
A Sound Floating-Point Polyhedra Abstract Domain ?

Liqian Chen1,2, Antoine Miné3, and Patrick Cousot1

1 École Normale Supérieure, Paris, France
{chen,mine,cousot}@di.ens.fr

2 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
3 CNRS, École Normale Supérieure, Paris, France

Abstract. The polyhedra abstract domain is one of the most powerful and com-
monly used numerical abstract domains in the field of static program analysis
based on abstract interpretation. In this paper, we present an implementation of
the polyhedra domain using floating-point arithmetic without sacrificing sound-
ness. Floating-point arithmetic allows a compact memory representation and an
efficient implementation on current hardware, at the cost of some loss of preci-
sion due to rounding. Our domain is based on a constraint-only representation
and employs sound floating-point variants of Fourier-Motzkin elimination and
linear programming. The preliminary experimental results of our prototype are
encouraging. To our knowledge, this is the first time that the polyhedra domain is
adapted to floating-point arithmetic in a sound way.

1 Introduction

Static analysis is a technique to automatically discover program properties at compile-
time. One important application is to prove the absence of run-time errors in a program
before actually running it. Since, in general, the exact behavior of a program cannot
be computed statically, an analysis needs to use approximation. We only consider anal-
yses that are sound, that is, compute an over-approximation of all possible behaviors
including all real errors, but may fail to prove the correctness if the approximation is
too coarse.

The abstract interpretation framework [6] allows devising static analyses that are
sound by construction. A core concept in abstract interpretation is that of an abstract
domain, that is, a set of computer-representable properties together with operators to
model soundly the semantic actions of a program (assignments, tests, control-flow joins,
loops, etc.). Specifically, we are interested in numerical abstract domains that represent
properties of the numerical variables of a program.

Among them, one of the most famous is the polyhedra abstract domain introduced
in 1978 by Cousot and Halbwachs [7] which can infer linear relationships between vari-
ables in a program. It has a wide range of applications in the field of the analysis and

? This work is supported by the INRIA project-team Abstraction common to the CNRS and the
École Normale Supérieure. This work is partially supported by the Fund of the China Schol-
arship Council and National Natural Science Foundation of China under Grant No.60725206.

verification of hardware and software systems. A number of implementations for ma-
nipulating polyhedra are currently available. Recent ones include the Parma Polyhedra
Library (PPL) [3] and the APRON library [1].

However, most implementations suffer from scalability problems [20]. One reason
is the use of arbitrary precision rationals which are slow and may lead to excessively
large numbers even when analyzing simple programs involving only small integer val-
ues. Alternatively, one can use fast machine integers but then overflows can cause much
precision loss. Floating-point numbers are not only fast but they also allow a gradual
loss of precision. Unfortunately, the pervasive rounding errors make it difficult to guar-
antee soundness. This is the problem we tackle in this paper.

This paper presents a sound floating-point implementation of the polyhedra abstract
domain. Our approach is based on three key points: a constraint-based representation
using floating-point coefficients, a sound version of Fourier-Motzkin elimination using
floating-point arithmetic, and a rigorous linear programming method proposed in [19].
The preliminary experimental results are promising when analyzing programs involving
coefficients of large magnitude, e.g., floating-point programs.

The rest of the paper is organized as follows. Section 2 discusses some related work.
In Section 3, we review the design of the polyhedra domain based on a constraint-only
representation over the rationals. In Section 4, we adapt this framework to the floating-
point world. Section 5 discusses precision and efficiency issues due to rounding and
proposes some solutions. Section 6 presents our prototype implementation together with
preliminary experimental results. Finally, conclusions as well as suggestions for future
work are given in Section 7.

2 Related Work

The Polyhedra Abstract Domain. Common implementations of the polyhedra domain
[1, 3] are based on a dual representation [7]. A polyhedron can be described as the
conjunction of a finite set of linear constraints. Dually, in the frame representation, it can
be represented as a finite collection of generators, that is, vertices or rays. Some domain
operations (e.g., meet and test) can be performed more efficiently on the constraint
representation, while some others (e.g., projection and join) can be performed more
efficiently on the frame representation. Thus, it is often necessary to convert from one
representation to the other. The dual conversions are performed using the Chernikova
algorithm [13] which can produce an output that is exponential in the size of the input.

Recently, as an alternative to the dual representation, Simon and King [23] have
demonstrated that the polyhedra domain can be fully implemented using only con-
straints, with the aim to remove the complexity bottleneck caused by the frame rep-
resentation. Our work is based on the same principle.

In order to reduce the complexity, it has also been proposed to abandon general
polyhedra in favor of less expressive weakly relational domains which are polyhedra
of restricted forms that benefit from specialized algorithms with improved complexity.
Examples include the Octagon domain [17], the Two Variables Per Inequality (TVPI)
domain [24], and the Template Constraint Matrix (TCM) domain [22].

Linear Programming. Linear Programming (LP) [2] is a method used to find the op-
timal value of some affine function (so-called objective function) subject to a finite
system of linear constraints (defining the so-called feasible space) . It is a well-studied
problem for which highly efficient algorithms have already been developed that scale up
to hundreds of thousands of variables and constraints. Most state-of-the-art LP solvers
use floating-point arithmetic and only give approximate solutions which may not be the
actual optimum solution or may even lie outside the feasible space. It would be possible
but costly in practice to compute the exact solution using exact arithmetic. Instead, we
take advantage of recent progress that has been made on computing rigorous bounds
for the objective value using floating-point arithmetic [19]. In particular, the ability to
infer rigorous bounds provides a basis for soundly implementing some operations in
our domain.

