

On the contrary, EVs are not about the quantity of light received but about the camera settings to cope with a given quantity of light received. So if the quantity of light received is very high, we must decrease the ISO, shutter speed, and aperture (that is increase the f -number) to capture less of the received light so that higher EVs indicate less light to capture. If the quantity of light received is very low, we must increase the ISO/aperture/speed (that is decrease the f -number) to capture more of the received light so that lower EV numbers indicate more light to capture. This corresponds to the inverse $\frac{1}{q \times I \times s} = \frac{100 \times f^2}{q \times I \times s}$, as shown when comparing x (in red) and $\frac{1}{x}$ (in blue),

Decreasing the ISO I or the shutter speed s or decreasing the aperture by increasing the f -number will increase the quantity $\frac{100 \times f^2}{q \times I \times s}$, that is increase the quantity of light reaching the image sensor. If more light reaches the image sensor, it must capture less of the light for a correct exposure. Therefore, like the EV, higher values of $\frac{100 \times f^2}{q \times I \times s}$ indicate less light to be captured while lower values of $\frac{100 \times f^2}{q \times I \times s}$ indicate more light.