3]). Such restrictions on abstractions do not apply to structural model checking
so that abstractions more powerful than partitioning can be considered.

As an alternative approach, a regular expression can be automatically ex-
tracted by static analysis of the program trace semantics that recognizes all
feasible execution paths and usually more [19]. Then model-checking a regular
specification becomes a regular language inclusion problem [33].
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