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1 Introduction
1.1 Context
DARPA’s “Securing Information for Encrypted Verification and Evaluation” (SIEVE)
wishes to enhance zero-knowledge (ZK) proofs, that are a protocol between a prover
that creates a statement that it wants a verifier to accept, using knowledge that will
remain hidden from the verifier. In the SIEVE-Pepper project, the statement is the
result of the distant execution of a program. The program executions are assumed to
be bounded (depending on the bounded size of the inputs or depending on the par-
ticular input x), so the program can be transformed into a finite Boolean-arithmetic
circuit, the computation of which can be checked with probabilistic methods such
that the prover can efficiently convince the verifier that

“the program P, when executed on this input x, produces that output y such
that y = SrJPK(x) (with an arbitrary small probability of being unsound,
where SrJPK is the relational input-output semantics of the deterministic
program P).” 1

(1)

By the boundedness hypothesis, the certification technique involves a frontend which
compiles the program P in the language P into a finite Boolean and arithmetic cir-
cuit CJPK (with the same semantics), by unrolling of iterations and of function and
procedure calls; see [42, 39, 41].

1This prover/verifier terminology is somewhat confusing in the context of program verification
and analysis.
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1.2 Objective
The objective is to minimize the size of the generated circuit.

To be independent of the tool used to generate the circuit, we propose to unroll
the source program into a more efficient source program (which therefore should
yield a smaller circuit). Because the program is unrolled, its static analysis is much
more precise than the one of the original program (no extrapolation by widening
and interpolation by narrowing is necessary [7]). Then a transformer can optimize
the unrolled program using the result of the static analysis in order to reduce the
unrolled program size and the size of the data that it manipulates.

The advantage of unrolling is that the analysis and optimization of the unrolled
program can be very aggressive. The inconvenient is of course the size of the unrolled
program which may not be manageable by a classical analyser2.

1.3 Content
We introduce an abstract interpretation-based methodology to formalize bounded-
ness, semantic equivalence of the original and transformed program, and the simulta-
neous unrolling, static analysis, and transformation of the program by instantiation
of a common abstract interpreter. We suggest a number of possible classes of opti-
mizing transformations.

1.4 Future Work
Soundness proofs remain to be done (and maybe to be checked with a proof assistant
such as Coq [24], as the style of [27]). The formal specification of the unroll, analyze,
and transform algorithm in section 20 must be implemented for experimentation,
using libraries of abstract domains (such as APRON [25], ELINA [37], or PPL [1, 3,
4] for numerical properties). The transformations remain to be studied in greater
details, proved correct following [15], implemented, and experimented. These exper-
imentations should determine which pairs of abstract domains and optimizations are
effective for which classes of programs. Notice that the implementation can only be
a lightweight academic prototype with limited scope. A professional-quality com-
plex static analyzer like Astrée https://www.absint.com/astree/index.htm takes
years in research and development by a dozen of researchers and engineers, not even
counting the user interface.

2the size of the unrolled program is nevertheless smaller that the size of the generated Boolean
and arithmetic circuit, which is itself a severe limitation of the present-day verifiable computation
techniques
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2 The Language
2.1 Syntax
We consider a small subset of the C programming language [28], as follows:

x, y, . . . ∈ V variables (V not empty)
A ∈ A ::= 1 | x | A1 - A2 arithmetic expressions
B ∈ B ::= A1 < A2 | B1 nand B2 Boolean expressions
E ∈ E ::= A | B expressions

S ::= statement S ∈ S
x = A ; assignment

| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| break ; iteration break
| { Sl } compound statement
| {| Sl |} breakable statement

Sl ::= Sl S | ϵ statement list Sl ∈ Sl, ϵ is the empty string

P ::= Sl program P ∈ P
Pc ≜ S ∪ Sl ∪ P program component S ∈ Pc

The classical unrolling of the iteration is

while (B) S ≡ if (B) { S while (B) S }

In C, the break ; statement should be included in a loop and branches out of the
closest enclosing loop. So if the loop body S has a break ; statement, as in

while (B) break ; ≡ if (B) { break ; while (B) break ; }

the outer break ; is no longer in a loop (or switch) statement, so that the transformed
program is incorrect. To cope with this problem, we introduce breakable statements
and we require that a break ; statement should be in a loop or breakable statement
and that it branches out of the closest enclosing loop or breakable statement.
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while (B) break ; ≡ if (B) {| break ; while (B) break ; |}

Notice that while (B) {| . . . break ; . . . |}, the break ; breaks out of the breakable
statement and so iterations go on. This is the effect of the continue statement in C.

With breakable statements, programs are no longer in the C language, but
break ; statement out of breakable statements can be easily implemented in C by
an unconditional branch.

if(0==0){ goto L; while(0==0)break; } L:;

However this transformation would loose the information that the unrolled program
is still structured and would complexity the static analysis for no good reason. On the
contrary, a very simple preprocessor can be written to rewrite the unrolled program
in C using gotos.

2.2 Labelling
For discussing the semantics and correctness of programs it is necessary to introduce
labelled program points.

ℓ, ℓ1, ℓ′, . . . ∈ L labelled program point (L denumerably infinite)

We postulate the following labelling:
atJSK the program point at which execution of program component S starts;
afterJSK the program exit point after program component S, at which execution

of S is supposed to normally terminate, if ever;
escapeJSK a Boolean indicating whether or not the program component S contains

a break ; statement escaping out of that component S;
break-toJSK the program point to which execution of the program component S goes

when a break ; statement escapes out of that component S;
breaks-ofJSK the set of labels of all break ; statements that can escape out of com-

ponent S;
inJSK the set of program points inside program component S (including atJSK

but excluding afterJSK and break-toJSK);
labsJSK the potentially reachable program points while executing S either in or

after the statement (excluding reachability by a break) and
labxJSK the potentially reachable program points while executing program com-

ponent S at, in, or after the program component, or resulting from a
break.
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A formal definition is provided in [11, chapter 4]. The update to include break ;
statements out of compound statements is simple:

Sl ::= Sl′ S break-toJSl′K ≜ break-toJSK ≜ break-toJSlK
S ::= if (B) St break-toJStK ≜ break-toJSK
S ::= if (B) St else Sf break-toJStK ≜ break-toJSfK ≜ break-toJSK
S ::= while (B) Sb break-toJSbK ≜ afterJSK
S ::= { Sl } break-toJSlK ≜ break-toJSK
S ::= {| Sl |} break-toJSlK ≜ afterJSK

The axiomatic definition of labels leaves open different possible interpretations.
We explicitly decorate programs with labels, as in [11, sect. 4.2.3]. Notice that
labels in [35] are the program remaining to be executed when execution reaches
that program point and that this involve a one-unrolling of iterations (there are no
breaks). These labels also satisfy our labelling requirements.

3 Abstract Domain
An abstract domain [11, sect. 4.2.3] is an algebra D defining the semantic domain P
and basic operations on elements of the semantic domain (formalizing the effect of
executing a program component), of the following type:

D ≜ ⟨P, program, stmtlist, empty, assign, skip, if, ife, iter,
break, compound , breakable⟩

(2)

The abstract domain D is well defined when P is a set and the abstract operations
satisfy the following conditions:

program ∈ P→ P → P 3

stmtlist ∈ Sl→ P × P → P
empty ∈ Sl→ P

assign, skip, break ∈ S→ P
if, iter, compound, breakable ∈ S→ P → P

ife ∈ S→ P × P → P

(A more precise specification would further restrict the type of admissible program
components for each operation, for example, empty ∈ { ϵ } → P.)

3A→ B defines the total maps from A to B, it is right associative since function application is
left associative.
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4 Abstract Interpreter
The abstract interpreter S LDM ∈ Pc ̸→ P is a partial function specifying the abstract
semantics S LDMJSK of a program component S. It is parameterized by an abstract
domain D (2). We write S for S LDM afterwards, when the abstract domain D is
implicitly known from the context.

