
A Personal Historical Perspective on Abstract
Interpretation

Patrick Cousot

Abstract Following an historical perspective, and restricted to my work with Rad-
hia Cousot, I discuss the origin and evolution of concepts in abstract interpretation
applied to semantics, verification, static and dynamic analysis, and algorithm design.

Abstract interpretation is a unifying theory of formal methods that proposes a
general methodology for proving the correctness of computing systems, by sound
(and sometimes complete) approximation on their semantics.

§ 1. Origin Radhia Cousot attended the Marktoberdorf summer school in July 25
to August 4, 1973 where Edsger Dijkstra showed program proofs by inventing back-
ward invariants which shortly after became the weakest precondition calculus [147].
Instead of inventing invariants, Radhia had the idea of calculating these invariants
by a backward analysis. To make the computation feasible she thought about starting
with intervals (from her numerical analysis and operational research background).

Back to Grenoble, she showed me her ideas and was a bit disappointed that I
disagreed with going backward (with an abductive reasoning) claiming that going
forward (with a deductive reasoning) would be more precise. But, not discouraged,
she made it forward and was convinced by an example showing better results with a
forward analysis (which we later understood as incomparable in general!).

§ 2. Widening The next problem was loops for which the analysis was going on
for ever. We first tried dichotomy, recurrence equations, etc. with moderate success
and then had the idea to push unstable bounds to infinity, which we called widening
since it made intervals larger. Definitely this process could not go on for ever with
finitely many variables. Widening captures mathematical induction by forcing the
convergence to an inductive program property.

§ 3. Example of widening (and narrowing) Consider the problem of inferring an
invariant for the program i=1; while (i<m) i = i+1;where m is some (possibly

Patrick Cousot
CIMS, NYU, New York, NY, USA, e-mail: pcousot@cims.nyu.edu

1

https://en.wikipedia.org/wiki/Radhia_Cousot
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Radhia_Cousot
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Mathematical_induction
pcousot@cims.nyu.edu

2 Patrick Cousot

large) integer constant¹. A mathematical reasoning would be that before the first loop
iteration, we have i ∈ [1, 1]. Before the second loop iteration, we have either i ∈
[1, 1] on loop entry or i ∈ [2, 2] after the incrementation so i ∈ [1, 2] is invariant
at that point of the computation. Making the induction hypothesis that i ∈ [1, 𝑛]
is invariant before the 𝑛th iteration, 𝑛 < m, the invariant would be i ∈ [1, 1] ∪
[2, 𝑛 + 1] = [1, 𝑛 + 1] before the 𝑛 + 1th iteration. Therefore, by recurrence on 𝑛, it
follows that i ∈ [1, 𝑛] is invariant before the 𝑛th iteration. This implies that 𝑖 = 𝑚 on
loop exit, assuming 1 ⩽ m ⩽ max_int (and that the program terminates). Inferring
automatically the induction hypothesis and then proving it correct is not a simple
task for computers on large non-trivial programs².

A widening will help, by enforcing convergence at the cost of a loss of precision.
We have i ∈ [1, 1] on loop entry, i ∈ [1, 2] after one iteration. At this point no
widening occurs, since the extrapolation should be between consecutive loop itera-
tions. One more iteration yields i ∈ [1, 3]. Since the upper bound is unstable the
widening extrapolates to i ∈ [1, max_int]. Therefore, we have i ∈ [m, max_int]
on loop exit, which is sound but imprecise.

Anticipating on Section § 9., the next iteration with test i<m tells us that i ∈
[1, m − 1] before any iteration. It follows after one more iteration that i = m on loop
exit.

Observe that after an increasing iteration with larger and larger intervals [1, 1],
[1, 2], [1, 3], widened to [1, max_int], we have a decreasing one from [1, max_int]
to [1, m]. This decreasing sequence might be infinite or slowly converging so that a
narrowing will enforce finite convergence by interpolation.

The resulting invariant will always be sound but, by Rice theorem [183, 7], it may
be imprecise. General alternatives to widening³ consist in considering finitary cases
or asking end-users to help in guessing the invariant and proving it correct, which
hardly scale up to dozens of millions lines.

Radhia had not abandoned the idea of going both forward and backward as shown
by her notes in fig. 1⁴. Their iterated forward-backwark reduction appeared later [31].

§ 4. From flowcharts to structural induction Of course the analysis was for
flowcharts since we were taught at that time that a good programmer first draws a
flowchart and then translate it into a program). Fortunately, under the influence of
Edsger Dijkstra [146], this methodology was abandoned, although flowchart/control-
flow graphs still persist in compilers. Most modern abstract interpretation-based

¹ A typical example is the loop of a synchronous control/command program to be executed every
clock tick.
² Typically the body of the external loop of a synchronous control/command program has millions
of lines.
³ Other methods such as policy iteration and acceleration are domain-specific.
⁴ In modern terms the forward analysis was computing a least fixpoint (also fixed point) by iteration
from the infimum (denoted

⊔d
now⊥) while the backward analysis was computing a greatest fixpoint

by iterating from the supremum [−∞, +∞] so as to include non-terminating executions. Moreover
being Cartesian, the forward and backward analysis where incomparable so no one is better than
the other.

https://en.wikipedia.org/wiki/Radhia_Cousot
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

A Personal Historical Perspective on Abstract Interpretation 3

static analyzers work by structural induction that is induction on the program syntax
(as found in Hoare’s logic and denotational semantics).

Fig. 1 Early notes of Radhia Cousot on static interval analysis

§ 5. Bibliographic input Started in complete isolation, the work went on in the
context of a contract IRIA-SESORI (now INRIA) and we were evaluated at midterm
by Hervé Gallaire and Bernard Lorho who were very encouraging. Bernard Lohro
came with the 1970 paper of Fran Allen [5] and the thesis of Gary Kildall [164]
(later published as [165]). Michel Sintzoff, visiting Grenoble, gave us his 1972 paper
[190] and the 1973 paper of Ben Wegbreit [196] (later published as [197])⁵. Stephen
Schuman introduced us to the work of Mike Karr [158] (later published as [159])
and James King [166] (later published as [167]). None of these references nor their
citations were available in our computer science or mathematics libraries.

At first, we were somewhat discouraged thinking that these guys had invented
everything before us! But none had widenings and so none could handle intervals.
Moreover, we found errors in these papers (for example Kildall’s constant propaga-
tion is not distributive, Sintzoff’s rule of signs is wrong) while we had a general proof
of correctness of our static analysis algorithm, including for intervals as a particular
case. Our background in mathematics let us think that proofs do matter.

§ 6. Soundness and termination proof An important question was how to prove
the correctness of static analysis algorithms rather than postulating that they work

⁵ Bibliographic search and typesetting was entirely manual at the time, with delays from one to
three weeks, if ever, when requesting preprints!

https://en.wikipedia.org/wiki/Radhia_Cousot
https://dblp.org/pid/38/1430.html
https://dblp.org/pid/13/3900.html
https://en.wikipedia.org/wiki/Frances_Allen
https://en.wikipedia.org/wiki/Gary_Kildall
https://dblp.org/pid/75/1441.html
https://dblp.org/pid/31/5520.html
https://dblp.org/pid/72/562.html
https://dblp.org/pid/72/562.html
https://dblp.org/pid/39/4941.html
https://dblp.org/pid/92/1703.html
https://en.wikipedia.org/wiki/Widening_(computer_science)

4 Patrick Cousot

correctly by definition. The key idea is to refer to a formal definition of program
execution, that is an operational semantics (a concept that we ignored at the time).

The proof appeared in the final report of the SESORI report [72]. Properties 〈𝐸,
∅, ∪, ∇〉 of concrete values are axiomatized using a set 𝐸 of properties equipped with
a binary join operation ∪ and infimum ∅ (which is shown to induce a partial order)
plus a widening (satisfying ∀𝑥, 𝑦 ∈ 𝐸 . 𝑥 ∪ 𝑦 ≤ 𝑥 ∇ 𝑦 and a convergence hypothesis)
for which basic mathematical properties are proved ⁶. Abstract properties of each
variable also form a join-semilattice of abstract values with infimum 〈𝐸, ⊔d

, ∪, ∇〉
and widening ∇. As a typical example for integer variables, 𝐸 is the set of intervals
with ⊔d denoting the empty interval and the widening moving unstable bounds to
infinity. Abstract properties (called abstract contexts) which assign abstract values
to finitely many variables/identifiers are shown to have the same structure 〈𝐸, Φ, ∪,
∇〉, pointwise. This Cartesian abstraction⁷ was later extended to the notion of abstract
domain to include forward and backward transformers on relational properties.

The correspondence between sets of concrete and abstract values is established
through an abstraction (denoted @, now 𝛼) assumed to preserve finite joins and a
concretization (denoted 𝛾) where 𝛾 ◦ 𝛼 is extensive and 𝛼 ◦ 𝛾 is the identity⁸.
It is shown, in great detail, that these abstract contexts are join semi-lattices with
widening. Then program graphs are formalized together with paths, cycles, parti-
tions, etc. and Claude Berge (hyper)graphs theory [9] is used to determine loop heads
for widening. The interpretation of side-effect free assignment, test, junction, and
loop head graph nodes is defined as a map 𝑓 from concrete environments before ex-
ecution to concrete environments after execution of the node (that would nowadays
be understood as forward transformers for a small-step operational semantics).

Then the abstract interpretation 𝐹 of these graph nodes is defined and proved
to be increasing and locally sound in that ¤𝛼({ 𝑓 (𝜌) | 𝜌 ∈ ¤𝛾(I)}) ¤≤ 𝐹 (I) for
any abstract contexts I (where the dot notation means the pointwise extension from
abstract values to abstract environments). So the concept of collecting semantics is
left implicit.

Then a forward abstract interpretation algorithm is given to traverse the graph
from an initial abstract context on some structure 〈𝐸, ⊔d

, ∪, ∇〉, the abstract con-
text of all other nodes being the infimum Φ, until stabilization. Each iteration first
propagates the information at entry, junction, or loop head nodes to the next junction
or loop head nodes. Then the join at junction nodes and widening at loop heads is
computed. This is repeated until stabilization at loop heads.

⁶ Having not yet discovered Garrett Birkhoff’s lattice theory [15] at the time, they were not named
“join-semilattice with infimum and widening”!
⁷ Cartesian abstractions disgard any relation between variables, program points, etc.
⁸ Thanks to a discussion with Claude Benzaken pointing to Garrett Birkhoff’s lattice theory book
[15], we discovered complete lattices [15, Ch. V], Galois connections [15, Ch. V, §8], and Tarski’s
fixpoint theorem [15, Ch. V, Th. 11], [192]. It took us some time to understand that our pair 〈𝛼,
𝛾〉 was (almost) a Galois connection, since they are defined semi-dually in [15, Ch. V, §8]. They
also preserve arbitrary joins (not only finite ones) of posets and are not necessarily surjective, that
is, 𝛼 ◦ 𝛾 is reductive.

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Claude_Berge
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Garrett_Birkhoff
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=115754
https://en.wikipedia.org/wiki/Garrett_Birkhoff
https://en.wikipedia.org/wiki/Évariste_Galois
https://en.wikipedia.org/wiki/Alfred_Tarski

A Personal Historical Perspective on Abstract Interpretation 5

For the termination proof, the successive abstract contexts at each node are shown
to be increasing, hence would be strictly increasing at loop heads in case of nonter-
mination. This would be in contradiction with the definition of the widening ∇ on
abstract contexts (previously derived pointwise for the widening ∇ an abstract val-
ues).

For soundness, it is shown that the algorithm stops with stable contexts, mean-
ing that one more iterations imply the same result⁹. The main theorem shows, by
recurrence , that at any point in any execution (understood as a sequence of concrete
contexts assigning values to variables) of the graph reaching a node will have values
of variables in the concretisation of the abstract context of that node.

Since the forward abstract interpretation algorithm involves only abstract con-
texts, its termination proof involves only abstract contexts, and the soundness proof is
relative to concrete executions , the algorithm and its soundness proof apply equally
well to relational analyzes such as [158] which is (based on a poset satisfying the
ascending chain condition, so ∇ = ∪).

Several examples are given (intervals and parity for integers, nullity of pointers).