Note that using LP in a polyhedral analysis is not new. Sankaranarayanan et al.
[22] use it in their TCM domain which is less expressive than general polyhedra. They
use approximate floating-point LP but the result is then checked using exact arithmetic.
Simon et al. [23] consider general polyhedra but use exact arithmetic. We will consider
here general polyhedra and use only floating-point arithmetic.

Static Analysis of Floating-Point Programs. A related problem is that of analyzing
programs featuring floating-point computations. In [8], Goubault analyzes the origin
of the loss of precision in floating-point programs. ASTRÉE [5] computes the set of
reachable values for floating-point variables in order to check for run-time errors. In this
paper, we will also apply our abstract domain to the reachability problem in floating-
point programs.

Note that the polyhedra abstract domain described in this paper abstracts sets of
real numbers. As in ASTRÉE, we rely on the linearization technique of [15] to soundly
abstract floating-point computations in the analyzed program into ones over the field
of reals. The use of floating-point arithmetic in the abstraction becomes very impor-
tant for efficiency when analyzing linearized floating-point programs as they involve
coefficients of large magnitude.

Although sound implementations of floating-point interval arithmetic have been
known for a long time [18], such adaptations to relational domains are recent and few
[15]. To our knowledge, we are the first to tackle the case of general polyhedra.

3 Rational Polyhedra Domain Based on Constraints

In this section, we describe the design of a polyhedra domain based on a constraint-only
representation using rational numbers, most of which has been previously known [23]
except for the implementation of the standard widening (Sect. 3.7). Internally, a rational
polyhedron P is described as an inequality system Ax ≤ b, where A is a matrix and b
is a vector of rational numbers. It represents the set γ(P) = {x ∈ Qn | Ax ≤ b} where
each point x is a possible environment, i.e., an assignment of rational values to abstract
variables. In practice, program variables have to be mapped to these abstract variables
by a memory model (see, e.g., [16]). We will now briefly describe the implementation
of the common domain operations.

3.1 Redundancy Removal

The constraint representation of a polyhedron is not unique. For efficiency reasons, it
is desirable to have as few constraints as possible. An inequality ϕ ∈ P is said to be
redundant when ϕ can be entailed by the other constraints in P, that is, P \ {ϕ} |= ϕ.
Given ϕ = (

∑
i aixi ≤ b) in P, we can check whether ϕ is redundant by solving the LP

problem: µ = max
∑

i aixi subject to P \ {ϕ}. If µ ≤ b, then ϕ is redundant and can be
eliminated from P. This process is repeated until no more inequality can be removed.

3.2 Emptiness Test

A polyhedron is empty if and only if its constraint set is infeasible. The feasibility of a
constraint system is implicitly checked by LP solvers when computing the maximum
(minimum) of an objective function. During program analysis, constraints are often
added one by one. Thus, the test for emptiness can also be done incrementally. When
adding a new constraint

∑
i aixi ≤ b to a nonempty polyhedron P, we solve the LP

problem µ= min
∑

i aixi subject to P. If b < µ, the new polyhedron is indeed empty.

3.3 Projection

An important operation on polyhedra is to remove all information pertaining to a vari-
able xi without affecting the relational information between other variables. To this end,
we define the projection operator π(P, xi)

def
= { x[xi/y] | x ∈ γ(P), y ∈ Q }, where x[xi/y]

denotes the vector x in which the i-th element is replaced with y. It can be computed by
eliminating all occurrences of xi in the constraints defining P, using the classic Fourier-
Motzkin algorithm:

Fourier(P, xi)
def
=

{
(−a−i)c+ + a+i c−

∣∣∣∣∣∣ c+ = (
∑

k a+k xk ≤ b+) ∈ P, a+i > 0
c− = (

∑
k a−k xk ≤ b−) ∈ P, a−i < 0

}
∪ { (
∑

k ak xk ≤ b) ∈ P | ai = 0 }.

The projection is useful to model the non-deterministic assignment of an unknown
value to a variable xi, namely by defining: [[xi := random()]]# (P) def

= Fourier(P, xi),
where [[·]]# (P) denotes the effect of a program statement on the polyhedron P.

3.4 Join

To abstract the control-flow join, we need to compute the union of environments of
program variables. The smallest polyhedron enclosing this union is the topological clo-
sure of the convex hull. To compute it, we use the method proposed in [23]. Given
γ(P) = {x ∈ Qn | Ax ≤ b} and γ(P′) = {x ∈ Qn | A′x ≤ b′}, the convex hull of P and P′ is

γ(PH) =
{

x ∈ Qn

∣∣∣∣∣∣ x = σ1z + σ2z′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
Az ≤ b ∧ A′z′ ≤ b′ ∧ σ2 ≥ 0

}

where σ1, σ2 ∈ Q and x, z, z′ ∈ Qn. To avoid the non-linear equation x = σ1z+σ2z′, we
introduce y = σ1z as well as y′ = σ2z′ and relax the system into

γ(PCH) =
{

x ∈ Qn

∣∣∣∣∣∣ x = y + y′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
Ay ≤ σ1b ∧ A′y′ ≤ σ2b′ ∧ σ2 ≥ 0

}
. (1)

Projecting out σ1, σ2, y, y′ from (1) yields the closure of the convex hull of P and P′.