The abstract interpreter proceeds by structural induction on the program syntax,
applying the operations of the abstract domain to each program subcomponent.
The abstract interpreter is the common skeleton of all semantics, analyses, program
transformations, and unrolling.

• Abstract semantics of a program P ::= Sl
SJPK ≜ programJPK(SJSlK) (3)

• Abstract semantics of a statement list Sl ::= Sl′ S
SJSlK ≜ stmtlistJSlK(SJSl′K,SJSK) (4)

• Abstract semantics of an empty statement list Sl ::= ϵ

SJSlK ≜ emptyJSlK (5)

• Abstract semantics of an assignment statement S ::= x = A ;
SJSK ≜ assignJSK (6)

• Abstract semantics of a skip statement S ::= ;
SJSK ≜ skipJSK (7)

• Abstract semantics of a conditional statement S ::= if (B) St

SJSK ≜ ifJSK(SJStK) (8)

• Abstract semantics of a conditional statement S ::= if (B) St else Sf
SJSK ≜ ifeJSK(SJStK,SJSfK) (9)

• Abstract semantics of an iteration statement S ::= while (B) Sb

SJSK ≜ iterJSK(SJSbK) (10)

• Abstract semantics of a break statement S ::= break ;
SJSK ≜ breakJSK (11)
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• Abstract semantics of a compound statement S ::= { Sl }
SJSK ≜ compoundJSK(SJSlK) (12)

• Abstract semantics of a breakable statement S ::= {| Sl |}
SJSK ≜ breakableJSK(SJSlK) (13)

The advantage of this abstract interpreter parameterized by an abstract domain is
that it can be reasoned upon by structural induction (that is induction on the pro-
gram syntax) as opposed to reasoning on graphs with usual intermediate program
representations. Moreover, it can be easily implemented with a functional program-
ming language with modules and module functors.

5 Prefix Abstract Interpreter
Given a prelude R, that is a precondition when arriving at a program component
S, that is atJSK, the prefix abstract semantics SpJSK R of this program component S
returns a continuation, specifying at each program point ℓ of S, a description of the
execution from atJSK when arriving at ℓ.

The prefix abstract interpreter is classically used as the concrete semantics for
the abstract reachability analysis; see [11, chapter 42]

5.1 Prefix Abstract Domain
The prefix abstract domain Dp has type:

Dp ≜ ⟨Pp, ⊑, ⊥, ⊔, assignp, skipp, testp, testp, breakp⟩ (14)

This prefix abstract domain Dp is well defined when ⟨Pp, ⊑⟩ is a poset of properties
with infimum ⊥ and the partially defined least upper bound (lub) ⊔.

emptyp, skipp, breakp ∈ Pc→ (L× L)→ Pp ↗→ Pp 4

assignp ∈ Pc→ (L× V× A× L)→ Pp ↗→ Pp

testp, testp ∈ Pc→ (L× B× L)→ Pp ↗→ Pp

The poset ⟨Pp, ⊑, ⊥, ⊔⟩ is extended pointwise to ⟨L→ Pp, ⊑̇, ⊥̇, ⊔̇⟩ and ⟨Pp ↗→ L→
Pp, ⊑̈, ⊥̈, ⊔̈⟩. An additional requirement may be that

4A
↗→ B defines the increasing/isotone maps when A and B are posets.
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the lub ⊔ is well defined both for pairs of elements of Pp and for
⊑-increasing chains.

(15)

In that case, ⟨Pp, ⊑⟩ is both a join-lattice and a complete partial order (CPO), and
this extends to the preceding pointwise definitions.

5.2 Prefix Abstract Functor
The prefix abstract functor Dp, maps a prefix abstract domain of type (14) into an
abstract domain

DpLDpM ≜ ⟨P, program, stmtlist, empty, assign, skip, if, ife, iter,
break, compound , breakable⟩

(16)

of type (2), defined, assuming (15), as follows:

• Abstract prefix semantic domain P ≜ Pp ↗→ L→ Pp (⟨P, ⊑̈⟩ satisfies (2))
• Abstract prefix semantics of a program ℓ0 P ℓ1 ::= ℓ0 Sl ℓ1 (where ℓ0 = atJSlK = atJPK

and ℓ1 = afterJSlK = afterJPK))
programJPK Sl R ℓ ≜ Sl (R)ℓ (17)

• Abstract prefix semantics of a statement list ℓ0 Sl ℓ2 ::= ℓ0 Sl′ ℓ1 S ℓ2 (where
ℓ0 = atJSlK = atJSl′K, ℓ1 = atJSK = afterJSl′K, and ℓ2 = afterJSK = afterJSlK) 5

stmtlistJSlK(Sl ′, S) R ℓ ≜ ( ℓ ∈ labsJSl′K \ {atJSK} ? Sl ′ R ℓ (18)
| ℓ ∈ labsJSK ? S(Sl ′ R atJSK) ℓ

: ⊥)

• Abstract prefix semantics of an empty statement list ℓ0Slℓ0 ::= ℓ0 ϵ ℓ0 (where ℓ0 =
atJSlK = afterJSlK)

emptyJSlK R ℓ ≜ ( ℓ = atJSlK ? emptypJℓ0, ℓ0KR : ⊥) (19)
5( . . . ? . . . | . . . ? . . . : . . .) is the conditional expression (as in C)
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• Abstract prefix semantics of an assignment statement ℓ0Sℓ1 ::= ℓ0x = A ;ℓ1 (where
ℓ0 = atJSK and ℓ1 = afterJSK)

assignJSK R ℓ ≜ ( ℓ = ℓ0 ? R (20)
| ℓ = ℓ1 ? assignpJℓ0, x, A, ℓ1KR
: ⊥)

• Abstract prefix semantics of a skip statement ℓ0Sℓ1 ::= ; (where ℓ0 = atJSK and
ℓ1 = afterJSK)

skipJSK R ℓ ≜ ( ℓ = ℓ0 ? R | ℓ = ℓ1 ? skippJℓ0, ℓ1KR : ⊥) (21)

• Abstract prefix semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtStℓ2 (where
ℓ0 = atJSK, ℓt = atJStK, and ℓ2 = afterJSK = afterJStK)

ifJSK(S) R ℓ ≜ ( ℓ = ℓ0 ? R (22)
| ℓ ∈ inJStK ? S (testpJℓ0, B, ℓtK R) ℓ

| ℓ = ℓ2 ? S (testpJℓ0, B, ℓtK R) ℓ ⊔ testpJℓ0, B, ℓ2K R
: ⊥)

• Abstract prefix semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtSt else ℓfSf ℓ2
(where ℓ0 = atJSK, ℓt = atJStK, ℓf = atJSfK, and ℓ2 = afterJSK = afterJStK = afterJSfK)

ifeJSK(St, Sf) R ℓ ≜ ( ℓ = ℓ0 ? R (23)
| ℓ ∈ inJStK ? St (testpJℓ0, B, ℓtK R) ℓ

| ℓ ∈ inJSfK ? Sf (testpJℓ0, B, ℓfK R) ℓ

| ℓ = ℓ2 ? St (testpJℓ0, B, ℓtK R) ℓ ⊔ Sf (testpJℓ0, B, ℓfK R) ℓ

: ⊥)

• Abstract prefix semantics of an iteration statement ℓ0Sℓ2 ::= while ℓ0 (B) ℓ1Sb ℓ2

(where ℓ0 = atJSK = afterJSbK, ℓ1 = atJSbK, and ℓ2 = afterJSK) 6

iterJSK(Sb) R ℓ ≜ lfp⊑̇ (FpJSbK R) ℓ (24)

FpJSbK ∈ Pp → ((L→ Pp)→ (L→ Pp))