§ 7. Initial publication The main innovative contributions were the introduction
of the widening, of soundness with respect to a concrete semantics using abstraction
and concretization functions, the original interval example, together with its correct-
ness proofs. The paper was rather long (126 p.), with a lot of very similar cases due
to the use of flowcharts with 6 kinds of nodes, and written in French, so had no im-
pact at all (6 citations on Google Scholar¹⁰, including 2 by ourself). The paper was
translated in English (18 p., without proofs). In addition, it included the idea of dual
abstract interpretation¹¹ [71] (13 citations onGoogle Scholar, including 2 by ourself).
Submitted for publication and accepted at the ISOP conference (now ESOP) [73],
we had in between discovered and cited the pioneer work of Peter Naur on pseudo
evaluation [178, 177]. Fortunately Peter Naur was our session chair and thanked us
for building so beautifully upon his work¹². He also stopped Wilhelm De Roever,
trying to find counter-examples to termination, “there is a proof, which means you
cannot find a counter-example”. On Google Scholar, the paper is cited by 751.

§ 8. Development of the theory from an algorithmic to an algebraic frame-
work The year 1975-79 were very productive¹³ and saw the development of basic
ideas in the theory of abstract interpretation. Although the work was more or less
simultaneous depending on the inspiration of the day, we use a mix of chronologic
and thematic presentation of these ideas.

⁹ In modern terms, the iterations stop at a postfixpoint, not necessarily a fixpoint.
¹⁰ Citation counts were collected on Nov. 30, 2022.
¹¹ In modern terms using greatest instead of least fixpoint.
¹² We did not dare tell him that the citation was a posteriori!
¹³ Up to abandoning hiking, climbing, and cross-country skiing in Grenoble, at least during working
days.

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=P.+Cousot+and+R.+Cousot.+V%C3%A9rification+statique+de+la+coh%C3%A9rence+dynamique+des+programmes&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C33&sciodt=0%2C33&cites=9241811531091970556&scipsc=&q=P.+Cousot+and+R.+Cousot.+Static+verification+of+dynamic+type+properties+of+variables.+Res.+rep.+R.R.+25%2C+Laboratoire+IMAG%2C+Universit%C3%A9+scientifique+et+m%C3%A9dicale+de+Grenoble%2C+Grenoble%2C+France%2C+Nov.+1975.+18+p.&btnG
https://en.wikipedia.org/wiki/Peter_Naur
https://en.wikipedia.org/wiki/Peter_Naur
https://dblp.org/pid/r/WPdRoever.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Static+determination+of+dynamic+properties+of+programs+cousot+1976&btnG=

6 Patrick Cousot

§ 9. Narrowing We observed that the abstract interpreter could go on iterating
after finding a solution and this improved the solution (see Example § 3.). This im-
provement might be slow to converge (e.g. for intervals), so we had to enforce rapid
convergence. Since dual widening was not working¹⁴, we invented the narrowing,
as well as dual widening and narrowing, which first appeared in [74], see [59] for
examples.

§ 10. Fixpoints We also rapidly understood that the abstract interpreter was solv-
ing a (system of) fixpoint equation(s), and that, by Tarski’s fixpoint theorem, there
was a least solution (under function increasingness and complete lattice hypotheses),
and moreover, least fixpoints can be computed iteratively for additive/join preserving
functions. We also observed on simple mathematical examples that, for increasing
functions not satisfying join preservation, iterating beyond infinity also yields fix-
point solutions. Having learned set theory in the book [175] of James Donald Monk
(a student of Alfred Tarski), in particular the John vonNeumann encoding of ordinals
[179], we where ready to consider transfinite iterations that lead to the constructive
version [82] of Tarski’s fixpoint theorem¹⁵.

§ 11. Verification Bibliographic search on fixpoints and semantics lead us to the
work of Zohar Manna with Stephen Ness and Jean Vuillemin [170]; with Shmuel
Katz [163] ¹⁶, pointing to Dana Scott [187, 188]. Together with Edsger Dijkstra [148],
this inspired us to look for a link between fixpoints, program semantics, and verifi-
cation¹⁷. This work is reported in [75] (175 citations on Google Scholar).

Program properties are first-order predicates attached to program points relating
initial and current values of variables (nowadays we use set theory to cope with inex-
pressivity problems of logics). By pattern matching of the program syntax, a system
of equations is built using forward strongest postcondition transformers (to get re-
lational reachability)¹⁸ [75, Ch. 3] ¹⁹. By Tarski’s fixpoint theorem, these equations
have a least fixpoint which we called “optimal invariants” (after [171], which is un-
fortunate since “strongest” would have been much better). This strongest invariant
provides a proof of total correctness (including termination) [75, Ch. 4]. By con-
sidering inequations instead of equations, we get, by Tarski’s fixpoint theorem, an

¹⁴ Starting from a postfixpoint over approximating the least fixpoint, a decreasing sequence will
converge above the least fixpoint under Tarski’s fixpoint theorem hypotheses. A dual widening
would extrapolate with under approximations whichmay lead to an under approximation of the least
fixpoint, i.e. an incorrect invariant. By contrast, a narrowing will interpolate by over approximation
and so will converge above the least fixpoint.
¹⁵ The review was so knowledgeable, helpful, and generous that we have always thought it might
have been by Alfred Tarski himself.
¹⁶ At the time, the C.A.C.M., available in our library, was our main source of information.
¹⁷ Although [148, Ch. 5] has no explicit fixpoints, we recognized them as being implicitly defined
iteratively. This was later corrected in [151] and [150, Th. 8].
¹⁸ We later understood that structural induction as found in Scott-Strachey denotational semantics
[189] and Gordon Plotkin’s structural operational semantics [182] is much more readable, although
mostly equivalent, “mostly” since patterns can be ambiguous while induction on the program syntax
is not.
¹⁹ Nowadays rule-based deductive systems are used but the structural induction idea is the same.

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://www.colorado.edu/math/don-monk
https://genealogy.math.ndsu.nodak.edu/id.php?id=13347
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Zohar_Manna
https://en.wikipedia.org/wiki/Jean_Vuillemin
https://en.wikipedia.org/wiki/Dana_Scott
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://scholar.google.com/scholar?q=Automatic+synthesis+of+optimal+invariant+assertions:+Mathematical+foundations&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://en.wikipedia.org/wiki/Dana_Scott
https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Denotational_semantics
https://en.wikipedia.org/wiki/Gordon_Plotkin
https://en.wikipedia.org/wiki/Operational_semantics

A Personal Historical Perspective on Abstract Interpretation 7

overapproximation suitable for partial correctness [75, Ch. 5]. We show in [75, Ch.
6] that this yields symbolic execution [166]. Using difference equations, it is pro-
posed to build the symbolic execution tree by chaotic iteration (see the forthcoming
Sect. § 14.), inferring an inductive term for the tree, and passing to the limit by hand
[75, Ch. 7]. However as, we said at the end of this Ch. 7, automating the inference of
the inductive argument is difficult (and still not solved in symbolic execution which
considers a few prefixes of a few executions paths, a trivial abstract interpretation by
under approximation). In [75, Ch. 8] we showed that invariants can be discovered
by strengthening chaotic iterations, a widening in disguise with no convergence hy-
pothesis. The conclusion is a bit optimistic but recognizes that the ”semi-automation
resolution of the semantics equation is a terrific task”²⁰. We were enthusiastic about
understanding that semantics and verification can be explained in the abstract using
a few concepts of fixpoints, successive approximations, chaotic iterations, etc. We
wrote several papers to explain that in more details [79, 30, 76], all rejected! Nev-
ertheless, the paper [75] has 175 citations according to Google Scholar, not so bad
(compared to the average 1.75 citations per paper in computer science). See also [61]
for a recent discussion of verification by abstract interpretation. A very singular point
in this verification work is [53] where we used semidefinite programming methods
to solve equations. We abandoned this promising venue for non-linear properties be-
cause of the imprecision of the solvers providing no formal correctness guarantee.

§ 12. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints Although it came
after more than three years of work, the 1977 POPL paper [74] is often cited as the
foundational paper in abstract interpretation. It is the most cited paper of the POPL
conference (with 5615 citations but 8725 citations on Google Scholar, 8366 on Mi-
crosoft Academic, 6557 on Semantic Scholar, 6035 on Research Gate, 4040 on the
ACM Digital library which shows that the automated collection of references is in-
complete and the number of citations is definitely proportional to the size of commu-
nities. Recent papers in machine learning typically have 10-50 thousands citations.
In contrast Robert Floyd’s fundamental paper on “Assigning meanings to programs ”
[152] has 4067 citations on Google Scholar. Citation counts are certainly both unre-
liable and meaningless when taken out of context. Moreover, I have always suspected
that most authors cite the paper by mimicry, without even reading it.).

Ch. 3 defines the syntax and semantics of flowcharts (built by structural induction,
that’s the limit!).

Ch. 4 defines their equational collecting reachability semantics (called static se-
mantics) as a least fixpoint and illustrates different alternatives shown in Fig. 2

²⁰ As an example of unfortunate linguistic calque in our papers, we use “terrific” with its French
meaning of ”terrifiant” that is causing terror which is archaic in English.

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=+11.+Patrick+Cousot+and+Radhia+Cousot.+Automatic+synthesis+of+optimal+invariant+assertions%3A+Mathematical+foundations.+SIGART+Newsl.%2C+64%3A1%E2%80%9312%2C+1977.&btnG=
https://en.wikipedia.org/wiki/Semidefinite_programming
https://research.com/conference/popl-2022-acm-sigplan-sigact-symposium-on-principles-of-programming-languages-popl
https://research.com/conference/popl-2022-acm-sigplan-sigact-symposium-on-principles-of-programming-languages-popl
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Abstract+Interpretation%3A+%7BA%7D+Unified+Lattice+Model+for+Static+Analysis++of+Programs+by+Construction+or+Approximation+of+Fixpoints&btnG=
https://academic.microsoft.com/paper/2043100293/reference/search?q=Abstract%20interpretation%3A%20a%20unified%20lattice%20model%20for%20static%20analysis%20of%20programs%20by%20construction%20or%20approximation%20of%20fixpoints&qe=Or(Id%253D3146075203%252CId%253D1483568252%252CId%253D2124153277%252CId%253D2031373197%252CId%253D1969077685%252CId%253D2113074643%252CId%253D2075913776%252CId%253D2046213250%252CId%253D1553074388%252CId%253D1595036120%252CId%253D1570006384%252CId%253D2020941433%252CId%253D2136070538%252CId%253D2070361291%252CId%253D2011917775%252CId%253D1500093523%252CId%253D2019052389%252CId%253D137737066%252CId%253D2734473763%252CId%253D1562940416%252CId%253D2051226579%252CId%253D2325654786)&f=&orderBy=0
https://academic.microsoft.com/paper/2043100293/reference/search?q=Abstract%20interpretation%3A%20a%20unified%20lattice%20model%20for%20static%20analysis%20of%20programs%20by%20construction%20or%20approximation%20of%20fixpoints&qe=Or(Id%253D3146075203%252CId%253D1483568252%252CId%253D2124153277%252CId%253D2031373197%252CId%253D1969077685%252CId%253D2113074643%252CId%253D2075913776%252CId%253D2046213250%252CId%253D1553074388%252CId%253D1595036120%252CId%253D1570006384%252CId%253D2020941433%252CId%253D2136070538%252CId%253D2070361291%252CId%253D2011917775%252CId%253D1500093523%252CId%253D2019052389%252CId%253D137737066%252CId%253D2734473763%252CId%253D1562940416%252CId%253D2051226579%252CId%253D2325654786)&f=&orderBy=0
https://www.semanticscholar.org/search?q=Abstract%20Interpretation%3A%20%7BA%7D%20Unified%20Lattice%20Model%20for%20Static%20Analysis%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20of%20Programs%20by%20Construction%20or%20Approximation%20of%20Fixpoints&sort=relevance
https://www.researchgate.net/publication/220997507_Abstract_Interpretation_A_Unified_Lattice_Model_for_Static_Analysis_of_Programs_by_Construction_or_Approximation_of_Fixpoints
https://dl.acm.org/doi/10.1145/512950.512973
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://scholar.google.com/scholar?q=Assigning+meanings+to+programs&hl=en&as_sdt=0,33
https://arxiv.org/ftp/physics/papers/0607/0607224.pdf

8 Patrick Cousot

Fig. 2

that explains lattice duality (∪/∩), forward reachability (→) versus backward acces-
sibility (←), and greatest (↑) versus least (↓) fixpoint.

Ch. 4 introduces the abstract interpretation framework using Galois retractions
(surjection/insertion/embedding). At the time we had not reached Ch. V, §8 on Ga-
lois connections of Garrett Birkhoff’s book [15] so the connection was not yet made!
To justify our need for a formal semantics, we explain that data flow analysis prob-
lems (such as available expressions), although purely syntactical, do fit in this frame-
work but, in general, a semantic-based approach is needed, citing Gary Kildall’s
constant propagation [165]. Several years later, I showed that the syntactic and se-
mantic points of view lead to incomparable definitions of live variables [65], not
a good news for compiler correctness! A first example is to abstract sets of states
into predicates (more precisely isomorphic infinite disjunctive/conjonctive normal
form of atomic predicates which are assignments of values to variables), and show
that Floyd’s methods can be justified as a postfixpoint²¹. Of course using first-order
predicates instead would be without best abstraction and incomplete.