3.5 Transfer Functions

Test Transfer Function. An affine test with exact rational arithmetic can be converted
to the form

∑
i aixi ≤ c. The result of such a test

[[∑
i aixi ≤ c

]]# (P) is simply the poly-
hedron P with the constraint

∑
i aixi ≤ c added. Note that a test may introduce re-

dundancy or make the polyhedron infeasible. More complicated cases, such as tests
involving floating-point or non-linear operations, can be soundly abstracted to the form∑

i aixi ≤ c following the method in [15]. In the worst case, we can always ignore the
effect of a test, which is sound.

Assignment Transfer Function. The assignment of some expression e to x j can be
modeled using projection, test, and variable renaming as follows:

[[x j := e]]#(P) def
= (Fourier([[x′j − e = 0]]#(P), x j))[x′j/x j] .

First, a fresh variable x′j is introduced to hold the value of the expression. Then, we
project out x j by Fourier-Motzkin elimination and the final result system is obtained by
renaming x′j back to x j. The temporary variable x′j is necessary for invertible assign-
ments such as x := x + 1.

3.6 Inclusion Test

Inclusion test between two polyhedra P1 and P2, denoted P1 v P2, reduces to the
problem of checking whether each inequality in P2 is entailed by P1, which can be
implemented using LP. For each

∑
i aixi ≤ b in P2, compute µ = max

∑
i aixi subject to

P1 . If µ > b, the inclusion does not hold.

3.7 Widening

For loops, widening ensures an efficient analysis by accelerating the fixpoint computa-
tion [6]. The first widening operator on polyhedra was proposed in [7] using the dual
representation. Its improvement, presented in [9], is now the standard widening:

Definition 1 (Standard widening). Given two polyhedra P1 v P2, represented by sets
of linear inequalities, we define

P1OP2
def
= S1 ∪ S2

where
S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },
S2 = { ϕ2 ∈ P2 | ∃ϕ1 ∈ P1, γ(P1) = γ((P1 \ {ϕ1 }) ∪ {ϕ2 }) }.

The key point of the standard widening is to keep not only the inequalities S1 from
P1 satisfied by P2, but also the inequalities S2 from P2 that are mutually redundant with
an inequality of P1 with respect to P1. S2 ensures that the result does not depend on the
representation of P1 and P2. Note that S1 can be computed using entailment checks.
The following property shows that S2 also reduces to entailment checks, which shows
that the standard widening can be efficiently implemented using LP only.

Property 1. ∀ϕ1 ∈ P1, ϕ2 ∈ P2, γ(P1) = γ((P1 \ {ϕ1}) ∪ {ϕ2}) iff P1 |= ϕ2 and ((P1 \

{ϕ1}) ∪ {ϕ2}) |= ϕ1.

4 Floating-Point Polyhedra Domain

In this section, we present a floating-point implementation of the polyhedra domain. A
floating-point polyhedron is represented as an inequality system Ax ≤ b where coeffi-
cients in A and b are now floating-point numbers. Such a system still represents a set of
environments with rational-valued variables, namely { x ∈ Qn | Ax ≤ b} where Ax ≤ b
is interpreted mathematically (rather than in floating-point semantics).

In order to distinguish floating-point arithmetic operations from exact arithmetic
ones, we introduce additional notations. As usual, {+,−,×, /} are used as exact ratio-
nal arithmetic operations. The corresponding floating-point operations are denoted by
{⊕r,	r,⊗r,�r}, tagged with a rounding mode r ∈ {−∞,+∞} (−∞: downward; +∞: up-
ward). The floating-point unary minus 	 is exact and does not incur rounding. For the
sake of convenience, we occasionally use the command roundup (respectively round-
down) to change the current rounding mode to upward (respectively downward). All the
algorithms in this section are implemented in floating-point arithmetic.

4.1 Linearization

We say that a point x satisfies some linear interval inequality ϕ :
∑

k [ak, bk] × xk ≤ c,
denoted by x ∈ γ(ϕ), when for all k there is some dk ∈ [ak, bk] such that

∑
k dk × xk ≤ c

holds. This definition lifts to systems of inequalities straightforwardly and corresponds
to the classic notion of weak solution in the field of linear interval optimization [21].

A linear inequality in the common sense is simply a linear interval inequality where
all the coefficients are singletons (scalars). Our internal representation of a polyhedron
supports only linear (non-interval) inequalities, while as we will see in the following
sections, some operations of our domain naturally output linear interval inequalities.
To convert a linear interval inequality ϕ to a linear inequality, we adapt the lineariza-
tion technique from [15]. Our linearization operator ζ(ϕ, x) is defined with respect to a
bounding box x of variables as follows:

Definition 2 (Linearization operator). Let ϕ :
∑

k [ak, bk] × xk ≤ c be a linear interval
inequality and x := [x, x] be the bounding box of x.