6lfp⊑ f denotes the ⊑-least fixpoint of an operator f on a poset ⟨P, ⊑⟩, if any; for example [38].
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FpJSbK R X ℓ =

( ℓ = ℓ0 ? R ⊔ Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ

| ℓ ∈ inJSbK \ {ℓ0} ? Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ

| ℓ = ℓ2 ? testpJℓ0, B, ℓ2KX(ℓ0) ⊔
⊔

ℓ′∈breaks-ofJSbK
Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ′

: ⊥)

• Abstract prefix semantics of a break statement S ::= ℓ0 break ; (where ℓ0 = atJSK)
breakJSK R ℓ ≜ ( ℓ = ℓ0 ? breakpJℓ0, break-toJSKKR : ⊥) (25)

• Abstract prefix semantics of a compound statement S ::= ℓ0{ Sl }ℓ1 (where ℓ0 =
atJSlK = atJSK and ℓ0 = afterJSK = afterJSlK)

compoundJSK(Sl ) R ℓ ≜ Sl (R)ℓ (26)

• Abstract prefix semantics of a breakable statement S ::= ℓ0{| Sl |}ℓ1 (where ℓ0 =
atJSlK = atJSK and ℓ1 = afterJSK = afterJSlK)

breakableJSK(Sl ) R ℓ ≜ ( ℓ ∈ inJSK ? Sl (R)ℓ (27)
| ℓ = afterJSK ? Sl (R)ℓ ⊔

⊔
ℓ
′
∈breaks-ofJSbK

Sl (R)ℓ
′

: ⊥)

where
⊔
∅ = ⊥.

5.3 Prefix Abstract Interpreter
The prefix abstract interpreter SpLDpM ∈ Pc → Pp ↗→ L → Pp specifies the prefix
abstract semantics SpJSK of a program component S ∈ Pc. If any execution of S is
started with precondition R satisfied, and later reaches program point ℓ of S, then
SpJSK R ℓ holds at that point. This prefix abstract interpreter is generic, meaning
that it is parameterized by a prefix abstract domain Dp(14). It is the instance of the
abstract interpreter S for the abstract domain DpLDpM:

SpLDpM ≜ S LDpLDpMM (28)
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It follows from this definition that
∀S ∈ Pc . ∀ℓ∈L . ℓ ̸∈ labsJSK ⇒ SpJSK R ℓ ≜ ⊥ (29)

meaning that no execution of a program component ever reaches a program point
outside this program component and therefore there is no information at such exterior
points (as denoted by ⊥ meaning empty/void/…).

To use the prefix abstract interpreter SpLDpM, we have to provide an abstract
domain Dp of type (14), as a parameter. This is what we do in the next section, to
define the prefix trace semantics.

6 Prefix Trace Semantics
The prefix trace semantics Spt is an instance of the prefix abstract interpreter Sp

(itself an instance of the abstract interpreter S , as shown by (28)).
Given a prelude R, that is execution traces arriving at a program component

S, that is atJSK, the prefix trace semantics SptJSK R of this program component S
returns a continuation, specifying at each program point ℓ of S, a description of the
execution traces from atJSK when arriving at ℓ. Traces are finite sequences of states
separated by actions. The states are a pair of a program point and an environment
assigning values to variables. An action records an elementary step in the program.

6.1 Variables
We let V to be the set of variables (of the language, program, or a parameter of the
semantics; see [11, rem. 3.5]).

6.2 Values
We let ν ∈ V to be the set of values (either integers, machine integers plus error,
reals, floats, float intervals, or fixed points).7

6.3 Environments
We let E ≜ V→ V to be the set of environments ρ ∈ E, mapping variables x ∈ V to
their value ρ(x) ∈ V. The assignment of a value ν to a variable x in environment ρ
is

7For non-integer values, arithmetic expressions can also be the constant 0.1, which no exact
representation in floats.
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ρ[x← ν](x) ≜ ν

ρ[x← ν](y) ≜ ρ(y) when y ̸= x

6.4 States
States are pairs σ = ⟨ℓ, ρ⟩ ∈ S of a program label ℓ recording the program point
reached during a computation and an environment ρ recording the values of variables
at that point in the computation.

6.5 Actions
Actions (or events) a ∈ (L × V × E × L) ∪ (L × {;} × L) ∪ (L × B × L) ∪ (L × ¬B ×
L) ∪ (L × {break ;} × L) record the execution of assignments, skips, true and false
tests, and breaks.

6.6 Traces

Traces π ∈ T are nonempty finite sequences π = σ0

a0
−−−→ σ1

a1
−−−→ σ2 . . . σn−1

an−1
−−−−−→

σn of states separated by actions, recording an execution of length n = |π| ⩾ 0.

6.7 Prefix Trace Abstract Domain
The prefix trace abstract domain is

Dpt ≜ ⟨Ppt, ⊆̇, ∅̇, ∪̇, assignpt, skippt, testpt, testpt, breakpt⟩ (30)

of type (14), such that

Ppt ≜ ℘(T) ↗→ ℘(T)

assignptJℓ0, x, A, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, x, A, ℓ1
−−−−−−−−−→ ⟨ℓ1, ρ[x← AJAKρ]⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

skipptJℓ0, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, ;, ℓt
−−−−−−→ ⟨ℓt, ρ⟩ | π

a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

testptJℓ0, B, ℓtK R ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, B, ℓt
−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ BJBKρ ∧ ℓ′0 = ℓ0}
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testptJℓ0, B, ℓtK R ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0,¬B, ℓt
−−−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ¬BJBKρ ∧ ℓ′0 = ℓ0}

breakptJℓ0, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, break ;, ℓt
−−−−−−−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

where AJAKρ is the value of arithmetic expression A in environment ρ and BJBKρ
the Boolean value of Boolean expression B in environment ρ; see [11, chapter 3] for
integers and [11, chapter 32] for floats and interval arithmetics. Notice that ⟨Ppt, ⊆̇⟩
is a complete lattice hence both a join-lattice and a CPO.

6.8 Prefix Trace Semantics
The finite prefix trace semantics Spt ∈ Pc → ℘(T) ↗→ L → ℘(T) (as defined in [11,
chapter 42]) is the instance of the prefix abstract interpreter Sp for the abstract
domain

Spt ≜ SpLDptM = S LDpLDptMM (31)

Notice that by composition, the finite prefix trace semantics Spt is an instance of the
abstract interpreter S . The prefix trace semantics allows us to define precisely what
we mean by bounded execution.

7 Boundedness Hypothesis
The boundedness hypothesis for a program component S states that there exists a
bound βJSK ∈ N+ on the length of any prefix trace of S for all possible preludes 8.
Formally, define

βJSK ≜ max{n− 1 | σ0

a0
−−−→ σ1 . . . σn−1

an−1
−−−−−→ σn ∈ SptJSK R ∧ R ∈ ℘(T)}

where maxN+ =∞. The boundedness hypothesis is

S is bounded if and only if βJSK ∈ N+. (32)

Static analysis can be used to determine this value, or bound it; see for example [8,
40, 13].

8A variant would require an hypothesis on input states.
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8 Maximal Abstract Interpreter
A source code program transformation is correct whenever the transformed program
is semantically equivalent to the original. The maximal abstract interpreter, which is
an abstraction of the prefix abstract interpreter will help us define which particular
formal semantics is considered when defining that equivalence.

The maximal abstract interpreter Sm ∈ Pc→ Pp ↗→ Pp×Pp is an instance of the
abstract interpreter S ∈ Pc→ P.

The maximal abstract interpreter Sm specifies the maximal abstract semantics
⟨T, B⟩ = SmJSK R of a program component S when execution of S starts with the
precondition R being satisfied, reaches the exit program point afterJSK of S, thus
terminating execution. T describes normal termination (with a test which is false
for an iteration) and B termination through a break ; for an iteration (and ⊥
otherwise).