Ch. 6 is about “consistent abstract interpretations” (that is soundness through
commutation of transformers with abstraction and concretization) summarized by
Fig. 3

Fig. 3

where an abstract transformer Int(a,C̃I) for a statement a overapproximates the
concrete transformer Int(a,C̃I) up to the correspondance 〈α̃, γ̃〉 between concrete
and abstract properties.

The next Ch. 7 is on the lattice of abstract interpretations, based on the idea that
given a semantics 𝜆𝜆𝜆𝑃 . 𝑆J𝑃K of programs 𝑃, the abstractions of the strongest prop-

²¹ At the POPL 77 conference, Ed. Clarke asked us to cite his thesis where he said to have invented
fixpoint characterizations of program correctness (which, as noticed e.g. in [84] can be traces to
David Park [181]) . We asked him to sent us his thesis, but we never received it. In good faith,
I cited him in my thesis. Years later, on April 12, 2012, I gave the Gaschnig/Oakley Memorial
Lecture (SCS Distinguished Lecture Series) at Carnegie Mellon University. He publicly claimed to
have invented abstract interpretation in his thesis, now online http://www.cs.cmu.edu/~emc/
hoare/thesis.pdf hence checkable. A funny widening!

https://en.wikipedia.org/wiki/Galois_connection
https://en.wikipedia.org/wiki/Galois_connection
https://en.wikipedia.org/wiki/Garrett_Birkhoff
https://en.wikipedia.org/wiki/Gary_Kildall
https://en.wikipedia.org/wiki/Edmund_M._Clarke
http://www.cs.cmu.edu/~emc/hoare/thesis.pdf
http://www.cs.cmu.edu/~emc/hoare/thesis.pdf
http://www.cs.cmu.edu/~emc/hoare/thesis.pdf
https://en.wikipedia.org/wiki/Widening_(computer_science)

A Personal Historical Perspective on Abstract Interpretation 9

erty, i.e. it’s collecting semantics 𝜆𝜆𝜆𝑃 . {𝑆J𝑃K} of each such program 𝑃 by a Galois
connection 〈𝛼, 𝛾〉 can be organized, up to equivalence, in a complete lattice (isomor-
phic to the lattice of all closure operators 𝛾 ◦ 𝛼). Several examples are given (col-
lecting semantics, intervals, constancy, signs, constants with signs, etc.). Designing
a semantics, proof method, or static analysis essentially consists in characterizing a
point in this lattice²². This idea yielded to the hierarchy of semantics of section § 27.

Ch. 8 discusses the correctness and termination of the resolution of abstract equa-
tions by iteration referring to various possible hypotheses to ensure finiteness. It pro-
vides an example of infinite iterates (with an example on probabilistic analysis of the
performance of programs. Probabilistic static analysis camemuch later [141] and still
lacks effective widenings ²³).

Ch. 9 is on iterative least fixpoint approximation methods, the instantiation of this
idea with widenings to get an overapproximation from below to reach a postfixpoint
(and no longer a fixpoint as in [72], which is less precise) and then a truncated de-
creasing sequence or with narrowing to reach a fixpoint, as well as there duals for
greatest fixpoints.

AAS : ascending approximation sequence
DAS : descending approximation sequence
TAS : truncated ascending sequence
TDS : truncated descending sequence

Fig. 4

The conclusion in Ch. 10 states that abstract interpretation is certainly the weakest
mathematical model to data flow analysis, in optimizing compilers type verifica-
tion, type discovery (inference), program testing, symbolic evaluation, program per-
formance analysis, formalization of semantics, verification of program correctness,
discovery of inductive invariants, proofs of program termination, program transfor-
mation. This was an ambitious research program which took us decades to fulfill in
part.

Whereas the call for papers required a five page summary of the work, our sub-
mission dated August 12, 1976 was 101 manuscript pages, sent in maybe a dozen
copies, one for each program committee member. Since the submission was too long
to fit on 15 pages, we had to eliminate a few subjects in the final version, such as type
checking and inference, backward analysis, live variables, trace semantics, symbolic
execution, pointers and sharing, etc. The program chairman, Ravi Sethi, decided to
anonymize the submissions and erased all citations, so told us that he had to white-
out all references by hand in all of our copies. During the conference, Zohar Manna

²² The definition of equivalence of two abstract domains by existence of two Galois retractions
between them is not antisymmetric [21]. Therefore, we later changed the definition in [83, Th. 8.0.1]
of the equivalence of Galois connections 〈𝛼𝑖 , 𝛾𝑖 〉 to be the isomorphism between their closures
𝛼𝑖 ◦ 𝛾𝑖 . This is isomorphic to the closure operators on a complete lattice (i.e. the collecting abstract
domain), which, by Ward theorem [195, Th. 5.3], is a complete lattice.
²³ Incidentally, the paper was rejected at POPL with C’s and D’s. After shortening by elimination of
background matter and reformatting, it was accepted at ESOP with three A’s. TEX and competent
reviewers do matter!

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Ravi_Sethi
https://en.wikipedia.org/wiki/Zohar_Manna

10 Patrick Cousot

took us apart to tell us ”never do that again”. Decades later, Zohar Manna told us
that he had hard discussions during the program committeemeeting to have the paper
accepted. His motivation was the diagram shown in Fig. 4 where iterations reach fix-
points which are not extremal (neither least nor greatest). He thought we had solved
the optimal fixpoint problem of [171]! The picture made it!

§ 13. Recursion and modularity We also worked on recursive procedures [78]
(to answer critiques that flowcharts do not account for recursivity). The input-output
semantics is relational and defined by a system of recursive equations which solu-
tion is an exact procedure summary. Two widenings are used both to avoid infinitely
many calls with different parameters and infinitely many results. The approxima-
tion is handled from a topological point of view using closure operators inspired by
[187]. Chaotic iterations are extended to higher order, with a bug²⁴ later corrected by
Mads Rosendahl (with additional hypotheses [185]). Examples include intervals and
heap analysis (to answer critiques that abstract interpretation can only cope with nu-
merical domains). 243 citations on Google Scholar. A computer science paper with
topology is probably too much ²⁵.

We came back to the subject two decades later in the form of modular static anal-
ysis [109] later published in [111], with no more success (228 citations on Google
Scholar)!

§ 14. Chaotic and asynchronous iterations Having observed that different itera-
tion strategies may lead to different results (due to the widening not being increasing
in its first parameter), we looked for mathematical results on iteration, mainly in
numerical analysis. We found the notion of chaotic iteration in the work [184] of
François Robert (a professor of numerical analysis in Grenoble) and their general-
ization by asynchronous iterations, including with memory, in the work of Gérard
Baudet [8]. We discovered a bit later that these chaotic iteration ideas originated
from Dan Chazan and Willard Miranker [23]. After an erroneous attempt in [75] for
chaotic iterations, we got it right for asynchronous iterations with memory in [29]:
solving increasing equations on a complete lattice by asynchonous iterations with
memory always yields the least fixpoint (thus excluding widening which is not in-
creasing!) [29]. Having seen the report [29], François Robert pointed to a similar
result by Jean-Claude Miellou [173], three months earlier. But we had no continuity
hypotheses (we used transfinite iterations instead) and, more importantly, we had no
hypothesis that the iterates are increasing (which requires a costly synchronization
between parallel processes). François Robert encouraged us to publish the results but
the submission was rejected under the claim that this result was part of the computer
science folklore [168] and moreover transfinite iterations are useless in Computer
Science as proved by Dana Scott’s continuous semantics. Nevertheless the result
holds for any partial order (not only the specific Dana Scott’s order which happens

²⁴ The sequence of abstract properties of procedure actual parameters along recursive calls is not
necessarily increasing, although this was enforced when using widenings.
²⁵ Anecdotically, Ugo Montanari told us that no one understand abstract interpretation theory be-
cause it is not phrased in category theory. We never went to this extreme, but sheaves looks to be
perfect candidates. See also the categorical construction of [194].

https://en.wikipedia.org/wiki/Zohar_Manna
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://forskning.ruc.dk/da/persons/madsr
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Static+Determination+of+Dynamic+Properties+of+Recursive+Procedures+Cousot&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Patrick+Cousot%2C+Radhia+Cousot%3A+Modular+Static+Program+Analysis.+CC+2002&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Patrick+Cousot%2C+Radhia+Cousot%3A+Modular+Static+Program+Analysis.+CC+2002&btnG=
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://genealogy.math.ndsu.nodak.edu/id.php?id=130491
https://web.uri.edu/cs/meet/gerard-m-baudet/
https://web.uri.edu/cs/meet/gerard-m-baudet/
https://zbmath.org/authors/chazan.dan
https://en.wikipedia.org/wiki/Willard_L._Miranker
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://dblp.org/pid/28/365.html
https://en.wikipedia.org/wiki/Dana_Scott
https://en.wikipedia.org/wiki/Widening_(computer_science)
http://pages.di.unipi.it/montanari/ugo.html

A Personal Historical Perspective on Abstract Interpretation 11

to be continuous [186]) and unbounded nondeterminism yields increasing but non-
continuous transformers [151] (despite rejection the paper has 62 citations onGoogle
Scholar). For a few decades now the preferred iteration strategy with widening is that
of François Bourdoncle [20] which is empirically adequate, but the best compromise
between efficiency and precision is still to be found and proved optimal.

§ 15. Types In 1977, we published a paper [77] explaining that types could be
value dependent if formalized by abstract interpretation (which is nowadays well-
recognized through liquid types, dependent types, gradual types, etc). Twenty years
later, invited by Neil Jones at POPL 1997, and, at the time, POPL being essentially
about types, I showed that type inference in higher order languages are abstract in-
terpretations with widenings [41]. I think this answered the criticism that program
analysis is unpredictable because of widening whereas that is not the case for type
systems with well-defined inference rules. The point is just that the widening is hid-
den in the rules and I showed that changing the hidden widening changes the pre-
cision of the type system. Another point was to show that abstract interpretation
applies to functional languages with denotational semantics. The paper has had very
little success (259 citations on Google Scholar) since the proof of soundness of type
systems are most often based on preservation and progress with respect to an oper-
ational semantics. I recently showed that this is also an abstract interpretation [69]
that could be useful in applications outside typing.

§ 16. Galois connections, closures, Moore families, etc The bibliographic
search and study of Galois connections, led us to closure operators, Moore fami-
lies, etc. The understanding that it was possible to project the abstract domain in the
concrete by the upper closure 𝛾 ◦ 𝛼 which made, at least theoretically, the study
abstraction independent of a specific implementation. Nevertheless, abstraction and
concretizations pairs 〈𝛼, 𝛾〉 are still useful to describe property encodings and imple-
mentations.We also studied weaker forms of closures [81] since best approximations
are often a too strong hypothesis.

§ 17. Transition systems For conciseness of concepts and proofs, Claude Pair
advised us in 1978 to use transition systems (i.e. a relation on states, which we called
“discrete dynamical system” by reference to dynamical systems in mathematics and
physics), which I did in [31], then submitting [32], which was rejected, but the con-
cepts were reused in [33]. This considerably densified the presentation of basic con-
cepts (without the need to go through all the details of a programming language syn-
tax and semantics) and drastically shortened the proofs, but also narrowed the scope
of application, e.g. to higher-order functional language without going to operational
details.

§ 18. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes
At that point, I had enough content for my thesis [31].

Ch. 2 includes complete lattices, closures, fixpoint theorems, continuity, itera-
tions, elimination methods, and the new asynchronous iterations with memory.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Asynchronous+iterative+methods+for+solving+a+fixed+point+system+of+++monotone+equations+in+a+complete+lattice+cousot&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Asynchronous+iterative+methods+for+solving+a+fixed+point+system+of+++monotone+equations+in+a+complete+lattice+cousot&btnG=
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/François_Bourdoncle
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Types+as+Abstract+Interpretations+Cousot&btnG
https://en.wikipedia.org/wiki/Galois_connection
https://en.wikipedia.org/wiki/Closure_operator
https://en.wikipedia.org/wiki/Moore_family
https://en.wikipedia.org/wiki/Moore_family
https://fr.wikipedia.org/wiki/Claude_Pair
https://en.wikipedia.org/wiki/Dynamical_system

12 Patrick Cousot

Ch. 3, introduces transition systems and their inverse (to cope with backward anal-
ysis). The basic idea is that all results on program verification and analysis can be
concisely formulated using transition systems: (small-step) operational semantics,
exact semantic analysis (using pre and post conditions, static partitioning to cope
with local invariants, fixpoint characterization of forward reachable and backward
accessible states), and applications to invariance verification (by Peter Naur, Robert
Floyd, Tony Hoare, and Edsger Dijkstra methods), termination, incorrect termina-
tion, nontermination, combination (intersection) of forward reachable and backward
accessible states.

