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Outline

» Model reduction for linear networks with
separated constants.

» Model reduction for non-linear networks with
multiple time scales.

» Tropical geometry and model reduction.



The problem of size
Complex, large scale molecular systems.
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Dynamics

» State X (numbers of molecules), x = X/V
(concentrations), reactions X — X + ;.

» Deterministic dynamics

» Stochastic dynamics X(t) is a jump Markov process, of
intensity

Ax) = VY ),
J=1

jumps X — X +Vj, jump distribution

pix) = R/ ¥ A(x)
Jj=1
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Model reduction

Hierarchical model reduction
stines sovis
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Backward pruning: define

Hierarchical model reduction:
synthetic parameters that are

produce models with less
identifiable

variables, equations,
parameters; use graph rewriting
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Multiscale networks

Our methods apply to molecular networks that have many, well
separated, time and concentration scales.
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Produced with the model in Radulescu et al BMC Systems Biol. 2008

Our aim: develop reduction methods for multi-scale models with
uncertainty.

NYU, March 2012



Linear networks of chemical reactions:
digraphs with linear kinetics

A; are reagents, c¢; is concentration of A;.

All'the reactions are of the type A; — A; (monomolecular).
ki > O is the reaction A; — A rate constant.

The reaction rates: wj; = Kjic;.

Kinetic equation

G = Z (k,‘jCj — kj,‘C,‘) or ¢ = Kec, (1)
i

Relevance for computational biology:
» Occur as subsystems of larger, nonlinear networks.

» Crude approximations obtained by linearizing networks.
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Linear networks with separated constants

c(t) = (I°,c(0)) + ,721 rk (1K, c(0)) exp(—Axt)
k=1

The eigenvectors of K specify the dynamics.
Well separated constants

kl1 >> kl2 >> k[3 >> cee

Integer labeled digraphs: each reaction arc has an integer label,
specifying its position in the sequence of all reactions, ordered
by speed; the lowest order is the most rapid.

Theorem: the multiscale approximation of an arbitrary linear
network with separated constants is an acyclic, deterministic,
integer labeled digraph.
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Auxiliary discrete dynamical systems

For each A;, x; = max;{Ki}, ¢(/) = argmax{k;};
¢(i) = i if there is no outgoing reaction A; — A;.

¢ determines auxiliary dynamical system on a set 4 = {A;}.

Pruning: keep only the
dominating step

\@,, (4

The auxiliary dynamical system is further decomposed into
cycles C; with basins of attraction, Att(C;): A = U;Att(C;).
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1-st case: acyclic auxiliary dynamic systems

All cycles C; are point attractors.

i
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= flow /’ I’ b(j) 9° opposite
@~ Do
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Sequence of reduced models

2
1 2 13
© 8
(a—7—()— @ £,
& e c
ROSPoR f
S Ag ALl ARF A Ay
| O 05 1
n
o ~ -
==
10° 10°

®

I Time
~

O

1° ~(0,0,0,0,0,0,0,1)
r® ~(0,0,0,0,0,—1,1,0)

NYU, March 2012



Sequence of reduced models
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Sequence of reduced models
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Sequence of reduced models
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2-nd case: C; are sinks in the initial network

Delete the limiting steps from cycles C;. The obtained acyclic
reaction network A; — Ay ;) is the right approximation.
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2-nd case: C; are sinks in the initial network

Delete the limiting steps from cycles C;. The obtained acyclic
reaction network A; — A¢(,-) is the right approximation.
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2-nd case: C; are sinks in the initial network

Delete the limiting steps from cycles C;. The obtained acyclic
reaction network A; — A¢(,-) is the right approximation.
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Sequence of reduced models
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3-rd case: some of C; are not sinks

Pool species in %/
_ cycles;
Slow reactions Compare (76 e 2 )
leave the cycle. [EElicet |
(%) \ : z
f? I
2

Renormalize Prune, r;}roze‘_) s 2 s 5

constgnts of cycles
outgoing slow
reactions.




Nonlinear networks

» Timescales are not inverses of parameters in the model.
They involve concentrations and can change with time.

» Main ideas: quasi-steady state approximation,
quasi-equilibrium.

» Given the trajectories ¢(t) of all species solution of

%f = f(c), the imposed trajectory of the i-th species is a
solution ¢/ (t) of the equation fi(c1(t), ..., ci—1(t),
ci(t),cir1(t),...,cn(t)) = 0. We say that a species i is
slaved if the distance between the trajectory c;(t) and
some imposed trajectory ¢;'(t) is small for some time
interval /, supse/|log(ci(t)) — log(ci(t))| < 3, for some
d > 0 sufficiently small.
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Slaved species - NFKkB model

5fold

o mRNA-I-cB‘1 (slow)

IKBu-cyt (fast/large)

imposed trajectory

species




Small concentration slaved species -

quasi-steady state approximation
Example: Michaelis-Menten mechanism.

k+
S+E~SEBpPt+E
ki
QSS approximation (Briggs-Haldane): quasi-steady state
species are low concentration, fast species.
Pooling of reactions.