Potential nonterminating executions are all abstracted away (so this is partial
correctness not total correctness for programs that may not terminate; partial and
total correctness coincide under the boundedness hypothesis (32)).

8.1 Maximal Abstraction
The maximal abstraction is αp→m ∈ (Pc → Pp ↗→ L → Pp)

↗→ (Pc → Pp ↗→ Pp × Pp)
such that

αp→mJSK S R ≜ ⟨SJSK R afterJSK, ⊔
ℓ∈breaks-ofJSK

SJSK R ℓ⟩ (33)

This is a Galois connection ([11, ex. 11.21 and 11.20]). When applied to the prefix
abstract interpreter Sp ∈ Pc → Pp ↗→ L → Pp, it yields the maximal abstract
interpreter Sm ∈ Pc→ Pp ↗→ Pp:

SmJSK R ≜ αp→mJSK (SpJSK) R (34)

Since the prefix abstract interpreter Sp is parameterized by the abstract domain
Dp (14), the maximal abstract interpreter Sm is also parameterized by this same
abstract domain Dp.

8.2 Maximal Abstract Domain
The maximal abstract domain
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DmLDpM ≜ ⟨Pm, programm, stmtlistm, emptym, assignm, skipm, ifm, ifem, iterm,
breakm, compoundm, breakablem⟩

(35)

is defined as a function Dm of Dp, as follows:

• Abstract maximal semantic domain Pm ≜ Pp ↗→ Pp

• Abstract maximal semantics of a program ℓ0 P ℓ1 ::= ℓ0 Sl ℓ1

programmJPK Sl R ≜ let ⟨T, B⟩ = Sl (R) in ⟨programpJℓ0, ℓ1K (T ), ⊥⟩ (36)

• Abstract maximal semantics of a statement list ℓ0 Sl ℓ2 ::= ℓ0 Sl′ ℓ1 S ℓ2

stmtlistmJSlK(Sl ′, S) R ≜ let ⟨T ′, B′⟩ = Sl ′(R) in
let ⟨T, B⟩ = S(T ′) in (37)
⟨T, B′ ⊔ B⟩

• Abstract maximal semantics of an empty statement list ℓ0Slℓ0 ::= ℓ0 ϵ ℓ0

emptymJSlK ≜ ⟨emptypJℓ0, ℓ0KR, ⊥⟩ (38)

• Abstract maximal semantics of an assignment statement ℓ0Sℓ1 ::= ℓ0x = A ;ℓ1

assignmJSK R ≜ ⟨assignpJℓ0, x, A, ℓ1KR, ⊥⟩ (39)

• Abstract maximal semantics of a skip statement ℓ0Sℓ1 ::= ;

skipmJSK R ≜ ⟨skippJℓ0, ℓ1KR, ⊥⟩ (40)

• Abstract maximal semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtStℓ2

ifmJSK(S) R ≜ let ⟨T, B⟩ = S (testpJℓ0, B, ℓtK R) in (41)
⟨T ⊔ testpJℓ0, B, ℓ2K R, B⟩
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• Abstract maximal semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtSt

else ℓfSf ℓ2

ifemJSK(St, Sf) R ≜ let ⟨Tt, Bt⟩ = St (testpJℓ0, B, ℓtK R) in (42)
let ⟨Tf , Bf⟩ = Sf (testpJℓ0, B, ℓfK R) in
⟨Tt ⊔ Tf , Bt ⊔ Bf⟩

• Abstract maximal semantics of an iteration statement ℓ0Sℓ2 ::= while ℓ0 (B) ℓ1Sbℓ2

itermJSK(SJSbK) R ≜ let ⟨T, B⟩ = lfp⊑2 (FmJSbK R) in ⟨T ⊔ B, ⊥⟩ (43)

FmJSbK ∈ Pp → Pp × Pp → Pp × Pp

F JSbK R ⟨T, B⟩ = let ⟨T ′, B′⟩ = Sb (testpJℓ0, B, ℓ1KT ) in
⟨testpJℓ0, B, ℓ2KT ′, B ⊔B

′⟩

where the partial order ⟨Pp × Pp, ⊑2⟩ is componentwise and there is no break in
an iteration that can break an outer loop.

• Abstract maximal semantics of a break statement S ::= ℓ0 break ; (where ℓ0 =
atJSK)

breakmJSK R ≜ ⟨⊥, breakpJℓ0, break-toJSKKR⟩ (44)

• Abstract maximal semantics of a compound statement S ::= ℓ0{ [ }m]Slℓ1

compoundJSK(Sl )R ≜ let ⟨T, B⟩ = Sl (R) in (45)
⟨compoundpJℓ0, ℓ1K(T ), B⟩

• Abstract maximal semantics of a breakable statement S ::= ℓ0{| Sl |}ℓ1

breakablemJSK(Sl )R ≜ let ⟨T, B⟩ = Sl (R) in (46)
⟨breakablepJℓ0, ℓ1K(T ⊔B), ⊥⟩

A breakable statement prevents internal breaks going outside this statement.
They all go after the breakable statement.
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8.3 Maximal Abstract Interpreter
The maximal abstract interpreter Sm is the instance of the abstract interpreter S
for the abstract domain DmLDpM:

SmLDpM ≜ S LDmLDpMM
Using both structural and fixpoint induction, Sm yields the abstract version of

Hoare logic of [11, chapter 26].

9 Maximal Trace Semantics
By the boundedness hypothesis there are no infinite traces and so the maximal trace
semantics is the set of all maximal finite traces defined by the prefix trace semantics.
It follows from (33) and (a proof by calculational design similar to) [11, chapter
20] that the maximal trace semantics Smt is the instance of the maximal abstract
interpreter Sm for the abstract domain Dpt (30), the operations of which have been
defined in section 6.8.

SmtLDptM ≜ SmLDptM = S LDmLDptMM (47)

10 Relational Semantics
The relational semantics relates initial to final states of maximal computations.

10.1 Properties
Following [11, chapter 8], we represent properties by the set of elements which have
this property. We are interested in relations between initial and final values of vari-
ables, that is properties in ℘(E× E).

10.2 Relational Abstraction
The abstraction is

αmt→r(⟨T, B⟩)R ≜ {⟨ρ, ρn⟩ | ⟨ρ, ρ0⟩ ∈ R ∧ ∃n ∈ N . ⟨ℓ0, ρ0⟩
a0
−−−→

. . .
an−1
−−−−−→ ⟨ℓn, ρn⟩ ∈ T ∪ B}

(48)
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This in a Galois connection [11, ex. 11.8]. Typically, R is the identity 1E on envi-
ronments E, in which case αmt→r(S )1E is the program input-output relation for the
trace semantics S .

The relational semantics is

SrJSKR ≜ αmt→r(SmtLDptMJSKR) (49)

It relates initial and final values of variables on maximal finite executions (so non-
termination is ignored).