Ch. 4, on constructive methods of fixpoint approximation for increasing functions
on complete lattices. The first method is to simplify the equations based on closure
operators and their equivalents. A series of theorems shows that complete lattices are
preserved by this abstraction and that all possible closures form a complete lattice
(i.e. the so-called lattice of abstract interpretations). Numerous theorems are recalled
if classic or prove to characterize the properties of closures.

The secondmethod is convergence acceleration bywidening, narrowing, and their
dual convergence operators elaborating on [74]. A distinction is made between con-
vergence operators to over approximate solutions and those with the additional prop-
erty of ensuring finite convergence, which are two orthogonal problems. This is often
misunderstood. For example Graig interpolation is a dual narrowing not enforcing
convergence [59].

Ch. 5, applies the previous results to static analysis, giving the examples of par-
ity, signs, their combination by a reduced product, live variables and available ex-
pressions handled syntactically, constant propagation, pointer nullity, equivalence
classes of pointers that may reach the same memory cell, simple typing, all with lat-
tices satisfying the ascending chain, as well as intervals and polyhedra for infinitary
analysis with convergence acceleration, and finally iterated combination of forward
reachability/backward accessibility of analyses. Finally these abstract interpretations
are ordered in a lattice which supremum is an analysis of the connexity of the pro-
gram flow graph.

Ch. 6 on the analysis of recursive procedures is an improvement over [78].
Ch. 7 concludes that much remains to be done (including e.g. equations with

complements which are not increasing, still a difficulty!).

§ 19. Automatic discovery of linear restraints among variables of a program
The polyhedral analysis to infer invariants of the form 𝐴𝑋 <= 𝐵 where 𝐴 is a ma-
trix, 𝐵 is a constant column, and 𝑋 is column of values of variables [140], was de-
signed and implemented byNicolas Halbwachs (using the double descriptionmethod
and reinventing many polyhedron manipulation algorithms). This was certainly the
first implemented static analyzer based on the theory of abstract interpretation. The
widening eliminated unstable constraints. Its precision was improved by Nicolas
Halbwachs in his thesis [155] by keeping some redundant constraints. The narrow-
ing was a few more decreasing iterations. The analyzes were surprisingly precise, in
particular because of the inference of affine relations between variables that never ap-

https://en.wikipedia.org/wiki/Peter_Naur
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://fr.wikipedia.org/wiki/Nicolas_Halbwachs
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://fr.wikipedia.org/wiki/Nicolas_Halbwachs
https://fr.wikipedia.org/wiki/Nicolas_Halbwachs

A Personal Historical Perspective on Abstract Interpretation 13

pear in the same statement, see for example the HEAPSORT algorithm, [140, p. 95]²⁶.
The research on the polyhedral analysis efficient implementation, refinement, and
extensions [25, 26, 27, 28] has been very active since four decades (2114 citations
on Google Scholar).

§ 20. Systematic Design of Program Analysis Frameworks Many of the new
results obtained in my thesis were published in [83]. The program semantics of a pro-
gram graph is defined by an abstract transition system, that is a complete lattice of
abstract properties and abstract transformers for assignments and tests nodes (so that
transitions are on abstract properties and backward analysis is nothing but forward
analysis for the inversed transformers of the inversed graph). The abstract property
attached to each program points can be calculated in two ways. One is the least fix-
point of a system of equation defined using the abstract transformers. The other is
the “merge over all paths” (MOP). It consists in propagating the abstract property
along each program prefix path using the transformers and then merging (by a join)
the abstract properties collected at each program point along any program path. This
is to refute an argument of the time that fixpoint are imprecise.

A “very reasonable hypothesis” introduces the notion of best/most precise overap-
proximation of a concrete by an abstract property. Formalizations by upper closures,
Moore families, complete join congruences, family of principle ideals, and Galois
connections are shown to be equivalent. The emphasis is on best transformers (left
implicit in Fig. 3 of [74]) and the composing abstractions.

Given a concrete domain, increasing concrete transformers, and an abstract do-
main, it is shown how to design sound (and complete) abstract transformers for both
MOP and fixpoint abstract semantics. Examples are given such as the prefix trace se-
mantics, the reachable states, and available expressions for which MOP and fixpoint
solutions coincide. This shows that constructing abstract semantics proves correct-
ness, which is better that postulating the data flow equations, as common at the time
(and still today). This also shows the necessity of reasoning in traces rather than in-
variants, since available expressions are definitely not an abstraction of reachable
states.

If the abstract transformers do not preserve arbitrary joints then the MOP and fix-
points definitions of program properties may be different, the MOP solution being
always more precise. So fixpoint-based program analysis was generally considered
inherently imprecise. We showed that the problem is not with fixpoints but with the
abstract domain. First we observed that when the abstract property are sets of reach-
able states, the two solutions are the same. More generally, this is the case when
the abstract transformers preserve arbitrary joins (previous results assumed the ab-
stract domain to be ACC/Noetherian²⁷). Finally, it is shown that any non-distributive
abstract domain can be refined by a powerset construction into a distributive one,
which is more precise and for which MOP and fixpoint definitions of abstract prop-
erties exactly coincide. However, the powerset abstract domains might be infinite

²⁶ Incidently the Heapsort program starts with a division, which was not implemented, and was
erroneously handled by hand. Fortunately, this analysis after this initialization error is correct!
²⁷ ACC stands for ascending chain condition, i.e. any strictly increasing chain is finite.

https://en.wikipedia.org/wiki/Heapsort
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Automatic+discovery+of+linear+restraints+among+variables+of+a+program+Cousot+Halbwachs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Automatic+discovery+of+linear+restraints+among+variables+of+a+program+Cousot+Halbwachs&btnG=

14 Patrick Cousot

which requires using widenings which can always be chosen to be more precise than
the original analysis. (For example the ACC constant propagation lattice becomes
the powerset of values with infinite chains. A possible widening will extrapolate sets
other than empty and singleton sets to all values. Doing that only for sets of cardinal-
ity larger that 𝑛 ⩾ 1 provides an infinite chain of more and more precise widening
where constant propagation is 𝑛 = 1.) Thus shows that the concept of MOP is super-
fluous since in can be exactly expressed using fixpoints, but not conversely.

The last chapter of [83] is on the combination of abstract interpretations. The
general idea is to construct complex abstract domains from simpler ones. The first
is the reduced (cardinal) product which concretization is a logical conjunction. It
can be understood as a Cartesian product with a reduction propagating information
from components to components (for example odd in parity and ⩾ 0 in signs reduces
the sign to > 0). The reduced product is also the greatest lower bound in the lattice
of abstract interpretation. In overapproximate form, this is the basis for organizing
abstract interpreters. In a later detailed study [133, 135, 136], we showed that the
idea is also used in SMT solvers using Open-Nelson algorithm (where the reduction
is only for equalities and inequalities). The reduced cardinal power allows for case
analysis (which applied recursively yields e.g. BDDs or choice-based arborescent
domains [24, 134]). A full version with proofs was submitted and rejected since the
POPL submission was not marked “Extended Abstract”, discouraging, isn’t it?

§ 21. Parallelism We applied the abstract interpretation theory to the verification
and static analysis of shared memory and synchronously communicating parallel
processes (with an interleaving semantics).

Themain idea is that proof methods by Edward Ashcroft (1975), RobertM. Keller
(1976), Suzan Owikci and David Gries (1976), Leslie Lamport (1977), etc. are all
applications of fixpoint induction, with different abstractions formalized by Galois
connections [84]. The paper was submitted, rejected (despite a signed and laudative
review by Leslie Lamport), and recycled, in part, in [88].

For static analysis, the interleaving semantics leads to a costly analysis of interfer-
ence. Hoping for reduced interference costs, we considered Tony Hoare’s communi-
cating sequential processes (CSP) [85]. The static analysis repeats the local analysis
of each individual processes between initialization and communication points fol-
lowed by an analysis of the synchronous communications. The cost remains high be-
cause a global relational invariant is needed to capture the information flow through
all processes.

Our research on parallelism stopped by lack of funding, the short-sighted view
being that, by Moore’s law doubling transistor counts every two years and Dennard
scaling enabling increases in clock frequency, parallel machines would be surpassed
two years later by sequential ones! May be also by lack of interest, [85] has 60 and
[88] has 48 citations of Google Scholar.

§ 22. Proof methods and induction principles Having discussed at lot with Rod
Burstall while he was visiting Grenoble²⁸, we understood that static analysis algo-

²⁸ Being the PhD adviser of Alan Mycroft, he ensured that abstract interpretation crossed the chan-
nel!

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
(https://dblp.org/pid/86/6039.html
https://dblp.org/pid/k/RobertMKeller.html
https://dblp.org/pid/06/3161.html
https://dblp.org/pid/g/DavidGries.html
https://dblp.org/pid/l/LeslieLamport.html
https://en.wikipedia.org/wiki/Leslie_Lamport
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Dennard_scaling
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Patrick+Cousot+and+Radhia+Cousot.+Semantic+analysis+of+communicating+sequential+processes&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=P.+Cousot+and+R.+Cousot.+Invariance+proof+methods+and+analysis+techniques+for+parallel+programs.&btnG=
https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Alan_Mycroft

A Personal Historical Perspective on Abstract Interpretation 15

rithms are nothing but abstractions of proof methods. We concentrated for nearly a
decade on studying program verification, trying to be independent of specific lan-
guages thanks to transition systems (i.e. assuming a small-step operational seman-
tics) and formulating proof methods as induction principles (and their duals as in Fig.
2 plus negation ¬) [86] so as, e.g. to allow for a backward contrapositive method).
This was extended to parallel programs [90] (in French, cited by 1 onGoogle Scholar,
this one being ourselves :).

We were particularly interested in Rod Burstall’s method involving symbolic ex-
ecution and induction [22] which worked very well on recursive procedures and for
total correctness. Nevertheless, we had difficulties to compare it to invariance and
termination proofs by variant functions (à la Naur/Floyd/Hoare). Since the two for-
malisms looks different, we introduced an extension [34] of Hoare’s logic for a sim-
ple non-deterministic imperative iteration programs with random assignment to cope
with Rod Burstall’s method hand simulation by unrolling loops plus a structural in-
duction rule. The proof outline can be presented using local assertions as in Hoare’s
logic, up to the unrolling of loops to cope with induction.

The next question was whether the two methods are equivalent, that is, given a
proof by one method is it possible to rewrite that proof to be a proof by the other
method? Comparing logics is impractical since it is language dependent and many
cases have to be considered for all language constructs. So we used transition sys-
tems, both for [Turing/]Naur/Floyd/Hoare’smethod [89] (for partial and total correct-
ness including for parallelism) and Burstall’s method [87]. Given an ordinal (built
out of the program structure and well-founded relations), the inductive invariant re-
lates program initial states to intermediate and final states for each such ordinal. Its
proof considers a transition (“hand simulation”) and the use of induction hypotheses
at lower ranks (“little induction”). The same idea is behind “segments” in [122].

The equivalence proof [91] (which was published eight years later, the manuscript
having been lost in the editorial process) essentially consists in recursion elimi-
nation in Burstall’s invariant for each ordinal using a transfinite stack to get [Tur-
ing]/Naur/Floyd/Hoare’s invariant relating initial and intermediate states.

This proof explains why Burstall’s method works so well for recursion, why it
is more powerful than [Turing/]Naur/Floyd/Hoare’s method. It was implicitly used
in [78] and in ASTRÉE in particular in the form of unrolling (“hand simulation”)
where the “little induction” is by widening. So automatic proof of the soundness
of static analyzers based on [Turing/]Naur/Floyd/Hoare’s logic (such as [157, 6])
cannot directly account for ASTRÉE which, when unrolling loops and recursions, uses
intermittent assertions [22, 172, 91] which are not invariants.