ζ(ϕ, x) def
=
∑
k

dk × xk ≤ c ⊕+∞
⊕

k
+∞ (max{bk 	+∞ dk, dk 	+∞ ak} ⊗+∞ |xk |)

where dk can be any floating-point number inside [ak, bk] and |xk | = max{−xk, xk}.

In theory, dk can be any floating-point number in [ak, bk]. In practice, we often
choose the midpoint dk = (ak ⊕r bk) �r 2 which causes the least loss of precision. More
strategies to choose a proper dk will be discussed in Sect. 5.3.

Example 1. Consider the linear interval inequality [0, 2]x + [1, 1]y ≤ 2 with respect
to the bounding box x, y ∈ [−10, 5]. If we choose the midpoint of [ak, bk] as dk, the
linearization result will be x + y ≤ 12 (since 2 ⊕+∞ max{2 	+∞ 1, 1 	+∞ 0} ⊗+∞ 10 ⊕+∞
max{1 	+∞ 1, 1 	+∞ 1} ⊗+∞ 10 = 12). Note that some loss of precision happens here,
e.g., the point (0,12) satisfies the result inequality x + y ≤ 12 but does not satisfy the
original interval inequality [0, 2]x + [1, 1]y ≤ 2.

Theorem 1 (Soundness of the linearization operator). Given a linear interval in-
equality ϕ and a bounding box x, ζ(ϕ, x) soundly over-approximates ϕ, that is, any
point in x that also satisfies ϕ satisfies ζ(ϕ, x): ∀x ∈ x, x ∈ γ(ϕ)⇒ x ∈ γ(ζ(ϕ, x)).

Proof. For any linear interval inequality ϕ :
∑

k [ak, bk] × xk ≤ c,∑
k [ak, bk] × xk ≤ c

⇐⇒
∑

k (dk + [ak − dk, bk − dk]) × xk ≤ c
⇐⇒

∑
k dk × xk ≤ c +

∑
k [dk − bk, dk − ak] × xk

=⇒
∑

k dk × xk ≤ (c ⊕+∞
⊕

k
+∞(max{bk 	+∞ dk, dk 	+∞ ak} ⊗+∞ |xk |)

ut

Note that although the value of the right hand of ζ(ϕ, x) depends on the evaluation
ordering of the summation

⊕
+∞

, the linearization operator is still sound because in fact
every ordering gives an upper bound of c +

∑
k [dk − bk, dk − ak] × xk in the real field.

4.2 Floating-Point Fourier-Motzkin Elimination

The key idea in building a sound floating-point Fourier-Motzkin elimination algorithm
is to use interval arithmetic with outward rounding (i.e., rounding upper bounds up and
lower bounds down). Then, using the linearization operator introduced in Sect. 4.1, the
interval coefficients in the result can be linearized to scalars.

Assume we want to eliminate variable xi from the following two inequalities{
a+i xi +

∑
k,i a+k × xk ≤ c+, where a+i > 0

a−i xi +
∑

k,i a−k × xk ≤ c−, where a−i < 0. (2)

After dividing (2) by the absolute value of the coefficient of xi using interval arithmetic
with outward rounding, we get{

xi +
∑

k,i [a+k �−∞ a+i , a
+
k �+∞ a+i] × xk ≤ c+ �+∞ a+i , where a+i > 0

−xi +
∑

k,i [a−k �−∞ (a−i), a−k �+∞ (a−i)] × xk ≤ c− �+∞ (a−i), where a−i < 0

and by addition∑
k,i [(a+k �−∞ a+i) ⊕−∞ (a−k �−∞ (a−i)), (a+k �+∞ a+i) ⊕+∞ (a−k �+∞ (a−i))] × xk

≤ (c+ �+∞ a+i) ⊕+∞ (c− �+∞ (a−i)). (3)

Then (3) can be abstracted into a linear (non-interval) form by the linearization operator
ζ. We denote as Fourier f (P, xi) the result system with xi projected out from P this way.

Theorem 2 (Soundness of the floating-point Fourier-Motzkin elimination). Given
a polyhedron P, a variable xi and a bounding box x, any point in x that also sat-
isfies Fourier(P, xi) satisfies Fourier f (P, xi): ∀x ∈ x, x ∈ γ(Fourier(P, xi)) ⇒ x ∈
γ(Fourier f (P, xi)).

The key point is that the coefficient of the variable to be eliminated can always be
reduced exactly to 1 or −1 by division. In some cases, an alternative algorithm can be
used. Suppose that a+i ⊗−∞ (a−i) = a+i ⊗+∞ (a−i), i.e., the floating-point multiplica-
tion of a+i and 	a−i is exact. Then, the Fourier-Motzkin elimination can be done in a
multiplicative way:∑

k,i [(a+k ⊗−∞ (a−i)) ⊕−∞ (a−k ⊗−∞ a+i), (a+k ⊗+∞ (a−i)) ⊕+∞ (a−k ⊗+∞ a+i)] × xk

≤ (c+ ⊗+∞ (a−i)) ⊕+∞ (c− ⊗+∞ a+i) . (4)

Note that the condition a+i ⊗−∞ (a−i) = a+i ⊗+∞ (a−i) guarantees that the coefficient
of xi is exactly 0 in (4). When all the coefficients in (2) are small integers, (4) often
gives an exact result, which is rarely the case of (3). In practice, the Fourier-Motzkin
elimination by multiplication is very useful for producing constraints with regular co-
efficients, especially for programs with only integer variables.