10.3 Relational Semantic Domain
It follows from (48) and (a proof by calculational design similar to) [11, chapter 20]
that the relational semantics SrJSK is an instance of the maximal abstract interpreter
for the following abstract domain:

Dr ≜ ⟨℘(E× E), ⊆, ∅, ∪, assignr, testr, testr⟩

such that

assignrJx, AKR ≜ {⟨ρ, ρ′[x← AJAKρ′]⟩ | ⟨ρ, ρ′⟩ ∈ R}
testrJBK R ≜ {⟨ρ, ρ′⟩ | ⟨ρ, ρ′⟩ ∈ R ∧ BJBKρ′}
testrJBK R ≜ {⟨ρ, ρ′⟩ | ⟨ρ, ρ′⟩ ∈ R ∧ ¬BJBKρ′}

extended to the following abstraction of the prefix trace domain Dpt

DrLDrM ≜ ⟨Pr, ⊆̇2, ∅̇2, ∪̇2, programr, emptyr, assignr, skipr, testr,
testr, breakr, compoundr, breakabler⟩

(50)

such that Pr ≜ ℘(E× E) ↗→ ℘(E× E), ⟨Pr, ⊆̇2, ∅̇2, ∪̇2⟩ is the pointwise extension of
the complete latice ⟨℘(E× E), ⊆̇2, ∅̇2, ∪̇2⟩ ordered componentwise, and

programrJℓ0, ℓ1KR = emptyrJℓ0, ℓ1KR = skiprJℓ0, ℓ1KR = breakrJℓ0, ℓ1KR =

compoundrJℓ0, ℓ1KR = breakablerJℓ0, ℓ1KR ≜ R
assignrJℓ0, x, A, ℓ1KR ≜ assignrJx, AKR

testrJℓ0, B, ℓtK R ≜ testrJBK R
testrJℓ0, B, ℓtK R ≜ testrJBK R
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10.4 Relational Semantics
The relational semantics relates the final values of the variables to their initial val-
ues.

SrLDrM ≜ SmLDrLDrMM = S LDmLDrLDrMMM
11 Program Equivalence
The program transformations we consider must preserve the relational semantics,
either for all inputs

(P ≡ P′) ≜ (SrJPK1E = SrJP′K)1E (51)

or for some precondition R ∈ ℘(E× E)

(P ≡R P′) ≜ (SrJPKR = SrJP′KR)

or for given input data ρ ∈ E

(P ≡ρ P′) ≜ (SrJPK{⟨ρ, ρ⟩} = SrJP′K{⟨ρ, ρ⟩})
In all cases this is an equivalence relation.

12 The Poset of Program Components
We can define a partial order on program components by requiring they are seman-
tically equivalent and one is more efficient that the other:

P ⋞ P′ ≜ P ≡ P′ ∧ βJPK ⩽ βJP′K
P ≺ P′ ≜ P ≡ P′ ∧ βJPK < βJP′K

⟨Pc, ⋞⟩ is a poset (and ⟨Pc, ≺⟩ is a strict one). This poset has no infinite strictly
decreasing chain, so any subset has a minimum. In general we reason on a given
program P and we are interested in exploring the downset ↓⋞JPK of equivalent and
more efficient programs. ↓⋞JPK is a finite total order hence both a join-lattice and a
CPO.
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13 Program Optimization
At this point, we have formalized our program optimization objective. Given a
program P, transform it into an optimized program P′ ∈ min⋞{P′′ | P′′ ⋞ P} which is
equivalent with a minimal cost that is the infimum of ↓⋞JPK. Because the problem is
not decidable, we must resort to a sound but maybe not optimal solution P′ ∈ ↓⋞JPK.
We compute P′ by unrolling program P. Then we discuss how to optimize the unrolled
program P′, and finally how to unroll and optimize simultaneously.

Note that the above formalization covers program size optimization. It can be
extended to include data size by defining the size of data in an environment. The
objective is to minimize the pair of program and data sizes. The ideal measure would
be the size of the generated circuit but it is difficult to relate it to these program and
data sizes.

14 Full Unrolling
We formalize full program unrolling as an instance of the abstract interpreter. Note
that we unroll a program into another program, but other transformations such as
SSA [36], which is an abstract interpretation, could be equally considered.

14.1 Bounding Unrolling
We augment the language with an error; statement in case the execution of the
unrolled program Pu for some input requires more than βJPK steps, so that the un-
rolled program will be prematurely terminated by executing the error; statement
(e.g. implemented as throwing an error).

S ::= statement S ∈ Se

x = A ; assignment
| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| break ; iteration break
| { Sl } compound statement
| {| Sl |} breakable statement
| error; erroneous termination of an overthrown computation
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Sl ::= Sl S | ϵ statement list Sl ∈ Sle, ϵ is the empty string

Pe ::= Sl program Pe ∈ Pe

For each loop we assume that a maximal number βJwhile (B) SK of iterations is
given, otherwise the loop is terminated in error. As stated in section 7, this can be
over approximated by a static analysis.

14.2 Unrolling Abstract Domain
Program unrolling is the instance of the abstract interpreter S for the unrolling
abstract domain

Du ≜ ⟨Pu, programu, stmtlistu, emptyu, assignu, skipu, ifu, ifeu,
iteru, breaku, compoundu, breakableu⟩

(52)

defined as follows:

• Unrolling semantics domain Pu ≜ Pe × Z, partially ordered by ⟨P, n⟩ ⊑u ⟨P′,
m⟩ ≜ P ≡ P′ ∧ n ⩽ m.

• Unrolling semantics of a program P ::= Sl
programuJPK(Sl )⟨P, n⟩ ≜ let ⟨Sl′, m⟩ = Sl ⟨Sl, n⟩ in (53)

(m < 0 ? ⟨Sl′ error;, m⟩ : ⟨Sl′, m⟩)

• Unrolling semantics of a statement list Sl ::= Sl′ S
stmtlistuJSlK(Sl ′, S )⟨Sl, n⟩ ≜ let ⟨Sl′′, m⟩ = Sl ′⟨Sl′, n⟩ in (54)

let ⟨S′′, p⟩ = S⟨S, m⟩ in
⟨Sl′′ S′′, p⟩

• Unrolling semantics of an empty statement list Sl ::= ϵ

emptyuJSlK⟨Sl, n⟩ ≜ ⟨Sl, n⟩ (no computation is involved) (55)

• Unrolling semantics of an assignment statement S ::= x = A ;
assignuJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩9 (56)

9Instead of a cost of 1, we can assign reflecting the complexity of the arithmetic expression A so
as to ensure that optimizations reduce the cost of evaluating this expression A.
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• Unrolling semantics of a skip statement S ::= ;
skipuJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩ (a NOP is generated) (57)

• Unrolling semantics of a conditional statement S ::= if (B) St

ifuJSK(St)⟨S, n⟩ ≜ let ⟨S′
t, nt⟩ = St⟨St, n− 1⟩10 in (58)

⟨if (B) S′
t, nt⟩

• Unrolling semantics of a conditional statement S ::= if (B) St else Sf
ifeuJSK(St, Sf )⟨S, n⟩ ≜ let ⟨S′

t, nt⟩ = St⟨St, n− 1⟩ (59)
and ⟨S′

f , nf⟩ = Sf⟨St, n− 1⟩ in
⟨if (B) S′

t else S′
f , max(nt, nf )⟩

• Unrolling semantics of an iteration statement S ::= while (B) Sb

FuJSK(Sb)⟨S, k⟩ ≜ ((k ⩽ 0) ? ⟨error;, 0⟩
: let ⟨S′

b, m⟩ = Sb⟨Sb, k⟩ in
let ⟨S′, p⟩ = FuJSK(Sb)⟨S, m⟩ in
⟨if (B) {| S′

b S′ |}, p− 1⟩)
iteruJSbK(Sb)⟨S, n⟩ ≜ let ⟨S′′, p⟩ = FuJSK(Sb)⟨S, βJSK⟩ in (60)

⟨S′′, n− (βJSK− p)⟩

(where βJSK ∈ Pc ̸→ N specifies a sound bound (32) on the number of steps in
the loop S which deduced from the global counter n)

• Unrolling semantics of a break statement S ::= break ;
breakJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩ (61)

• Unrolling semantics of a compound statement S ::= { Sl }
compoundJSK(Sl )⟨S, n⟩ ≜ let ⟨Sl′, m⟩ = Sl (⟨Sl, n⟩) in (62)

⟨{ Sl′ }, m⟩

• Unrolling semantics of a breakable statement S ::= {| Sl |}
breakableJSK(Sl )⟨S, n⟩ ≜ let ⟨Sl′, m⟩ = Sl (⟨Sl, n⟩) in (63)

⟨{| Sl′ |}, m⟩
10Again the cost of 1 would better be refined to better reflect the complexity of evaluating B.
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14.3 Unroller
The unrolling of a program component is

SuJPK ≜ S LDuMJPK (64)
The unrolling of a program P with bound β on the program and loops is SuJPK(⟨P,
βJPK⟩).
15 Semantic Equivalence of the Program and Its

Full Unrolling
The guarantee provided by the unrolling is that the program and its unrolling have
the same abstract prefix semantics:
∀S ∈ Pc . ∀n ∈ N+ . (⟨Su, m⟩ = SuJSK⟨S, n⟩ ∧m ⩾ 0)⇒ SpLDpMJSK = SpLDpMJSuK

The proof is by structural induction on the program component S.
So, by instantiation, S and Su have the same prefix trace semantics (31), and so,

by abstraction (34) the same maximal abstract semantics and by instantiation (47),
the same maximal trace semantics. It follows, by abstraction (49), that they have
the same relational semantics and so, by definition (51) of equivalence, that they are
equivalent Su ≡ S. In conclusion the informal requirement (1) is satisfied.