S R(ﬁot) P
dP  dS
—r = = keES kiS.(Eiat— E) = (k-1 + k) ES

R(S, Ept) = k2Eior.S/ (km+ S)

NYU, March 2012



Small concentration slaved species -

quasi-equilibrium approximation

QE approximation (Michaelis-Menten): quasi-equilibrium
reactions are fast, reversible reactions.
Pooling of species. Syt = S+ ES, Ejot = E+ ES.

R(Spot, E
Stot ( tot I‘Ot) P

- = tot — kgE\S7 k1 (Stot = ES)'(EtOt _ ES) — k71 ES
at at
R(Stot, Etot) = 2E¢ot Stot

ko
(Etot + Stot +k—1/k1)(1 + /1 — 4Etot Stot / (Etot + Stot +k—1/k1)?

Etot Stot

R(Stot, Etot) = k
(Stot Etot) 24 Tkt + Sor

s if Etot << Stot
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Graph rewriting operations - pooling and

pruning of reactions and species

Let S" be the stoichiometric matrix of the fast subsystem: fast
reactions for QE; reactions producing or consuming fast species
for QSS.

Pooling

For QSS define reaction pools, solutions of Sfy = 0: routes.

For QE define species pools, solutions of b’ S’ = 0:
conservation laws.

Impose minimality conditions R(Y) C R(y) =Y =0VY =y
elementary modes.

Pruning

Quasi-steady state species and quasi-equilibrium reactions can
be pruned (singular perturbations).

Dominated reactions can be also pruned (regular perturbations).
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Hierarchy of NFkB models M(39, 65,90
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Hierarchy of NFkB models M(34,60,82) MODEL7743631122
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Hierarchy of NFkB models M(24,65,62) MODEL7743608569
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Hierarchy of NFkB models M(16,34,46) MODEL7743576806
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Hierarchy of NFkB models M(14,30,41) MODEL7743528808

—
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Hierarchy of NFkB models M(14,25,33) MODEL7743444866
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Tropical geometry and model reduction
Multi-scale models of computational biology satisfy:

» vectors fields of ODE models are ratios of multivariate
polynomials Pi(x) = Y oen0Xs? - - Xp"-

» reduction methods exploit dominance relations between
monomial rate terms.

» the dominant (reduced) subsystem depends on the
time-scale, it can change with time (hybrid models).

Tropical geometry offers convenient solutions to:

» solve systems of polynomial equations P;(x) = 0 with
separated monomials.

» simplify and hybridize rational ODE systems
axi
dt

= Pi(x)/Qi(x),1 < i < n, with separated monomials.
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Litvinov-Maslov tropicalization
Replace multivariate polynomials by piece-wise smooth,

max-plux polynomials.

Y.ocadox® — explmaxaca{log(aa)+ < log(z), o >}].
The tropical manifold is the set of points where max-plus
polynomials are not smooth.

log y

Max(ay + cx

- bx2y) = ay

Max(ay + cx + bx?y) = bx%y

T~

Max(ay + ox + bx?y) = cx

log x

The tropical manifold of the polynomial ay + cx + bx?y on

“logarithmic paper”.
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Tropicalization of Tyson et al. 91 cell cycle

model

2D reduced model.

Vs = Kiya+ Kayay? — Keys, 2

Ya = —Kiya—kKayay2 +ki,

Tropicalization.

ys = Dom{Kyya,kaysy5/C? —Keys}, T

tropicalized
i

ys = Dom{—kyys,—kayay5/C? ki}, Tz

Cell cycle oscillates, also passes from one “mode” to another:

life is hybrid.

4 B
log(Y,)
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Tropical geometry and hybridization
Full or partial tropicalizations can be used as hybrid cell cycle
models (Noel et al 2011, 2012).

15
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— CyeaiCdkz
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The dominant subsystem of linear networks with total separation
is a full tropicalization.
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QE, @SS and sliding modes of the tropicalization

M3 dx/dt =
x M1 — M2+ M3 — M,

dy/dt=M2-M1

Qs
Some monomials of the polynomial equations ‘Z,’; = P(x),
can be pruned (are dominated) on the tropical manifold. The
pruned version % = P(x), where P is obtained from P by
removing dominated monomials, corresponds to the fast
subsystem of the QE and QSS approximations.
Theorem:QE and QSS conditions imply the existence of sliding
modes on the tropicalization. Use sliding modes of the

tropicalization to detect QE ans QSS conditions...in progress!  wuvamze



Conclusions

» Network with many, well separated, time scales, can be
reduced to simpler networks, in a way that does not
depend on the exact values of the parameters, but on their
order relations.

» Tropical geometry is the natural framework for unifying
various approaches to this problem.

» The algorithms are ready to use for backward pruning
strategies: find effective, critical parameters.

» Need some rough estimates of timescales and
concentration ranges.
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