Example 2. Consider two inequalities 3x+ y ≤ 10 and −7x+ y ≤ 10 with respect to the
bounding box x, y ∈ (−∞, 10]. After eliminating the variable x, (4) will result in y ≤ 10
while (3) will result in y ≤ +∞.

4.3 Rigorous Linear Programming

The rigorous bounds for the objective function in floating-point linear programming can
be derived by a cheap post-processing on the approximate result given by a standard
floating-point LP solver [19].

Assume the linear program is given in the form

min cT x
s.t. Ax ≤ b

the dual of which is
max bT y
s.t. AT y = c, y ≤ 0.

Suppose that y is an approximate solution of the dual program, then we calculate a
rigorous interval r using interval arithmetic with outward rounding as follows:

r := AT y − c ∈ r = [r, r].

Recall that y ≤ 0 and Ax ≤ b, hence yT Ax ≥ yT b. By introducing the interval vector
x := [x, x], we get

cT x = (AT y − r)T x = yT Ax − rT x ≥ yT b − rT x ∈ yT b − rT x
and

µ := inf(yT b − rT x) (5)

is the desired rigorous lower bound for cT x. The value of (5) can be calculated as follows
using floating-point arithmetic:

rounddown;
r = AT y − c;
t = yT b;
roundup;
r = AT y − c;
µ = max{ rT x, rT x, rT x, rT x } − t;
µ = −µ;

Note that the precision of such a rigorous bound depends on the range of the bound-
ing box x. Moreover, finding a rigorous upper bound for the maximum objective func-
tion can be reduced to the minimum case as max cT x = −min (−c)T x.

4.4 Soundness of the Floating-Point Polyhedra Domain

Observe that the rational domain of Sect. 3 relies on two primitives: Fourier-Motzkin
elimination and linear programming. Substituting the two primitives with the floating-
point Fourier-Motzkin elimination algorithm (Sect. 4.2) and rigorous linear program-
ming (Sect. 4.3) yields the floating-point polyhedra domain. Note that both primitives
may produce floating-point overflows or the value NaN (Not a Number). In these cases,
a sound Fourier-Motzkin elimination can be obtained by discarding the constraint. With
respect to the rigorous linear programming, we return +∞ (respectively −∞) as the
maximum (respectively minimum) objective value.

The soundness of the whole floating-point polyhedra domain is guaranteed by the
soundness of each domain operation, which means that each operation should result in
a conservative answer with respect to the exact one. Due to the floating-point Fourier-
Motzkin elimination algorithm of Sect. 4.2, the projection operator will always result in
a sound over-approximated polyhedron compared to the exact one, which implies the
soundness of both the join (convex hull) operator and the assignment transfer operator.
The soundness of redundancy removal and the test transfer operator is obvious. For the
entailment check of an inequality with respect to a polyhedron by rigorous LP, a positive
answer indicates actual entailment while a negative answer is inconclusive. Indeed, if
an inequality is entailed but is close to or touches the polyhedron, rigorous LP may give
a too conservative objective value and fail to declare the entailment. As a consequence,
our inclusion test actually outputs either “true” or “don’t know”. This kind of approxi-
mation does not alter the overall soundness of an analysis by abstract interpretation. A
similar argument can be given for the incremental emptiness test. Another consequence
is that our widening may keep fewer inequalities than an exact implementation would,
but this is also sound.

5 Precision and Efficiency Issues

Each operation of the floating-point polyhedra domain outputs over-approximations of
those of the rational domain, which indicates that some loss of precision may happen
along with each operation. Also, the conservative results returned by rigorous LP cause

efficiency degradations since redundancy removal may fail to remove many constraints
generated during Fourier-Motzkin elimination, making the system larger and larger as
the analysis proceeds. This section addresses these problems from a practical point of
view. We propose some tactics to regain some precision and make the domain more
efficient while still retaining soundness.

5.1 Bounds Tightening

The bounds of variables play a very important role in our domain, as they determine how
much precision is lost in both the linearization and the rigorous LP. The bounds may
change along with the operations on the polyhedra, especially when the polyhedron is
restricted by adding new constraints. In this case, the bounds must be updated. Bounds
tightening can be achieved using different strategies.

Rigorous Linear Programming. A simple way to tighten the bound information of a
polyhedron P is to use the rigorous LP, to calculate max (min) xk subject to P and get the
upper (lower) bound of variable xk. However, since the result given by rigorous LP itself
depends on the range of the bounding box, the bounds found by rigorous LP may be too
conservative, especially when the bounds of some variable are very large or even lost
after widening. In addition, it is costly to run 2n linear programs after every operation
on an n-dimensional polyhedron. Thus we need some alternative lightweight methods
for bounds tightening.

Bound Propagation. Bound propagation is a kind of constraint propagation widely
used in constraint programming. Each inequality in the linear constraints of the poly-
hedron can be used to tighten the bounds for those variables occurring in it. Given an
inequality

∑
i aixi ≤ b, if ai > 0, a new candidate upper bound ν for xi comes from:

xi ≤ ν = (b −
∑

j,i a jx j)/ai. In practice, an over-approximation of ν can be computed
by interval arithmetic with outward rounding. If ai < 0, we find a new candidate lower
bound in the same way. If the new bounds are tighter, then xi’s bounds are updated. This
process can be repeated with each variable in that inequality and with each inequality
in the system.