16 Accuracy Estimation for Floating-point Com-
putations

The equivalence of the program P and its unrolling Pu relies on the fact that they both
use the same evaluations A of arithmetic expressions and B of Boolean expressions.
This is a reasonable assumption for different machines and compilers, except for
floating point computations.

The problem with float computations is that they are not exactly reproducible
on different machines. For example 64 bits Intel processors have a float division
performed on 80 bits and may produce results different from the IEEE 754 in double
precision [33], not necessarily more precise and this can lead to catastrophic results.
So the verifier should consider that the float results certified by the prover are valid
up to some round-off error margin ϵ.

let ⟨ρ, ρ′⟩ = SrJPK(⟨ρ, ρ⟩) and ⟨ρ, ρ′′⟩ = SrJSuJPKK(⟨ρ, ρ⟩) in
∀x ∈ V . ρ′(x) ∈ [ρ′′(x)− ϵ, ρ′′(x) + ϵ]
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16.1 Static Estimate of the Round-off Error
One possible solution to estimate this round-off error ϵ would be to determine the
possible interval of float values using static analyzers such as Fluctuat [21, 22] which
unroll the program and would perform better on an optimized unrolled program. This
analysis is an instance of the static analysis framework considered in next section,
and so can be formalized as an instance of the abstract interpreter.

16.2 Dynamic Estimate of the Round-off Error
A more precise estimation of accuracy could also be determined by dynamic interval
analysis, also know as interval arithmetics in numerical analysis. Since it is an
abstract interpretation (see [11, chapter 32]), it can be incorporated by a product to
the program unrolling.

17 Static Program Analysis
Program analysis is an instance of an abstract interpreter for a reduced product
[11, chapter 36] of abstract domains. For example, Astrée [19] has more than 50
abstract domains, that can be chosen on demand (e.g. filters for control/command
programs, quadruples for spatial programs, etc) with an efficient approximation of
the reduced product [18]. Abstract domain libraries provide reusable collections of
abstract domains (like APRON [25] or ELINA [37] for numerical domains including
intervals [14], octagons [32], zonotopes [23], and polyhedra [17]).

17.1 Abstract Domain of a Static Analysis
A static analysis is fully specified by an abstract domain

Da ≜ ⟨Pa, ⊑a, ⊥a, ⊔a, assigna, testa, testa⟩ (65)

This abstract domain is in general complex and decomposed into many subdomains
composed, for example by a reduced product, which effect is to present the compo-
sition of these subdomains in the form (66).

The functor Da:

DaLDaM ≜ ⟨Pa, ⊑a, ⊥a, ⊔a, programa, emptya, assigna, skipa, testa,
testa, breaka, compounda, breakablea⟩

(66)

defined (similarly to Dr at (50)) as:
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programaJℓ0, ℓ1KR = emptyaJℓ0, ℓ1KR = skipaJℓ0, ℓ1KR = breakaJℓ0, ℓ1KR =

compoundaJℓ0, ℓ1KR = breakableaJℓ0, ℓ1KR ≜ R
assignaJℓ0, x, A, ℓ1KR ≜ assignaJx, AKR

testaJℓ0, B, ℓtK R ≜ testaJBK R
testaJℓ0, B, ℓtK R ≜ testaJBK R

provides an abstract domain of the same type as Dp in (14), and so, combined with
the functor Dm yields a static analyzer for properties Pa by instantiation of the
abstract interpreter.

17.2 Specification of a Static Analyzer

SaLDaM ≜ SmLDaLDaMM = S LDmLDaLDaMMM
17.3 Soundness of a Static Analysis
If the abstract domain defining the program semantics for a given abstract interpreter
Ss is

Ds ≜ ⟨Ps, ⊑s, ⊥s, ⊔s, assigns, tests, tests⟩ (67)
SsLDsM ≜ SmLDsLDsMM = S LDmLDsLDsMMM

and the abstract domain defining the program analysis for this same abstract inter-
preter Sa is (67) then, given an increasing concretization function:

γ ∈ Pa ↗→ Ps,

the following pointwise local soundness conditions:

assignsJx = A ;K ◦ γ ⊑̇s
γ ◦ assignaJx = A ;K

testpJBK ◦ γ ⊑̇s
γ ◦ testpJBK

testpJBK ◦ γ ⊑̇s
γ ◦ testpJBK

ensure that the analysis is sound with respect to the semantics, that is:

∀S ∈ Pc . SsLDsMJSK ⊑̇s
γ(SaLDaMJSK)
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(see the proof in [11, chapter 21]). It follows that any program component property
proved in the abstract is valid, after concretization, in the concrete.

Classical static analysis aims at inferring invariants at each program point by
abstraction of the prefix trace semantics, in which case SsLDsM is the prefix trace
semantics SptLDptM.

If any of these classical static analyzes if applied to the unrolled program, it will
produce (under the boundedness hypothesis) refined results because no extrapolation
(widening) / interpolation (narrowing) is necessary [11, chapter 34].

18 Direct Product of Unrolling and Analysis
The unrolling and static analysis are both instance of the abstract interpreter, respec-
tively for abstract domain Du and DmLDaLDaMM. Therefore, instead of first enrolling
and then analyzing (and then transforming), we can perform both simultaneously
thanks to a direct product Du × DmLDaLDaMM of the abstract domains [11, defini-
tion 36.1]. This does not brings in any gain in precision and performance, but is an
essential step to be able to perform reductions [11, chapter 29].

19 Reduced Product by Program Transformation
The unrolling domain Du cannot improve the static analysis domain DmLDaLDaMM
because the analysis is performed (simultaneously in the direct product) on the
already unrolled prefix of the unrolled program.

However, the static analysis domain DmLDaLDaMM can improve the unrolling do-
main Du by performing a program transformation, as discussed in section 13. It fol-
lows that the direct product can be replaced by the reduced product Du⊗DmLDaLDaMM
of the two domains [11, definition 36.7]. As shown by [11, theorem 36.23], the reduced
product is obtained by applying a meaning-preserving reduction operator r to the
elements of the direct product. However, because the optimal program transforma-
tion problem is undecidable, the reduced product is not effectively computable, and
so neither is this reduction operator r. The solution is to define a weaker reduction
operator t ∈ (Du × DmLDaLDaMM) → (Du × DmLDaLDaMM) which, given a statement
S ∈ S and an abstract property P ∈ Pa, returns an equivalent and more efficient
transformed statement

S′ = t(S, P )

such that S′ ⋞ S and preferably S′ ≺ S. Notice that in general, although S′ ≡ S
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the property P ′ = SaLDaMJS′K of the transformed program may be different from
P = SaLDaMJSK. So the reduction operator can be defined as

t(S, P ) = let S′ = t(S, P ) in
⟨S′, P ⊓a SaLDaMJS′K⟩11

It follows that the pair ⟨S, P ⟩ can be replaced by t(S, P ). Observe that if t is sound,
increasing, and reductive then, by [11, theorem 29.2], the transformation can be
improved by considering ť(S, P ) ≜ gfp⊑2

⟨S, P ⟩ t where ⊑2 is the componentwise partial
order on the product domain Du×DmLDaLDaMM. Since the iterations to compute the
greatest fixpoint might be costly, [11, corollary 29.3] shows that it is sound, but less
precise, to stop at any iterate, including doing none. Applied at the program level,
ť essentially consists in iterating the abstract interpreter.