To conclude this section let us mention an attempt to present computer logics in-
dependently of a specific programming language [92]; the abstraction of induction
principles for transition systems to fixpoint induction principles [46]; more recently
induction principles for proving safety and termination properties [122]; and induc-
tion principles generalizing Dana Scott’s induction for proving the total correctness
of programs with denotational semantics [64]. A sound and complete proof method
for general liveness is still an open problem.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Principe+des+méthodes+de+preuve+de+propriétés+d’invariance+et+de+fatalité+des+programmes+parallèles&btnG=
https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Rod_Burstall
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/Dana_Scott

16 Patrick Cousot

A criticism of our work on the design of sequential or parallel program proof
methods by abstract interpretation was that our only examples were existing meth-
ods, so that there was nothing new but theory, at best variants of existing methods.
We had an opportunity to show that theory can help practice when formally design-
ing an invariance proof method for shared variables parallelism with weak memory
model [3] . The construction is by abstraction of a formal semantics of the maxi-
mally parallel programming language [2] restricted by a specification of its specific
memorymodel [4]. The proof method is sound and complete by calculational design.

§ 23. Back to static analysis At the beginning of the 90’s, our work moved back
to semantics and static analysis, after the renewed interest in England and Scotland
around Alan Mycroft’s pioneer work on strictness analysis of lazy functional lan-
guages. At the time, we were also aware of similar interest in Denmark by Neil Jones
and Flemming Nielson, but not in Germany by Reinhard Wilhelm, in Italy by Gior-
gio Levi, in Spain by Manuel Hermenegildo, and neither, somewhat later in the US
by Thomas Reps and David Schmidt.

§ 24. A variety of abstract interpretation models At that point, we had used
Galois connections and, in absence of best abstraction, the concretization function
only, as in [140] for polyhedra. As more examples without best abstraction emerged
(like abstractions to languages in [102]), we proposed several possible models of
abstraction beyond a concretization only [96].

As first observed by Alan Mycroft in his thesis [176], the static analysis of func-
tional languages with denotational semantics involves two partial orders: Scott’s
computational order v and logical implication ⊆. The basic fixpoint abstraction the-
orems can be extended to cope with that case [99]. Another rare example of the need
for a computational and a different approximation algorithm appears in the formal-
ization of dynamic analysis by abstract interpretation [142]. It more often happens
that in the abstract these two orders both collapse to an abstract logical implication
⊆, which may look confusing with two orders in the concrete and one in the ab-
stract. Another difficulty is that general properties of functions in 𝐴 −→ 𝐵 are in
℘(𝐴 −→ 𝐵) and not in its abstraction ℘(𝐴) −→ ℘(𝐵) (as in typing and not expres-
sive enough for comportment analysis). We explained and solve these difficulties in
several papers showing various examples [94, 99, 100].

Although stritness analysis is Boolean (must not terminate/may terminate), it is
subject to combinatorial explosions (with parameters and recursion). The finite do-
main is huge, and we proposed the use of widening. Widening was understood as
heuristic compared to Galois connection, and not, as we do, as a mechanized induc-
tion. Moreover, claims that some analyses are in infinite domains while requiring
no widening (as in set-based analysis, see [102]) are due to the misunderstanding of
what is an abstract domain. In [93, 97], we showed that (1) abstract domains hence
widenings are relative to a program, in general not to a programming language; (2) all
that can be done with a Galois connection can be done with an appropriate widening;
(3) infinite abstract domains with widening are more powerful that finite domains;
and (4) using the most specific framework is beneficial (see e.g. [103]).

https://en.wikipedia.org/wiki/Alan_Mycroft
https://en.wikipedia.org/wiki/Neil_D._Jones
https://dblp.org/pid/n/FlemmingNielson.html
https://dblp.org/pid/l/GiorgioLevi.html
https://dblp.org/pid/l/GiorgioLevi.html
https://software.imdea.org/people/manuel.hermenegildo/
https://en.wikipedia.org/wiki/Thomas_W._Reps
https://dblp.org/pid/s/DavidASchmidt.html
https://en.wikipedia.org/wiki/Alan_Mycroft
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Widening_(computer_science)

A Personal Historical Perspective on Abstract Interpretation 17

§ 25. Language independence It is difficult to explain methods for reasoning
about programs without referring to a specific programming language or even to a
specific semantics [38]. Starting with transition systems in my thesis [31], through
[92], and culminating in [124]²⁹ with a Galois connection calculus covering the ab-
straction (of properties of the semantics of) af all constructs found in programming
languages. Of coarse this list of constructs is incomplete (and maybe unbounded)!

§ 26. Bi-inductive definition of maximal traces Until [89], we had considered
prefix closed finite traces. But since [89], our concrete semantics has been (properties
of) finite or infinite maximal traces. We looked for an inductive definition of such
maximal trace semantics. We first generalized Peter Aczel’s inductive definitions
[1] to an arbitrary order [101]. Then we investigated an order combining induction
(for finite traces) and coinduction (for infinite traces) [98]. A question/opinion at the
1992 POPL conference was that bi-induction applies only to imperative programs,
not functional ones. Fifteen years later, we prove that this is not the case and applies
equally well to the 𝜆-calculus [118, 119].

§ 27. Hierarchies of semantics Understanding that program semantics are ab-
stractions of one another, we have constructed a hierarchy of semantics including all
classical semantics and program verification methods [40, 39, 50]. The idea is to un-
derstand any semantics as an abstraction of the maximal trace semantics defined by
bi-induction. This also solves the problem of which semantics to choose for proving
the soundness of static analyses, by refining in the hierarchy, if necessary.

§ 28. Calculational Design The idea of calculational design is that given a for-
mal definition of a concrete semantics/mathematical structure and an abstraction, it
should be possible to design the exact (e.g. section § 27.) or approximate (e.g. section
§ 20.) abstract semantics/mathematical structure by calculus using induction and the
composition of elementary abstractions for sets of values, functions, relations, prod-
ucts, fixpoints, etc. If the abstract semantics is given this becomes a refinement. If
both the concrete and abstract semantics are given this is soundness verification, with
a proof that can be mechanically checked.

§ 29. Calculational design of abstract semantics The idea, long left implicit,
clearly appeared in the 1998 Marktoberdorf summer school [42] where an analyzer
for a simple imperative language is designed formally, by calculus. A recent exam-
ple is [68]. Although the a posteriori verification of the design from [157] to [153]
tends to more automation, an interactive mechanized tool able to automate part of
the calculations involved in the design is still to be invented.

§ 30. Calculational design of algorithms The exact or approximate abstrac-
tion ideas formalized by abstract interpretation can be used to design algorithm by
abstraction of (usually infinite) mathematical structures. This is the case for exam-
ple of parsers derived by abstraction of languages [121, 117, 114], of symbolic terms

²⁹ After being awarded the ACM SIGPLAN Programming Languages Achievement Award in 2013,
we where generously offered 2 pages in the POPL 2014 proceedings. This resulted in the densest
paper we ever wrote. Add a single TeX point after the title and it goes to 3 almost full pages!

https://en.wikipedia.org/wiki/Peter_Aczel
https://en.wikipedia.org/wiki/Lambda_calculus

18 Patrick Cousot

(and unification) by abstraction of sets of ground terms (and union) [66], of weighted
graphs path algorithms such as the Roy-Floyd-Warshall shortest path algorithm [67],
of software model checking [68], etc.

§ 31. Static analysis is harder than verification Program verification and static
analysis are performed by induction (on data, on program steps, etc.). The difference
is that in verification the inductive argument is given while in static analysis it must
be discovered, then verified and maybe strengthened. This makes analysis harder
than verification, in a sense made precise by [138].

§ 32. The origin of ASTRÉE The first industrial application of abstract interpreta-
tion started with Alain Deutsch who developed an abstract interpretation-based static
analyzer at INRIA after the failure of the Ariane 501 launcher on June 4, 1996 due
to an arithmetic overflow. He commercialized the Polyspace analyzer with the help
of Daniel Pilaud in January 1999. Polyspace was sold to MathWorks in 2012.

Meanwhile, Wladimir Mercouroff, head of the Foundation of the École normale
supérieure in Paris, regularly asked me to propose an industrial seminar on abstract
interpretation, which I always postponed amicably. But he convinced Radhia, and
the seminar was finally organized on January 28th, 1999 with Alain Deutsch, Éric
Goubault, Nicolas Halbwachs, and Arnault Venet. The numerous participants from
industry looked to enjoy. At the end of the day, Radhia spoke with Famantanantsoa
Randimbivololona from Airbus who asked her if we could have more advanced dis-
cussions. Essentially, the Polyspace analyzer was used at Airbus, but produced too
many false alarms. After many meetings to identify the needs, we arrived at the con-
clusion that we should gather top-level researchers in a European project to make
proposals for improving Polyspace and solve other urgent problems that we had iden-
tified. This was the Daedalus IST FP5 European project (1999-2003). Some prob-
lems advanced very well (like theWCET analysis [199]) but Polyspace was reluctant
to integrate the proposals done by the group.

§ 33. ASTRÉE So I proposed to make a small prototype that would show that
the proposals were worthwhile. After a discussion of the pros and cons followed
by a secret vote of the team members, Bruno Blanchet, Patrick Cousot, Radhia
Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival, which turned unanimous, the static analyzer project was launched.
From small it grew to big and was later named ASTRÉE (Analyseur Statique Temps
RÉel Embarqué). After ten years of academic research, including the successful ap-
plication to the proof of absence of runtime errors in the control-command code of
the A380 before its maiden flight in January 2005, the CNRS licensed ASTRÉE to
AbsInt, now the main developer and unique distributor.

The success of ASTRÉE is based on its modular, extensible, and specializable struc-
ture, soundness, and scalability [17, 18, 126, 12, 13, 14]. Based on universal ab-
stract domains (like intervals and octagons), it is organized as a hierarchical reduced
product (with partial and ordered reduction) [127], allowing for the extension with
specialized domains (such as choice trees for data case analysis, filters, and dozen
others). Control includes loop unrolling, trace partitioning for control case analysis,

https://www.absint.com/astree/index.htm
https://en.wikipedia.org/wiki/Polyspace
https://dblp.org/pid/71/6260.html
https://en.wikipedia.org/wiki/MathWorks
https://data.bnf.fr/fr/11915648/wladimir_mercouroff/
https://en.wikipedia.org/wiki/%C3%89cole_normale_sup%C3%A9rieure_(Paris)
https://en.wikipedia.org/wiki/%C3%89cole_normale_sup%C3%A9rieure_(Paris)
https://en.wikipedia.org/wiki/Radhia_Cousot
https://en.wikipedia.org/wiki/Radhia_Cousot
https://dblp.org/pid/50/4557.html
https://dblp.org/pid/50/4557.html
https://en.wikipedia.org/wiki/Airbus
https://www.absint.com/astree/index.htm
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/French_National_Centre_for_Scientific_Research
https://www.absint.com/astree/index.htm
https://en.wikipedia.org/wiki/AbsInt
https://en.wikipedia.org/wiki/Astrée_(static_analysis)

A Personal Historical Perspective on Abstract Interpretation 19

which together with widening allows for handling inductive properties much more
refined than mere invariants. Beyond soundness, precision, and usability, the main
difficulty was scalability [128] for which ASTRÉE overwhelmingly outperforms other
static analyzers [129] ³⁰.

The original program was about 60.000 lines of OCaml, now more than 265.000
lines, not counting the much larger human interface³¹. The size of programs that can
be analyzed with precision has scale to over 10.000.000 lines of C/C++ in one hour
(which, is a 5.000 factor in size compared to model-checking of automotive codes
[198], itself maybe a factor 100 compared to the benchmarks used in academic com-
petitions for evaluating software verification systems). The licensed users are in the
thousands. The general development by AbsInt is towards generality (starting with
dynamic memory allocation, recursion, non-forward gotos, etc. initially prohibited)
while preserving soundness, and improving precision and efficiency. In 2020, AS-
TRÉE was the most precise of the only two static analyzers satisfying the NIST’s Ock-
ham criteria of the Software Assurance Metrics And Tool Evaluation project, both
abstract interpretation-based. The criteria include precision and soundness. Unex-
pected bugs where found in the benchmarks [16].

A number of papers report on early applications of ASTRÉE [55, 19, 160, 162, 11,
10, 174, 161] or suggest potential ones [52], including by exceptionally experienced
end-users such as [191]. These papers have a handful of citations³².