Combining Strategies. In fact, the above two methods for bounds tightening are com-
plementary with respect to each other. Each of them may find tighter bounds than the
other one in some cases.

Example 3. Given {−x + 3y ≤ 0, x − 6y ≤ −3} with the bounds x, y ∈ (−∞,+∞), the
bound propagation fails to find any tighter bounds while the rigorous LP will only find
the tighter bounds x ∈ [3,+∞), y ∈ (−∞,+∞). Then, if we perform bound propagation
on {−x+3y ≤ 0, x−6y ≤ −3} with the bounds x ∈ [3,+∞) and y ∈ (−∞,+∞), the exact
bounds x ∈ [3,+∞) and y ∈ [1,+∞) can be found.

Therefore, we should combine the above strategies and strike a balance between cost
and precision. For example, we can use rigorous LP to tighten only the bounds of those
variables that appear with high frequency in the system, and then use bound propagation
to tighten the other variables. Note that both rigorous LP and bound propagation are
sensitive to the ordering of variables considered. More precision can be achieved, at
greater cost, by iterating the process.

P2P1

(a) Envelope

P1 P2

(b) Convex Hull

P2P1

(c) Envelope & Bounds

P2P1

(d) Convex Hull Tightening

Fig. 1. (a) the envelope env(P1, P2) (solid lines), (b) the exact convex hull (solid bold lines) and a
possible approximate floating-point convex hull (dotted lines), (c) the smallest polyhedron which
can be determined by the envelope and bounding box (solid lines), (d) the floating-point convex
hull (dotted lines) and the convex hull after tightening by the envelope and bounding box (solid
bold lines).

5.2 Convex Hull Tightening

The convex hull computation is the most complicated part of our domain and also where
the most severe loss of precision may happen because it is internally implemented via
Fourier-Motzkin elimination. In many cases, part of the precision can be recovered by
applying certain heuristics, such as using the envelope [4] and bounds information.

Definition 3 (Envelope). Given two polyhedra P1 and P2, represented by sets of linear
inequalities, the envelope of P1 and P2 is defined as

env(P1, P2) def
= S1 ∪ S2

where
S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },
S2 = { ϕ2 ∈ P2 | P1 |= ϕ2 }.

It is easy to see that the envelope is an over-approximation of the convex hull and
contains a subset of the constraints defining the convex hull. In other words, all the
inequalities in the envelope can be safely added to the final convex hull. Using rigorous
LP, most of the envelope constraints can be determined by entailment checking on the
arguments, before the convex hull computation.

The bounding box of the convex hull can also be obtained exactly before the convex
hull computation as it is the join, in the interval domain, of the bounding box of the
arguments.

We add all constraints from the envelope and the bounding box to tighten the
floating-point convex hull and retrieve some precision while still retaining soundness,
as shown in Fig. 1. This is of practical importance because at the point of widening,
such constraints often hold a large percentage of the stable ones.

5.3 Linearization Heuristics

In polyhedral analysis, new relationships between variables are often derived from the
convex hull operation. Their actual coefficients depend greatly on the choices made
during the linearization step, in particular the choice of dk ∈ [ak, bk]. In Sect. 4.1, we
advocated the use of the interval mid-point dk = (ak ⊕r bk) �r 2, a greedy choice as
it minimizes the constant term of the result constraint. However, choosing a more reg-
ular value, such as an integer, will improve the efficiency and numerical stability of
subsequent computations, such as LP solving. In addition, due to rounding errors, com-
putations that give the same result in exact arithmetic may give different floating-point
results in floating-point arithmetic. Thus, it is desirable that the same dk is chosen when
some slight shift occurs on the input interval [ak, bk]. This is particularly important
when looking for stable invariants in loops.

In practice, we use two strategies: rounding the mid-point to the nearest integer
and reusing the coefficient already chosen for another variable. Other strategies may be
devised. In fact, it is even possible to choose dk outside [ak, bk], by slightly adapting the
formula in Def. 2.

5.4 Efficient Redundancy Removal

As mentioned before, the rigorous LP may fail to detect some redundant constraints due
to the conservative over-approximation of the objective value, which greatly weakens
the tractability of our domain. However, it is worth mentioning that the removal opera-
tion is always sound even when some non-redundant constraints are removed, in which
case, the result is merely a larger polyhedron. In order to remove as many redundant
constraints as possible, we can use less conservative approaches which may remove
constraints that are likely to be redundant, but may not be. One approach is to employ a
standard LP solver instead of a rigorous one. We can even go further by removing in-
equalities ϕ =

∑
i aixi ≤ b in P when max

∑
i aixi subject to P \ {ϕ} is less than (1 + ε)b,

for some tolerance ε > 0.
In order to remove constraints more efficiently, it is worth using lightweight redun-

dancy removal methods first and resorting to the expensive LP-based method only when
necessary. First, we use a syntactic check: given a pair of inequalities

∑
i aixi ≤ b and∑

i a′i xi ≤ b′, if ∀i.a′i = ai, only the inequality with the smaller constant needs to be kept.
Second, we first check an inequality against the bounding box of the polyhedron before
the actual polyhedron. Finally, we employ methods proposed in [10, 11] to tackle the
combinatorial explosion problem of redundant constraints occurring during sequences
of Fourier-Motzkin eliminations (e.g., in the join computations).