20 Unrolling, Analysis, and Transformation All
Together

The static analysis and transformation can be done during the unrolling. We consider
a static analysis which, given a precondition, returns the pair of a postcondition for
normal termination and for termination by a break ; (hence over approximating the
relational analysis of section 10). It is also possible to add an invariant based on a
reachability analysis [11, chapter 47] for the prefix trace semantics of section 6.8 and
moreover, to return a refined precondition, using a backward analysis [11, chapter
50] or an iterated combination of a forward and backward analysis [11, chapter 51].

The reductive transformation tJSK of a program component S, take as parame-
ters its transformed components, the precondition and the pair of termination and
break postcondition resulting from the analysis, and returns the optimize program
component with the postconditions.

• Unrolling, analysis, and transformation semantics domain Puat ≜ (Pe × Z) →
Pa → ((Pe × Z)× (Pa × Pa)), partially ordered componentwise.

• Unrolling, analysis, and transformation semantics of a program P ::= Sl
programuatJPK⟨P, n⟩R ≜ let ⟨⟨Sl′, m⟩, ⟨T, B⟩⟩ = Sl ⟨Sl, n⟩ in (68)

(m < 0 ? tJPK(⟨Sl′ error;, m⟩,R, ⟨⊥, B⟩)
: tJPK(⟨Sl′, m⟩,R, ⟨T, B⟩))

11⟨S′, P ⟩ is also sound, although less precise.
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• Unrolling, analysis, and transformation semantics of a statement list Sl ::= Sl′ S
stmtlistuatJSlK(Sl ′, S )⟨Sl, n⟩R ≜ (69)

let ⟨⟨Sl′′, m⟩, ⟨T ′, B′⟩⟩ = Sl ′⟨Sl′, n− 1⟩R in
let ⟨⟨S′′, p⟩, ⟨T ′′, B′′⟩⟩ = S⟨S, m⟩T ′ in

tJSlK(⟨Sl′′ S′′, p⟩,R, ⟨T ′′, B′ ⊔ B′′⟩)

• Unrolling, analysis, and transformation semantics of an empty statement list
Sl ::= ϵ

emptyuatJSlK⟨Sl, n⟩R ≜ ⟨⟨Sl, n⟩, ⟨R, ⊥⟩⟩ (70)

• Unrolling, analysis, and transformation semantics of an assignment statement
S ::= x = A ;

assignuatJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨assignaJx, AKR, ⊥⟩) (71)

• Unrolling, analysis, and transformation semantics of a skip statement S ::= ;
skipuatJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨R, ⊥⟩) (72)

• Unrolling, analysis, and transformation semantics of a conditional statement S ::=
if (B) St

ifuatJSK(St)⟨S, n⟩R ≜ let ⟨⟨S′
t, nt⟩, T , B⟩ = St⟨St, n⟩(testaJBK R) in (73)

tJSK(⟨if (B) S′
t, nt⟩,R, ⟨T ⊔ testpJBK R, B⟩)

• Unrolling, analysis, and transformation semantics of a conditional statement S ::=
if (B) St else Sf

ifeuatJSK(St, Sf )⟨S, n⟩R ≜ (74)
let ⟨⟨S′

t, nt⟩, Tt, Bt⟩ = St⟨St, n⟩(testaJBK R)

and ⟨⟨S′
f , nf⟩, Tf , Bf⟩ = Sf⟨Sf , n⟩(testaJBK R) in

tJSK(⟨if (B) S′
t else S′

f , max(nt, nf )⟩,R, ⟨Tt ⊔ Tf , Bt ⊔ Bf⟩)

• Unrolling, analysis, and transformation semantics of an iteration statement S ::=
while (B) Sb

FuatJSK(Sb)⟨S, k⟩R ≜ ((k ⩽ 0) ? ⟨error;, 0⟩
: let ⟨⟨S′

b, m⟩, ⟨Tb, Bb⟩⟩ = Sb⟨Sb, k⟩R in
let ⟨⟨S′, p⟩, ⟨T ′, B′⟩⟩ = FuatJSK(Sb)⟨S, m⟩Tb in

tJSK(⟨if (B) {| S′
b S′ |}, p⟩,R, ⟨T ′, Bb ⊔ B′⟩))

iteruatJSbK(Sb)⟨S, n⟩R ≜ let ⟨⟨S′′, p⟩, ⟨T, B⟩⟩ = FuatJSK(Sb)⟨S, βJSK⟩R in
⟨⟨S′′, n− (βJSK− p)⟩, ⟨T, B⟩⟩ (75)
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(where βJ∈KPc ̸→ N specifies a sound bound (32) on the number of steps in the
loop which deducted from the global counter n)

• Unrolling, analysis, and transformation semantics of a break statement S ::=
break ;

breakJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨⊥, R⟩) (76)

• Unrolling, analysis, and transformation semantics of a compound statement S ::=
{ Sl }

compoundJSK(Sl )⟨S, n⟩R ≜ (77)
let ⟨⟨Sl′, m⟩, ⟨T ′, B′⟩⟩ = Sl (⟨Sl, n⟩)R in
tJSK(⟨{ Sl′ }, m⟩,R, ⟨T ′, B′⟩)

• Unrolling, analysis, and transformation semantics of a breakable statement S ::=
{| Sl |}

breakableJSK(Sl )⟨S, n⟩R ≜ (78)
let ⟨⟨Sl′, m⟩, ⟨T ′, B′⟩⟩ = Sl (⟨Sl, n⟩)R in
tJSK(⟨{| Sl′ |}, m⟩,R, ⟨T ′ ⊔ B′, ⊥⟩)

20.1 Streaming
Observe that, in full generality, the optimizing transformation t at (68) is global and
performed on the whole unrolled program. This may be way too large to be managed
efficiently. In that case, we could keep the optimizing transformation t at assignments
(71), skips (72), tests (73), (74), and (75), and breaks (76) only. Then the unrolled
program can be streamed out, thus considerably reducing memory consumption.

21 Program Optimizing Transformations and Cor-
responding Abstract Domains

The objective of the transformer reduction tJSK(⟨S′, m⟩,R, ⟨T, B⟩) is, knowing the
transformed components S′ of the program component S, as well as the precondition
R and pair ⟨T, B⟩ of postconditions on normal termination T and termination by
a break B12 must return a semantically equivalent transformed program component
S′′ of S which is equivalent S′′ ≡ S and more efficient either in the size of the code
(and ultimately of the corresponding circuit) and the necessary memory. Because

12and maybe other analyzes as already mentioned.
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the problem is undecidable, the solution is necessarily an approximate but sound
compromise.

It is extremely difficult to provide a transformer reduction independently of the
application domain of the program. We review a few classical abstract domains
and the corresponding transformations. They subsume partial evaluation, dead code
elimination, and so forth [26].

21.1 Communication of the Transformer with Abstract Do-
mains

In general the abstract domain Pa is the reduced product of many elementary abstract
domains. In order to avoid modifying existing domains or the transformer each time
an abstract domain is introduced or withdrawn, one can use a common interface,
called a communication channel [18, 6], between abstract domains themselves and
with the transformer; see [11, sction 36.4.6].