§ 34. Applications We have studied a number of subproblems and applications
of abstract interpretation such as

• model-checking refined by abstract interpretation [104, 105], by expressive tem-
poral logics [107] (so that model-checking is undecidable even for finite transition
systems), by refined refinement [137] (COUGAR is better the CEGAR);

• program transformation (including online and offline partial evaluation) [108, 48,
113];

• abstract testing [106, 200];
• software watermarking [115];
• predicate abstraction [51];
• logic programming languages [130];
• array analysis [131];

³⁰ Some anonymous reviewers of [129] asked us to suppress the name of the other static analyzers
surpassed by ASTRÉE, but we refused. One author of [198] told us that they had similar difficulties.
Reports on failures on hard industrial problems do not seem well accepted by part of the academic
community whose successes are confined to academic benchmarks only.
³¹ The human interface providing explanations of the analysis results is essential since, for example,
many testers are not programmers and have difficulties to understand formal concepts like invariant,
undecidability, approximation, false alarm, etc.
³² It may be that most academics in formal methods are more interested by the social process of
recognition by their peers than by the effective industrial application of their ideas. One should
also distinguish between experimental industrial applications such as bug-finding versus manda-
tory static analyses in the software product development cycle to provide strong guarantees for
correctness. The level of guarantees and difficulties in the two cases are not really comparable
[149].

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://www.absint.com
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/Astrée_(static_analysis)

20 Patrick Cousot

• necessary preconditions, in theory [125] and in practice [125];
• abstract interpretation-based tools in a programming environment [169];
• code refactoring [132];
• security analysis of web applications [193];
• dependency analysis [62] (a property comparing any two pairs of executions);
• responsibility analysis [145, 144] (a property comparing any execution to all others
and involving both over and under approximations);

• dynamic analysis [70] (one of the few cases with strictness analysis requiring both
a computational and an approximation ordering);

• [bi]simulations [69] and their hybrid version [143] for discrete computations in-
teracting with continuous processes

including the application of abstract interpretation to itself to understand the iteration
process as in [139].

§ 35. Introductions, surveys, reports, and prospective discussion texts Over
the years, I have been invited to write a number of introductions [36, 116, 120, 63],
surveys [35, 95, 45, 112, 56, 156, 58], reports [80, 180, 49, 51], and prospective
discussion texts [37, 43, 44, 110, 47, 54, 123, 60] on abstract interpretation, with an
average of about 100 citations on Google Scholar, so one may have doubts on their
usefulness³³.

§ 36. Conclusion Abstract interpretation is a unifying conceptual tool to formal-
ize reasonings in semantics, verification, and dynamic and static analysis of sequen-
tial or parallel programs.

Of course this paper refers only to our own work and initial inspirations and su-
perbly ignores the contributions of many other scientists and engineers to abstract
interpretation [154]. The task of reporting on all contributions looked insurmount-
able to me! Even the book [57] with 2000 citations only accounts for a very small
fraction of the work on abstract interpretation.

Because automatic program verification is undecidable, all the proposed methods
for program analysis have to abandon some desirable features like full automation,
termination, scalability, soundness, etc., all guaranteed by abstract interpretation-
based static analysis. Not surprisingly, we abandoned completeness only, that is an
answer may be “yes”, “no, or “I don’t know” (a sound approximation sometimes
confused with unreliableness!). Of course, precision can be improved indefinitely. So
the practical problem is to find a useful balance between expressivity, cost, precision,
and usability.

Although abstract interpretation has certainly been influential, its academic recog-
nition is modest (as shown by our reference counts onGoogle Scholar). Nevertheless,
it is certainly the only fully automatic, sound, and scalable verification formalmethod
widely adopted in safety-critical industry. So our initial goal has been achieved.More
rigorous lawful requirements on the use of certified tools for software verification

³³ The most cited survey [95] with 891 citations on Google Scholar is curiously the one in which
the editor published the galley proofs where typographers introduced hundreds of errors, making
the text unreadable, but nevertheless cited!

https://en.wikipedia.org/wiki/Code_refactoring
\protect https://scholar.google.com/scholar?hl=en&as_sdt=0%2C33&q=Abstract+interpretation+and+application+to+logic+programs&btnG=
https://en.wikipedia.org/wiki/Galley_proof

A Personal Historical Perspective on Abstract Interpretation 21

would certainly contribute to a wider adoption in those software industries where
safety and security are nowadays of secondary or even no interest because of high
costs.

§ 37. Acknowledgements I thank BertrandMeyer for inviting me to contribute to
this volume and the three anonymous reviews for their careful reading, corrections,
and nice constructive comments.

References

1. P. Aczel. An introduction to inductive definitions. In John Barwise, editor,Handbook of Mathematical Logic, chapter 7,
pages 739–782. North–Holland, Amsterdam, 1977.

2. J. Alglave and P. Cousot. Syntax and analytic semantics of LISA. CoRR, abs/1608.06583, 2016.
3. J. Alglave and P. Cousot. Ogre and pythia: an invariance proof method for weak consistency models. In POPL, pages

3–18. ACM, 2017.
4. J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the weak consistency model specification language

cat. CoRR, abs/1608.07531, 2016.
5. F.E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler Optimization, pages 1–19. ACM, 1970.
6. A.W. Appel. Program Logics – for Certified Compilers. Cambridge University Press, 2014.
7. Paolo Baldan, Francesco Ranzato, and Linpeng Zhang. A Rice’s theorem for abstract semantics. In ICALP, volume

112 of Leibniz International Proceedings in Informatics, pages 112:1–112:19. Dagstuhl Publishing, Germany, 2021.
8. G. Beaudet. Asychronous iterative methods for multiprocessors. Technical report, Carnegie Mellon University, Pitts-

burgh, PA, November 1976.
9. C. Berge. Graphes et hypergraphes. Dunod Université, Dunod, Paris, 1973.

10. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. L’analyseur statique ASTRÉE (in
french). In J.-L. Boulanger, editor, Utilisations industrielles des techniques formelles : interprétation abstraite, pages
67–114. Hermès Science, Paris, France, June 2011.

11. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis by abstract interpre-
tation of embedded critical software. ACM SIGSOFT Software Engineering Notes, 36(1):1–8, January 2011.

12. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis and verification of
aerospace software by abstract interpretation. In AIAA Infotech@Aerospace 2010, Atlanta, Georgia, 20–22 April 2010.
American Institute of Aeronautics and Astronautics.

13. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis by abstract inter-
pretation of embedded critical software. In Third IEEE International workshop UML and Formal Methods, Shanghai,
China, 16 November 2010. IEEE.

14. Julien Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis and verification
of aerospace software by abstract interpretation. Found. Trends Program. Lang., 2(2-3):71–190, 2015.

15. G. Birkhoff. Lattice Theory. American Mathematical Society, Colloquium Publications, Volume XXV, 3 edition,
1973.

16. P.E. Black and K. SinghWalia. SATEVI Ockham sound analysis criteria. Technical Report Intern. Rep. 8304, National
Institute of Standards and Technology, May 2020.

17. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design and imple-
mentation of a special-purpose static program analyzer for safety-critical real-time embedded software. In The Essence
of Computation, volume 2566 of Lecture Notes in Computer Science, pages 85–108. Springer, 2002.

18. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In PLDI, pages 196–207. ACM, 2003.

19. O. Bouissou, É. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, É. Goubault, D. Lesens, L. Mauborgne, A. Miné,
S. Putot, X. Rival, and M. Turin. Space software validation using abstract interpretation. In Proc. of the Int. Space
System Engineering Conf., Data Systems in Aerospace (DASIA 2009), volume SP-669, pages 1–7, Istambul, Turkey,
May 2009. ESA.

20. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Formal Methods in Programming and Their
Applications, volume 735 of Lecture Notes in Computer Science, pages 128–141. Springer, 1993.

21. J. Burghardt, F. Kammüller, and J.W. Sanders. On the antisymmetry of Galois embeddings. Inf. Process. Lett.,
79(2):57–63, 2001.

22. R.M. Burstall. Program proving as hand simulation with a little induction. In IFIP Congress, pages 308–312. North-
Holland, 1974.

23. D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Its Applications, 2:199–222, 1969.
24. J. Chen and P. Cousot. A binary decision tree abstract domain functor. In SAS, volume 9291 of Lecture Notes in

Computer Science, pages 36–53. Springer, 2015.
25. L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract domain. In APLAS, volume 5356 of

Lecture Notes in Computer Science, pages 3–18. Springer, 2008.

https://apps.dtic.mil/sti/pdfs/ADA055823.pdf

22 Patrick Cousot

26. L. Chen, A. Miné, Ji Wang, and P. Cousot. Interval polyhedra: An abstract domain to infer interval linear relationships.
In SAS, volume 5673 of Lecture Notes in Computer Science, pages 309–325. Springer, 2009.

27. L. Chen, A. Miné, Ji Wang, and P. Cousot. An abstract domain to discover interval linear equalities. In VMCAI, volume
5944 of Lecture Notes in Computer Science, pages 112–128. Springer, 2010.

28. L. Chen, A. Miné, Ji Wang, and P. Cousot. Linear absolute value relation analysis. In ESOP, volume 6602 of Lecture
Notes in Computer Science, pages 156–175. Springer, 2011.

29. P. Cousot. Asynchronous iterative methods for solving a fixed point system of monotone equations in a complete
lattice. Res. rep. R.R. 88, Laboratoire IMAG, Université scientifique et médicale de Grenoble, Grenoble, France, Sep.
1977. 15 p.

30. P. Cousot. An introduction to a mathematical theory of global program analysis. Laboratoire IMAG, Université
scientifique et médicale de Grenoble, Grenoble, France, 19 p., Mar. 1977.

31. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques, Université de Grenoble Alpes,
March 1978.

32. P. Cousot. Analysis of the behavior of dynamic discrete systems, part i: deterministic systems. Res. rep. R.R. 161,
Laboratoire IMAG, Université scientifique et médicale de Grenoble, Grenoble, France, Jan. 1979. 34 p.

33. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1981.

34. P. Cousot. A hoare-style axiomatization of Burstall’s intermittent assertion method for non-deterministic programs.
Technical report, University Paul Verlaine, Metz, France, September 1983.

35. P. Cousot. Methods and logics for proving programs. In Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 841–993. Elsevier and MIT Press, 1990.

36. P. Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328, 1996.
37. P. Cousot. Program analysis: The abstract interpretation perspective. ACM Comput. Surv., 28(4es):165, 1996.
38. P. Cousot. Abstract interpretation based static analysis parameterized by semantics. In SAS, volume 1302 of Lecture

Notes in Computer Science, pages 388–394. Springer, 1997.
39. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In MFPS,

volume 6 of Electronic Notes in Theoretical Computer Science, pages 77–102. Elsevier, 1997.
40. P. Cousot. Design of semantics by abstract interpretation, invited address. In Mathematical Foundations of Program-

ming Semantics, Thirteenth Annual Conference, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, March
23–26 1997.

41. P. Cousot. Types as abstract interpretations. In POPL, pages 316–331. ACM Press, 1997.
42. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy and R. Steinbrüggen, editors, Calcu-

lational System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.
43. P. Cousot. Directions for research in approximate system analysis. ACM Comput. Surv., 31(3es):6, 1999.
44. P. Cousot. Abstract interpretation: Achievements and perspectives. In Proceedings of the SSGRR 2000 Computer &

eBusiness International Conference, L’Aquila, Italy, July 31 – August 6 2000.
45. P. Cousot. Interprétation abstraite. Technique et science informatique, 19(1-2-3):155–164, January 2000.
46. P. Cousot. Partial completeness of abstract fixpoint checking. In SARA, volume 1864 of Lecture Notes in Computer

Science, pages 1–25. Springer, 2000.
47. P. Cousot. Abstract interpretation based formal methods and future challenges. In Informatics, volume 2000 of Lecture

Notes in Computer Science, pages 138–156. Springer, 2001.
48. P. Cousot. Design of syntactic program transformations by abstract interpretation of semantic transformations. In

ICLP, volume 2237 of Lecture Notes in Computer Science, pages 4–5. Springer, 2001.
49. P. Cousot. Abstract interpretation: Theory and practice. In SPIN, volume 2318 of Lecture Notes in Computer Science,

pages 2–5. Springer, 2002.
50. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor.