Y ← [−M, M];
while random() {

X ← [−128, 128];
D← [1, 16];
S ← Y;

1© R← X 	? S ;
Y ← X;
if R ≤ 	D { Y ← S 	? D } else
if D ≤ R { Y ← S ⊕? D }

} 2©

Fig. 2. Floating-point rate limiter program. Different values of the parameter M give different
versions of the program (see Fig. 3). �? denotes single precision floating-point semantics with
arbitrary rounding mode (? ∈ {+∞,−∞}).

6 Implementation and Experimental Results

Our prototype domain, FPPol, is developed using only double precision floating-point
numbers. It makes use of GLPK (GNU Linear programming kit) [14] which imple-
ments the simplex algorithm for linear programming. FPPol is interfaced to the APRON
library [1] which provides a common interface for numerical abstract domains. Our ex-
periments were conducted using the Interproc [12] static analyzer. In order to assess
the precision and efficiency of FPPol, we compare the obtained invariants as well as
the performance of FPPol with the NewPolka library which is implemented using exact
arithmetic in APRON.

We tested FPPol on all examples from Interproc. Most of them are pure integer
programs using exact arithmetic, except numerical which is a program involving both
integer and real variables with floating-point arithmetic. We also analyzed the ratelim-
iter program presented in Fig.2, which is a more challenging example extracted from a
real-life system and uses single precision floating-point numbers. In theory, any interval
[−M,M], where M = 128 + ε and ε > ε0, is stable at 2©, for some very small positive
ε0. Because this example requires relational invariants, the non-relational interval do-
main fails to find any stable interval for Y , while the weakly relational octagon domain,
although better, can only find over-approximated stable intervals wherein M > M0 and
M0 ≈ 144.00005. The smallest stable interval that can be found using the polyhedra
domain is the interval [−M1,M1] wherein M1 ≈ 128.000047684. This example is in-
teresting since abstracting floating-point expressions to linear interval expressions over
reals [15] gives rise to rather complex expressions. For example, at 1©, the assignment
R← X 	? S is abstracted into:

R← [1 − p, 1 + p] × X − [1 − p, 1 + p] × S + [−m f ,m f]
with p = 2−23 and m f = 2−149 (respectively corresponding to the relative error and
the smallest non-zero positive value in the single precision floating-point format). Note
that this expression contains numbers of large magnitude, which are costly to represent
using exact rationals.

Fig. 3 shows the type of each benchmark program: “int” means the program in-
volves only integer variables with exact arithmetic and “fp” means that the program

Program Analyzer FPPol NewPolka Result
type name #∇delay #iterations #lp t(ms) #iterations t(ms) Invar.
int ackerman 1 6 1476 35 6 7 =

int bubblesort 1 8 675 24 8 8 =

int fact 1 9 2106 65 9 15 =

int heapsort 1 4 1968 76 4 15 =

int maccarthy91 1 4 418 13 4 3 =

int symmetricalstairs 1 6 480 18 6 6 =

fp numerical 1 1 250 17 1 31 ≈

fp ratelimiter(M=128) 3 5 1777 125 5 394 ≈

fp ratelimiter(M=128) 4 5 2555 227 6 809 >

fp ratelimiter(M=128.000047683) 6 9 4522 510 8 1889 ≈

fp ratelimiter(M=128.000047683) 7 8 3688 238 9 2435 >

fp ratelimiter(M=128.000047684) 1 3 1068 57 3 116 ≈

Fig. 3. Experimental results for benchmark examples.

involves real variables with floating-point arithmetic. The column “#∇ delay” specifies
the value of the widening delay parameter for Interproc (i.e., the number of loop it-
erations performed before applying the widening operator). The column “#iterations”
gives the number of loop iterations before a fixpoint is reached.

Invariants. The column “Result Invar.” compares the invariants obtained. A “=”
indicates that FPPol outputs exactly the same invariants as NewPolka. A “≈” means that
FPPol finds the same invariants as NewPolka, up to slight variations in coefficients due
to rounding. In this case, the polyhedra computed by FPPol are slightly larger than those
computed by NewPolka. A “>” denotes that FPPol finds strictly stronger invariants
than NewPolka. For the integer programs, all the invariants obtained by FPPol were
the same as those produced by NewPolka. Indeed, such programs involve only small
integer values. In these cases, we can often use the multiplicative version of the Fourier-
Motzkin elimination, which incurs no precision loss.

The numerical program involves floating-point arithmetic but without loops, so it
provides no challenge. For ratelimiter, FPPol can find the invariant −M1 ≤ x ≤ M1
where M1 ≈ 128.000047684 if the widening delay parameter is set large enough: at
least 4 when M=128, 7 when M=128.000047683, 1 when M=128.000047684, whereas
NewPolka can only find the invariant when M=128.00004 7684. Interestingly, for rate-
limiter with M = 128.000047683, NewPolka fails to find any invariant at 2© even when
delaying the widening for 100 iterations (413.2 seconds). In this case, the floating-point
over-approximations within FPPol actually accelerate the fixpoint computation even
before applying widening and help in reaching a fixpoint faster than when using New-
Polka.