21.2 Reduction by Typing
In C, typing is very weak and static analysis is traditionally used to refine the C
compiler typing algorithm. For example, in C, a boolean is an integer; 0 is false,
different from 0 is true. An analysis could determine what integers are used as
Booleans only and transform the program to {0, 1} only (maybe with a pragma to
indicate boolean type). Replacing an integer by a bit, will definitely reduce the size
of the circuit.

21.3 Reduction by Determination of Side Effects
Although expressions in our subset of C have no side-effects, this is not the case in
general. C compilers can evaluate expressions in any order, so different compilers
may yield different results when expressions have different side effects. Moreover,
for floats the order of evaluation may influence the accuracy of the result, which is
similar to a side-effect.

A static analysis might checks for absence of side-effects in expressions and oth-
erwise transform the source into a decomposed expressions with auxiliary variables
enforcing an order of evaluation.
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21.4 Elimination of Runtime Checks, Dead Code, and Vari-
ables

The elimination of runtime checks for integers, array indexes, floats, and so on es-
sentially consists in bounding an arithmetic expression. Dead code follows from the
constancy of Boolean expressions.

This can be solved, more or less precisely, by many abstract domains such as
constancy, interval, congruences, zones, octagons, zonotopes, linear equalities, poly-
hedra, and so forth.

This information can also be used in optimizing the code in various ways. For
example, linear equalities can be used for specialization (replacing variables by val-
ues) and to eliminate variables by substitution of their value in terms of the others.
Another example is the encoding of variables with small values on less bits.

This information is also necessary when compiling code to an arithmetic circuit.
For example max(a, b) = a+b

2
+ |a−b|

2
, except that max(a, b) does not overflow whereas

a+ b and |a− b| might (for example with a = INT_MIN and b = 0 in 2’s complement).

21.5 Code Simplification by Symbolic Execution
Symbolic execution is an abstract interpretation [9, section 3.4.5] which consists in
providing symbolic names to the initial values and then calculating at each program
point a path condition to reach that path and a symbolic value of the variables
when reaching that program point. The traditional difficulties still unsolved over
decades of research is the handling of loops and data structures such as array. The
problem is solved by the unrolling (which also solve the array problem by consider-
ing each element as a simple variable). However, the implication problem remains.
May formula simplifiers do exist and their effectiveness can only be determined by
experimentation13

13See, for example, dCode https://www.dcode.fr/math-simplification,
Fungrim https://fungrim.org, Julia https://discourse.julialang.org/t/
how-to-simplify-symbolic-expression-using-calculusjl/32036, Maple https:
//www.maplesoft.com/support/help/Maple/view.aspx?path=simplify, Mathcad
http://support.ptc.com/help/mathcad/en/index.html#page/PTC_Mathcad_Help/
example_simplify_rewrite_expressions.html, Mathematica https://reference.
wolfram.com/language/tutorial/AlgebraicCalculations.html, MATLAB https:
//www.mathworks.com/help/symbolic/formula-manipulation-and-simplification.
html, Maude http://maude.cs.illinois.edu/w/index.php/The_Maude_System, Max-
ima https://maxima.sourceforge.io/docs/manual/maxima_46.html, Octave https:
//brandonrozek.com/blog/2017-03-09-simplifying-expressions-octave/, Racket
https://docs.racket-lang.org/symalg/index.html, Sage https://doc.sagemath.org,
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21.6 Code Elimination by Dependency Analysis
Dependency analysis [11, chapter 47] is a generalization of interference, dye, tracking,
taint, binding time and other static analyses. It determines at each program point
which variables depend on which inputs. Depend means that changing the inputs
will change the observation of the variable in the computation from that program
point on. In our case, the observation is defined by the relational analysis.

Assume only some of the results of a program are of interest. If the results of
interest can be determined to depend on some D \ I of the inputs I by a static
analysis. All intermediate computations depending only on the other inputs in I \D
can be eliminated. This is because if the results of interest were depending on
these intermediate computations, they would, indirectly, depends on these other
inputs I \D, in contradiction with their independence, as soundly determined by the
overapproximating analysis.

This forward slicing is different from classic slicing which proceeds backwards and
does not take values of variables into account.

21.7 Code Improvement for Float Computations
Since float computations are in a finite field they do not have the same mathe-
matical properties as real expressions. So equivalent expressions in the reals may
have different results with floats. Given the float transliteration of a real expression
in a program, it is interesting to replace it by the the equivalent one in the reals
that is the most precise one (or close to the most precise one) in the floats. This
can be supported by a static analysis; see for example [20]. [2] provides examples of
floating-point computations occurring in programs that may be transformed in order
to improve their numerical accuracy.

Such static analyzes can also be used for mixed computations where float com-
putations that need not be precise are replaced by faster ones on less bits [5].

21.8 Strengthening User-Provided Invariants
Analysis is more difficult than verification [16]. The reason is that to prove program
properties it is often necessary to strengthen them to be inductive [10], and the
main objective of a static analyzer is to infer such inductive properties. Consider the
following example from [6]:

simplt https://rdrr.io/cran/simplr/, SymPy https://docs.sympy.org/, and so on; see
https://en.wikipedia.org/wiki/Computer_algebra.
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int f(int x) {
int low = x & 0xffff;
int high = x >> 16;
int rebuilt = low | (high << 16)
return rebuilt

}

which is a complicated way to do nothing, that is x = rebuilt. SMT solvers with
appropriate bit-string theories might be able to prove this postcondition. However,
it is another story to discover it, as well as the necessary intermediate invariants, in
particular with iteration or recursion. Astrée S infer this postcondition fully auto-
matically without any user-provided information [6, section 18.1.2].

It follows that beyond the unroll/analyze/transform task, the abstract interpreter
may be simultaneously used to generate inductive invariants needed to translate
programs in high- level source languages (e.g., C) to logical constraint representations
[34].

21.9 Termination Proofs
Although executions are assumed to be bounded, it is even better to prove it. This
can be another task of the abstract interpreter. Because of the boundedness hypoth-
esis, Knuth’s method is sound and complete. It consist in adding a counter to loops
(and recursion), initialized to zero, incremented at each iteration (recursive call), and
proved to be bounded; see for example [12, section 2.2].

22 Future Work
22.1 Gadgets and Widgets
Gadgets and widgets replace a code statement by a more efficient check of this
computation of the code specification rather than actually executing the statement.
So it is not the mere replacement of a computation by another one, as we have
considered in this work. We think that the present framework can be extended
replace to a computation by a check of their result and to automate the insertion of
gadgets and widgets, guided by an analysis, at least the simplest ones.
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22.2 Replacement of Floats by Fixed Point Arithmetic
It is tempting to control accuracy to transform floating point computations into fixed
point ones. The result will in general be different and static analysis might be useful
to automatize the transformation. Static analysis of fixed point computations is a
subject still undeveloped [30, 29].

22.3 Piecewise Partial Unrolling
Once unrolled, it might be that the program is much too large to be accepted by com-
pilers. Usually, a compiler transforms programs into an intermediate representation,
which is analyzed and transformed into the output code. If the output code/Boolean
and arithmetic circuit can be streamed out, this is generally not the case of the input.
In that case, the compiler will fail in combinatorial explosion because the unrolled
input is much too large.

The solution that we envision is piecewise unrolling into a sequence of loop iter-
ations where successive iterations correspond to different code optimizations. Con-
sider for example the unrolling 1000 times of for (i = 1; i<n; i=i+1) S where
an analysis has determined that n ⩾ 500 and S has no break and does not modify i.
Then a partial enrolling could be

for (i = 1; i<500; i=i+1) S
for (i = 500; i<min(n,1000); i=i+1) S
if (n>1000) error;

Trace partitioning can be used to decide on such decompositions [31].
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