Comput. Sci., 277(1-2):47–103, 2002.
51. P. Cousot. Verification by abstract interpretation. In Verification: Theory and Practice, volume 2772 of Lecture Notes

in Computer Science, pages 243–268. Springer, 2003.
52. P. Cousot. Integrating physical systems in the static analysis of embedded control software. In APLAS, volume 3780

of Lecture Notes in Computer Science, pages 135–138. Springer, 2005.
53. P. Cousot. Proving program invariance and termination by parametric abstraction, lagrangian relaxation and semidef-

inite programming. In VMCAI, volume 3385 of Lecture Notes in Computer Science, pages 1–24. Springer, 2005.
54. P. Cousot. The verification grand challenge and abstract interpretation. In VSTTE, volume 4171 of Lecture Notes in

Computer Science, pages 189–201. Springer, 2005.
55. P. Cousot. Proving the absence of run-time errors in safety-critical avionics code. In EMSOFT, pages 7–9. ACM,

2007.
56. P. Cousot. The rôle of abstract interpretation in formal methods. In SEFM, pages 135–140. IEEE Computer Society,

2007.
57. P. Cousot. Principles of Abstract Interpretation. MIT Press, 21 September 2011.
58. P. Cousot. Formal verification by abstract interpretation. In NASA Formal Methods, volume 7226 of Lecture Notes in

Computer Science, pages 3–7. Springer, 2012.
59. P. Cousot. Abstracting induction by extrapolation and interpolation. In VMCAI, volume 8931 of Lecture Notes in

Computer Science, pages 19–42. Springer, 2015.
60. P. Cousot. On various abstract understandings of abstract interpretation. In TASE, pages 2–3. IEEE Computer Society,

2015.
61. P. Cousot. Verification by abstract interpretation, soundness and abstract induction. In PPDP, pages 1–4. ACM, 2015.

A Personal Historical Perspective on Abstract Interpretation 23

62. P. Cousot. Abstract semantic dependency. In SAS, volume 11822 of Lecture Notes in Computer Science, pages 389–
410. Springer, 2019.

63. P. Cousot. A formal introduction to abstract interpretation. In Alexander Pretschner, P. Müller, and P. Stöckle, editors,
Engineering Secure and Dependable Software Systems. NATO SPS, Series D, Vol. 53. IOS Press, Amsterdam, 2019.

64. P. Cousot. On fixpoint/iteration/variant induction principles for proving total correctness of programswith denotational
semantics. In LOPSTR, volume 12042 of Lecture Notes in Computer Science, pages 3–18. Springer, 2019.

65. P. Cousot. Syntactic and semantic soundness of structural dataflow analysis. In SAS, volume 11822 of Lecture Notes
in Computer Science, pages 96–117. Springer, 2019.

66. P. Cousot. The symbolic term abstract domain. TASE, Hangzhou, China, December 2020.
67. P. Cousot. Abstract interpretation of graphs. In John P. Gallagher, R. Giacobazzi, and Pedro López-García, editors,

Analysis, Verification and Transformation for Declarative Programming and Intelligent Systems (AVERTIS), 2021. to
appear.

68. P. Cousot. Calculational design of a regular model checker by abstract interpretation. Theor. Comput. Sci., 869:62–84,
2021.

69. P. Cousot. Correspondences between concrete and abstract semantics: Homomorphisms, [bi]simulations, refinements,
preservation, logical relations, galois connections, closures, and approximations. refused for publication at POPL’22
with one A and three incomprehensibility comments., July 2021.

70. P. Cousot. Dynamic interval analysis by abstract interpretation. In 9th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA 2021, Rhodes, Greece, 2021. to appear.

71. P. Cousot and R. Cousot. Static verification of dynamic type properties of variables. Res. rep. R.R. 25, Laboratoire
IMAG, Université scientifique et médicale de Grenoble, Grenoble, France, Nov. 1975. 18 p.

72. P. Cousot and R. Cousot. Vérification statique de la cohérence dynamique des programmes. Res. rep., Rapport du con-
trat IRIA SESORI N° 75-035, Laboratoire IMAG, Université scientifique et médicale de Grenoble, Grenoble, France,
23 Sep. 1975. 125 p.

73. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proceedings of the Second
International Symposium on Programming, pages 106–130. Dunod, Paris, France, 1976.

74. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL, pages 238–252. ACM, 1977.

75. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: Mathematical foundations. SIGART
Newsl., 64:1–12, 1977.

76. P. Cousot and R. Cousot. Fixed point approach to the approximate semantic analysis of programs. Laboratoire IMAG,
Université scientifique et médicale de Grenoble, Grenoble, France, 48 p., June 1977.

77. P. Cousot and R. Cousot. Static determination of dynamic properties of generalized type unions. In Language Design
for Reliable Software, pages 77–94. ACM, 1977.

78. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures. In Formal Description
of Programming Concepts, pages 237–278. North-Holland, 1977.

79. P. Cousot and R. Cousot. Towards a universal model for static analysis of programs. Laboratoire IMAG, Université
scientifique et médicale de Grenoble, Grenoble, France, 90 p., Jan. 1977.

80. P. Cousot and R. Cousot. Exemples d’analyse sémantique automatique de programmes. In Actes des journées d’études
SÉSORI, « Synthèse, manipulation et transformation de programmes », Saint-Rémy de Provence, France, pages 111–130.
Publication IRIA, 10–12 May 1978.

81. P. Cousot and R. Cousot. A constructive characterization of the lattices of all retractions, pre–closure, quasi–closure
and closure operators on a complete lattice. Portugaliæ Mathematica, 38(2):185–198, 1979.

82. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Mathematics,
82(1):43–57, 1979.

83. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, pages 269–282. ACM Press,
1979.

84. P. Cousot and R. Cousot. Reasoning about program invariance proof methods. Res. rep. CRIN-80-P050, Centre de
Recherche en Informatique de Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy, France, July 1980.

85. P. Cousot and R. Cousot. Semantic analysis of communicating sequential processes (shortened version). In ICALP,
volume 85 of Lecture Notes in Computer Science, pages 119–133. Springer, 1980.

86. P. Cousot and R. Cousot. Induction principles for proving invariance properties of programs. In D. Néel, editor, Tools
& Notions for Program Construction: an Advanced Course, pages 75–119. Cambridge University Press, Cambridge,
UK, August 1982.

87. P. Cousot and R. Cousot. “à la Burstall”induction principles for proving inevitability properties of programs. Res. rep.
LRIM-83-08, University Paul Verlaine, Metz, France, November 1983.

88. P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for parallel programs. In A.W. Bier-
mann, G. Guiho, and Y. Kodratoff, editors, Automatic Program Construction Techniques, chapter 12, pages 243–271.
Macmillan, New York, New York, United States, 1984.

89. P. Cousot and R. Cousot. ’a la Floyd’ induction principles for proving inevitability properties of programs. In M. Nivat
and J. Reynolds, editors, Algebraic methods in semantics, pages 277–312. Cambridge University Press, Cambridge,
UK, December 1985.

90. P. Cousot and R. Cousot. Principe des méthodes de preuve de propriétés d’invariance et de fatalité des programmes
parallèles. In J.-P. Verjus and G. Roucairol, editors, Parallélisme, communication et synchronisation, pages 129–149.
Éditions du CNRS, Paris, 1985, ISBN 2-222-03672-0.

91. P. Cousot and R. Cousot. Sometime ≡ always + recursion ≡ always on the equivalence of the intermittent and invariant
assertions methods for proving inevitability properties of programs. Acta Informatica, 24(1):1–31, 1987.

92. P. Cousot and R. Cousot. A language independent proof of the soundness and completeness of generalized hoare logic.
Inf. Comput., 80(2):165–191, 1989.

24 Patrick Cousot

93. P. Cousot and R. Cousot. Comparison of the Galois connection and widening/narrowing approaches to abstract inter-
pretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:107–110, October 1991.

94. P. Cousot and R. Cousot. Relational abstract interpretation of higher-order functional programs. JTASPEFL ’91, Bor-
deaux. BIGRE, 74:33–36, October 1991.

95. P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. J. Log. Program., 13(2&3):103–
179, 1992.

96. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput., 2(4):511–547, 1992.
97. P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to abstract interpre-

tation. In PLILP, volume 631 of Lecture Notes in Computer Science, pages 269–295. Springer, 1992.
98. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In POPL, pages 83–94. ACM

Press, 1992.
99. P. Cousot and R. Cousot. Galois connection based abstract interpretations for strictness analysis (invited paper). In

Formal Methods in Programming and Their Applications, volume 735 of Lecture Notes in Computer Science, pages
98–127. Springer, 1993.

100. P. Cousot and R. Cousot. Invited talk: Higher order abstract interpretation (and application to comportment analysis
generalizing strictness, termination, projection, and PER analysis. In ICCL, pages 95–112. IEEE Computer Society,
1994.

101. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game-theoretic form. In CAV, volume 939 of Lecture Notes in Computer Science, pages
293–308. Springer, 1995.

102. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract interpre-
tation. In FPCA, pages 170–181. ACM, 1995.

103. P. Cousot and R. Cousot. Abstract interpretation of algebraic polynomial systems (extended abstract). In AMAST,
volume 1349 of Lecture Notes in Computer Science, pages 138–154. Springer, 1997.

104. P. Cousot and R. Cousot. Parallel combination of abstract interpretation and model-based automatic analysis of soft-
ware. In R. Cleaveland and D. Jackson, editors, Proceedings of the First ACM SIGPLAN Workshop on Automatic
Analysis of Software, AAS’97, pages 91–98, Paris, France, January 1997. ACM Press.

105. P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Autom. Softw. Eng., 6(1):69–95, 1999.
106. P. Cousot and R. Cousot. Abstract interpretation based program testing. In Proceedings of the SSGRR 2000 Computer

& eBusiness International Conference, Compact disk paper 248 and electronic proceedings http://www.ssgrr.it/
en/ssgrr2000/proceedings.htm, L’Aquila, Italy, July 31 – August 6 2000. Scuola Superiore G. Reiss Romoli.

107. P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL, pages 12–25. ACM, 2000.
108. P. Cousot and R. Cousot. A case study in abstract interpretation based program transformation: Blocking command

elimination. In MFPS, volume 45 of Electronic Notes in Theoretical Computer Science, pages 41–64. Elsevier, 2001.
109. P. Cousot and R. Cousot. Compositional separate modular static analysis of programs by abstract interpretation. In

Proceedings of the Second International Conference on Advances in Infrastructure for E-Business, E-Science and E-
Education on the Internet, SSGRR 2001, Compact disk, L’Aquila, Italy, 6–12 August, 2001 2001. Scuola Superiore G.
Reiss Romoli.

110. P. Cousot and R. Cousot. Verification of embedded software: Problems and perspectives. In EMSOFT, volume 2211
of Lecture Notes in Computer Science, pages 97–113. Springer, 2001.

111. P. Cousot and R. Cousot. Modular static program analysis. In CC, volume 2304 of Lecture Notes in Computer Science,
pages 159–178. Springer, 2002.

112. P. Cousot and R. Cousot. On abstraction in software verification. In CAV, volume 2404 of Lecture Notes in Computer
Science, pages 37–56. Springer, 2002.

113. P. Cousot and R. Cousot. Systematic design of program transformation frameworks by abstract interpretation. In
POPL, pages 178–190. ACM, 2002.

114. P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theor. Comput. Sci., 290(1):531–
544, 2003.

115. P. Cousot and R. Cousot. An abstract interpretation-based framework for software watermarking. In POPL, pages
173–185. ACM, 2004.

116. P. Cousot and R. Cousot. Basic concepts of abstract interpretation. In IFIP Congress Topical Sessions, volume 156 of
IFIP, pages 359–366. Kluwer/Springer, 2004.

117. P. Cousot and R. Cousot. Grammar analysis and parsing by abstract interpretation. In Program Analysis and Compi-
lation, volume 4444 of Lecture Notes in Computer Science, pages 175–200. Springer, 2006.

118. P. Cousot and R. Cousot. Bi-inductive structural semantics: (extended abstract). Electron. Notes Theor. Comput. Sci.,
192(1):29–44, 2007.

119. P. Cousot and R. Cousot. Bi-inductive structural semantics. Inf. Comput., 207(2):258–283, 2009.
120. P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation.

In Logics and Languages for Reliability and Security, volume 25 of NATO Science for Peace and Security Series - D:
Information and Communication Security, pages 1–29. IOS Press, 2010.

121. P. Cousot and R. Cousot. Grammar semantics, analysis, and parsing by abstract interpretation. Theor. Comput. Sci.,
412(44):6135–6192, 2011.

122. P. Cousot and R. Cousot. An abstract interpretation framework for termination. In POPL, pages 245–258. ACM, 2012.
123. P. Cousot and R. Cousot. Abstract interpretation: past, present and future. In CSL-LICS, pages 2:1–2:10. ACM, 2014.
124. P. Cousot and R. Cousot. A Galois connection calculus for abstract interpretation. In POPL, pages 3–4. ACM, 2014.
125. P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic inference of necessary preconditions. In VMCAI,

volume 7737 of Lecture Notes in Computer Science, pages 128–148. Springer, 2013.
126. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyzer. In ESOP,

volume 3444 of Lecture Notes in Computer Science, pages 21–30. Springer, 2005.

http://www.ssgrr.it/en/ssgrr2000/proceedings.htm
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm

A Personal Historical Perspective on Abstract Interpretation 25

127. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combination of abstractions in
the ASTRÉE static analyzer. In ASIAN, volume 4435 of Lecture Notes in Computer Science, pages 272–300. Springer,
2006.

128. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does ASTRÉE scale up? Formal Methods
Syst. Des., 35(3):229–264, 2009.

129. P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival. Varieties of static analyzers: A
comparison with ASTRÉE. In TASE, pages 3–20. IEEE Computer Society, 2007.

130. P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of resolution-based semantics. Theor. Comput. Sci.,
410(46):4724–4746, 2009.

131. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and scalable array content
analysis. In POPL, pages 105–118. ACM, 2011.

132. P. Cousot, R. Cousot, F. Logozzo, andM. Barnett. An abstract interpretation framework for refactoring with application
to extract methods with contracts. In OOPSLA, pages 213–232. ACM, 2012.

133. P. Cousot, R. Cousot, and L. Mauborgne. Logical abstract domains and interpretations. In The Future of Software
Engineering, pages 48–71. Springer, 2010.

134. P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree abstract domain. In Essays in Memory
of Amir Pnueli, volume 6200 of Lecture Notes in Computer Science, pages 72–95. Springer, 2010.

135. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains and the combination of decision
procedures. In FoSSaCS, volume 6604 of Lecture Notes in Computer Science, pages 456–472. Springer, 2011.

136. P. Cousot, R. Cousot, and L. Mauborgne. Theories, solvers and static analysis by abstract interpretation. J. ACM,
59(6):31:1–31:56, 2012.

137. P. Cousot, P. Ganty, and J-F. Raskin. Fixpoint-guided abstraction refinements. In SAS, volume 4634 of Lecture Notes
in Computer Science, pages 333–348. Springer, 2007.

138. P. Cousot, R. Giacobazzi, and F. Ranzato. Program analysis is harder than verification: A computability perspective.
In CAV (2), volume 10982 of Lecture Notes in Computer Science, pages 75–95. Springer, 2018.

139. P. Cousot, R. Giacobazzi, and F. Ranzato. A2i: abstract2 interpretation. Proc. ACM Program. Lang., 3(POPL):42:1–
42:31, 2019.

140. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In POPL, pages
84–96. ACM Press, 1978.

141. P. Cousot and M. Monerau. Probabilistic abstract interpretation. In ESOP, volume 7211 of Lecture Notes in Computer
Science, pages 169–193. Springer, 2012.

142. Patrick Cousot. Dynamic interval analysis by abstract interpretation. In Formal Methods in Outer Space, volume
13065 of Lecture Notes in Computer Science, pages 61–86. Springer, 2021.

143. Patrick Cousot. Asynchronous correspondences between hybrid trajectory semantics. CoRR, abs/2209.14945, 2022.
144. C. Deng and P. Cousot. Responsibility analysis by abstract interpretation. In SAS, volume 11822 of Lecture Notes in

Computer Science, pages 368–388. Springer, 2019.
145. Chaoqiang Deng and Patrick Cousot. The systematic design of responsibility analysis by abstract interpretation. ACM

Trans. Program. Lang. Syst., 44(1):3:1–3:90, 2022.
146. E.W. Dijkstra. Letters to the editor: go to statement considered harmful. Commun. ACM, 11(3):147–148, 1968.
147. E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM, 18(8):453–

457, 1975.
148. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
149. E.W. Dijkstra. On the reliability of programs. circulated privately, n.d.
150. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Texts and Monographs in Computer

Science. Springer, 1990.
151. E.W. Dijkstra and A.J.M. van Gasteren. A simple fixpoint argument without the restriction to continuity. Acta Infor-

matica, 23(1):1–7, 1986.
152. R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz, editor, Proc. Symp. in Applied Math., volume 19, pages

19–32. Amer. Math. Soc., 1967.
153. L. Franceschino, D. Pichardie, and J.n-P. Talpin. Verified functional programming of an abstract interpreter. CoRR,

abs/2107.09472, 2021.
154. R. Giacobazzi and F. Ranzato. History of abstract interpretation. IEEE Annals of the History of Computing, To appear.
155. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables d’un programme. Thèse

de 3ème cycle informatique, Université de Grenoble Alpes, Grenoble, France, March 1979.
156. M. Hinchey, M. Jackson, P. Cousot, B. Cook, J.P. Bowen, and T. Margaria. Software engineering and formal methods.

Commun. ACM, 51(9):54–59, 2008.
157. J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-verified C static analyzer. In POPL, pages

247–259. ACM, 2015.
158. M. Karr. On affine relationships among variables of a program. Technical report, CA-7402-2811, Massachusetts

Computer Associates, Inc., Lakeside Office Park, Wakefield, Mass. 01880, U.S.A., February 1974.
159. M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133–151, 1976.
160. D. Kästner, C. Ferdinand, S. Wilhelm, S. Nevona, O. Honcharova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A.

Miné, X. Rival, and É.-J. Sims. ASTRÉE: Nachweis der abwesenheit von laufzeitfehlern. In Workshop “Entwicklung
zuverlässiger Software-Systeme”, Regensburg, Germany, 18 June 2009.

161. D. Kästner, A. Miné, S. Wilhelm, X. Rival, A. Schmidt, J. Feret, P. Cousot, and C. Ferdinand. Finding all potential
run-time errors and data races in automotive software. In WCX 17: SAE World Congress Experience, April 4-6, 2017
Detroit, Michigan, USA SAE Technical Paper 2017-01-0054, March 2017.

162. D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, and X. Rival. ASTRÉE:
Proving the absence of runtime errors. In Embedded Real Time Software and Systems - ERTSS 2010, 2010.

26 Patrick Cousot

163. S. Katz and Z. Manna. Logical analysis of programs. Commun. ACM, 19(4):188–206, 1976.
164. G.A. Kildall. Global expression optimization during compilation. Phd, University of Washington, Computer Science

Group, TR 72-06-02, 1972.
165. G.A. Kildall. A unified approach to global program optimization. In POPL, pages 194–206. ACM Press, 1973.
166. J.C. King. On affine relationships among variables of a program. IBMReserach Report RC5082, T. J. Watson Reserach

Center, Yorktown Heights, N. Y„ October 1974.
167. J.C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
168. J.-L. Lassez, V.L. Nguyen, and L. Sonenberg. Fixed point theorems and semantics: A folk tale. Inf. Process. Lett.,

14(3):112–116, 1982.
169. F. Logozzo, M. Barnett, M. Fähndrich, P. Cousot, and R. Cousot. A semantic integrated development environment. In

SPLASH, pages 15–16. ACM, 2012.
170. Z. Manna, S. Ness, and J. Vuillemin. Inductive methods for proving properties of programs. Commun. ACM,

16(8):491–502, 1973.
171. Z. Manna and A. Shamir. The optimal fixedpoint of recursive programs. In STOC, pages 194–206. ACM, 1975.
172. Zohar Manna and Richard J. Waldinger. Is ”sometime” sometimes better than ”always”? (intermittent assertions in

proving program correctness). Commun. ACM, 21(2):159–172, 1978.
173. J.-C. Miellou. Algorithmes de relaxation : propriétés de convergence monotone. Séminaire d’Analyse Numérique n°

278, Université scientifique et médicale de Grenoble, Grenoble, France, June 1977.
174. A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, and C. Ferdinand. Taking static analysis

to the next level: Proving the absence of run-time errors and data races with ASTRÉE. In 8th European Congress on
Embedded Real-Time Software and Systems, Toulouse, France, January 2016.

175. J.D. Monk. Introduction to Set Theory. McGraw–Hill, 1969.
176. A. Mycroft. Abstract interpretation and optimising transformations for applicative programs. PhD thesis, University

of Edinburgh, UK, 1982.
177. P. Naur. The design of the GIER ALGOL compiler. BIT Numerical Mathematics, 3:124–140 and 145–166, June 1963.
178. P. Naur. Checking of operand types in ALGOL compilers. BIT Numerical Mathematics, 5:151–163, 09 1965.
179. J. Von Neumann. Zur Einführung der transfiniten Zahlen. Acta Scientiarum Mathematicarum (University of Szeged),

1(4):199–208, 1923.
180. F. Nielson, P. Cousot, M. Dam, P. Degano, P. Jouvelot, A. Mycroft, and B. Thomsen. Logical and operational methods

in the analysis of programs and systems. In LOMAPS, volume 1192 of Lecture Notes in Computer Science, pages
1–21. Springer, 1996.

181. D.M.R. Park. Fixpoint induction and proofs of program properties. Machine Intelligence., 5:59–78, 1969.
182. G.D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 1972–01:17–139, 2004.
183. Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Trans.Amer.Math.Soc.,

74(1):358–366, 1953.
184. F. Robert. Convergence locale d’itérations chaotiques non linéaires. Technical Report n° 58, L.A. 7, Université scien-

tifique et médicale de Grenoble, Grenoble, France, Dec. 1976.
185. M. Rosendahl. Higher-order chaotic iteration sequences. In PLILP, volume 714 of Lecture Notes in Computer Science,

pages 332–345. Springer, 1993.
186. D.S. Scott. The lattice of flow diagrams. In Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture

Notes in Mathematics, pages 311–366. Springer, 1971.
187. D.S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic Geometry and Logic. Dalhousie Univer-

sity, Halifax, January 16–19, 1971, volume 274 of Lecture Notes in Mathematics, pages 97–136. Springer, 1972.
188. D.S. Scott. Data types as lattices. SIAM J. Comput., 5(3):522–587, 1976.
189. D.S. Scott and C. Strachey. Towards a mathematical semantics for computer languages. Technical Report PRG-6,

Oxford University Computer Laboratory, August 1971.
190. M. Sintzoff. Calculating properties of programs by valuations on specific models. In Proceedings of ACM Conference

on Proving Assertions About Programs, pages 203–207. ACM, 1972.
191. J. Souyris and D. Delmas. Experimental assessment of ASTRÉE on safety-critical avionics software. In SAFECOMP,

volume 4680 of Lecture Notes in Computer Science, pages 479–490. Springer, 2007.
192. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. of Math., 5:285–310, 1955.
193. O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. Andromeda: Accurate and scalable security analysis of

web applications. In FASE, volume 7793 of Lecture Notes in Computer Science, pages 210–225. Springer, 2013.
194. Arnaud Venet. Abstract cofibered domains: Application to the alias analysis of untyped programs. In SAS, volume

1145 of Lecture Notes in Computer Science, pages 366–382. Springer, 1996.
195. M. Ward. The closure operators of a lattice. Annals of Mathematics, 43(2):191–196, April 1942.
196. B. Wegbreit. Property extraction in well-found property sets. Technical report, Center for Research in Computing

Technology, Harward University, Cambridge, Massachusetts, February 1973.
197. B. Wegbreit. Property extraction in well–founded property sets. IEEE Trans. Software Eng., 1(3):270–285, 1975.
198. L. Westhofen, Ph. erger, and J.P. Katoen. Benchmarking software model checkers on automotive code. CoRR,

abs/2003.11689, 2020.
199. R. Wilhelm. Real time spent on real time. Commun. ACM, 63(10):54–60, November 2020.
200. B. Yin, L. Chen, J. Liu, Ji Wang, and P. Cousot. Verifying numerical programs via iterative abstract testing. In SAS,

volume 11822 of Lecture Notes in Computer Science, pages 247–267. Springer, 2019.

	A Personal Historical Perspective on Abstract Interpretation
	Patrick Cousot
	Origin
	Widening
	Example of widening (and narrowing)
	From flowcharts to structural induction
	Bibliographic input
	Soundness and termination proof
	Initial publication
	Development of the theory from an algorithmic to an algebraic framework
	Narrowing
	Fixpoints
	Verification
	Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints
	Recursion and modularity
	Chaotic and asynchronous iterations
	Types
	Galois connections, closures, Moore families, etc
	Transition systems
	Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes
	Automatic discovery of linear restraints among variables of a program
	Systematic Design of Program Analysis Frameworks
	Parallelism
	Proof methods and induction principles
	Back to static analysis
	A variety of abstract interpretation models
	Language independence
	Bi-inductive definition of maximal traces
	Hierarchies of semantics
	Calculational Design
	Calculational design of abstract semantics
	Calculational design of algorithms
	Static analysis is harder than verification
	The origin of Astrée
	Astrée
	Applications
	Introductions, surveys, reports, and prospective discussion texts
	Conclusion
	Acknowledgements
	References