Performance. Fig. 3 presents the analysis times in milliseconds when the analyzer
runs on a 2.4GHz PC with 2GB of RAM running Fedora Linux. For integer programs,
NewPolka outperforms FPPol. Because such programs involve small integer values,
the computation in NewPolka is very cheap while FPPol needs a number of expensive

LP queries. However, for the floating-point programs, FPPol greatly outperforms New-
Polka. Indeed, after floating-point abstractions, programs involve rational numbers of
large magnitude which degrade the performance of NewPolka, while the floating-point
number representation avoids such problems in our domain.

LP costs. Fig. 3 shows also statistics on the number of LP queries (#lp) in FPPol. In
addition, we found that, for floating-point programs, more than 75% of the LP queries
are used for redundancy removal, almost 80% of which come from the convex hull
computation. The performance of our domain completely relies on the LP solver we
use. During our experiments, we found that the time spent in the LP solver frequently
takes more than 85% of the total analysis time for floating-point programs and 70%
for integer programs. Note that a naive floating-point implementation of polyhedra,
without any soundness guarantee, could not bypass these LP computations either. Thus,
the soundness guarantee in our domain does not incur much overhead.

Numerical instability. During our experiments on floating-point programs, GLPK
often encountered the “numerical instability” problem due to the simultaneous occur-
rence of tiny and large coefficients. Indeed, during the analysis, tiny floating-point num-
bers introduced due to rounding are propagated in the whole system and produce large
coefficients by division. In our implementation, we solve the problem by shifting the
tiny term or huge term into the constant term following the same idea as linearization
in Sect. 4.1, e.g, choosing dk = 0. We believe a faster, more robust LP solver with
better scalability, such as the CPLEX LP solver, may greatly improve the precision,
performance and scalability of our domain.

7 Conclusion

In this paper, we presented a sound implementation of the polyhedra domain using
floating-point arithmetic. It is based on a constraint-only representation, together with
a sound floating-point Fourier-Motzkin elimination algorithm and rigorous linear pro-
gramming techniques. Moreover, we proposed advanced tactics to improve the preci-
sion and efficiency of our domain, which work well in practice. The benefit of our
domain is its compact representation and the ability to leverage the power of state-of-
the-art linear programming solvers. It remains for future work to examine the scalability
of our domain for large realistic programs and to reduce the number of LP queries.

Acknowledgments

We would like to thank Axel Simon, Ji Wang and the anonymous reviewers for their
helpful comments and suggestions.

References

1. APRON numerical abstract domain library. http://apron.cri.ensmp.fr/library/.
2. S. Alexander. Theory of Linear and Integer Programming. John Wiley & Sons, June 1998.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a com-
plete set of numerical abstractions for the analysis and verification of hardware and software
systems. Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy, 2006.

4. A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Computational Geometry, 18(3):141–154, 2001.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. A static analyzer for large safety-critical software. In ACM PLDI’03, pages 196–207,
San Diego, California, USA, June 2003. ACM Press.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In ACM POPL’77, pages 238–252,
Los Angeles, California, 1977. ACM Press, New York, NY.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In ACM POPL’78, pages 84–96, New York, NY, USA, 1978. ACM.

8. E. Goubault. Static analyses of floating-point operations. In SAS’01, pages 234–259.
Springer-Verlag, 2001.

9. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, Thèse de 3ème cycle d’informatique, Université scientifique
et médicale de Grenoble, Grenoble, France, March 1979.

10. T. Huynh, C. Lassez, and J.-L. Lassez. Practical issues on the projection of polyhedral sets.
Annals of Mathematics and Artificial Intelligence, 6(4):295–315, 1992.

11. J.-L. Imbert. Fourier’s elimination: Which to choose? In PCPP’93, pages 117–129, 1993.
12. G. Lalire, M. Argoud, and B. Jeannet. Interproc. http://pop-art.inrialpes.fr/people/bjeannet/

bjeannet-forge/interproc/.
13. H. LeVerge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, France, 1992.
14. A. Makhorin. The GNU Linear Programming Kit, 2000. http://www.gnu.org/software/glpk/.
15. A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In

ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, Barcelona, Spain 2004.
16. A. Miné. Field-sensitive value analysis of embedded C programs with union types and

pointer arithmetics. In LCTES’06, pages 54–63, Ottawa, Ontario, Canada, 2006. ACM Press.
17. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–

100, 2006.
18. R. Moore. Interval Analysis. Prentice-Hall, 1966.
19. A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear program-

ming. Math. Program., 99(2):283–296, 2004.
20. D. N. Que. Robust and generic abstract domain for static program analysis: the polyhedral

case. Technical report, École des Mines de Paris, July 2006.
21. J. Rohn. Solvability of systems of interval linear equations and inequalities. In Linear

Optimization Problems with Inexact Data, pages 35–77. Springer, 2006.
22. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems using

mathematical programming. In VMCAI’05, volume 3385, pages 21–47.
23. A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Chris Hankin, editor,

SAS’05, volume 3672 of LNCS, pages 336–351. Springer Verlag, September 2005.
24. A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an abstract

domain. In LOPSTR’03, volume 2664 of LNCS, pages 71–89. Springer, 2003.

