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Outline

I Model reduction for linear networks with
separated constants.

I Model reduction for non-linear networks with
multiple time scales.

I Tropical geometry and model reduction.
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The problem of size
Complex, large scale molecular systems.

Kitano 2004
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Dynamics
I State X (numbers of molecules), x = X/V

(concentrations), reactions X → X +νj .

I Deterministic dynamics

dx
dt

=
r

∑
j=1

νjRj(x)

I Stochastic dynamics X(t) is a jump Markov process, of
intensity

λ(x) = V
r

∑
j=1

Rj(x),

jumps X → X +νj , jump distribution

pj(x) = Rj(x)/
r

∑
j=1

Rj(x)
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Model reduction

Hierarchical model reduction:

produce models with less

variables, equations,

parameters; use graph rewriting

Backward pruning: define

synthetic parameters that are

identifiable
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Multiscale networks
Our methods apply to molecular networks that have many, well
separated, time and concentration scales.

Widely distributed
concentrations, in log scale

Widely distributed timescales, in
log scale

Produced with the model in Radulescu et al BMC Systems Biol. 2008

Our aim: develop reduction methods for multi-scale models with
uncertainty.
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Linear networks of chemical reactions:

digraphs with linear kinetics
Ai are reagents, ci is concentration of Ai .
All the reactions are of the type Ai → Aj (monomolecular).
kji > 0 is the reaction Ai → Aj rate constant.
The reaction rates: wji = kjici .
Kinetic equation

ċi = ∑
j, j 6=i

(kijcj − kjici) or ċ = Kc, (1)

Relevance for computational biology:

I Occur as subsystems of larger, nonlinear networks.

I Crude approximations obtained by linearizing networks.



NYU, March 2012

Linear networks with separated constants

c(t) = (l0,c(0))+
n−1

∑
k=1

r k(lk ,c(0))exp(−λk t)

The eigenvectors of K specify the dynamics.
Well separated constants

kI1 � kI2 � kI3 � ...

Integer labeled digraphs: each reaction arc has an integer label,
specifying its position in the sequence of all reactions, ordered
by speed; the lowest order is the most rapid.

Theorem: the multiscale approximation of an arbitrary linear

network with separated constants is an acyclic, deterministic,

integer labeled digraph.
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Auxiliary discrete dynamical systems

For each Ai , κi = maxj{kji}, φ(i) = argmaxj{kji};
φ(i) = i if there is no outgoing reaction Ai → Aj .
φ determines auxiliary dynamical system on a set A = {Ai}.

Ai Aj

A1

An

κi

k 1i

k
ni

Pruning: keep only the
dominating step

Ai Aj

A1

An

κi

The auxiliary dynamical system is further decomposed into
cycles Cj with basins of attraction, Att(Cj): A = ∪jAtt(Cj).
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1-st case: acyclic auxiliary dynamic systems

All cycles Cj are point attractors.

A1 A2

A3

A4

A5

A6

A7

A8

7
5

6

1

3

2
4

r i
Φ(j) =

κj
κΦ(j)−κi

r i
j go along the

flow l ij =
κj

κj−κi
l i
Φ(j) go opposite

to the flow.
For instance:
l1 ≈ (1,0,0,0,0,0,0,0)
r1 ≈ (1,0,0,0,0,0,0,−1)
l5 ≈ (0,0,0,1,1,1,1,0)
r5 ≈ (0,0,0,0,1,0,0,−1)
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Sequence of reduced models

A1 A2

A3

A4

A8

A5

A6

A77
5

6

1

3

2
4

l6 ≈ (0,0,0,0,0,0,0,1)

r6 ≈ (0,0,0,0,0,−1,1,0)
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Sequence of reduced models

A1 A2

A3

A4

A8

A6

A7

A5

7
5

6

1

3

2
4

l7 ≈ (0,0,0,0,0,0,1,1)

r7 ≈ (0,0,0,0,1,0,−1,0)
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Sequence of reduced models

A1 A2

A3

A4

A6

A7

A5

A8

7
5

6

1

3

2
4

l5 ≈ (0,0,0,1,0,1,1,0)

r5 ≈ (0,0,0,0,−1,0,0,1)
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Sequence of reduced models

A2

A3

A4

A6

A5

A7A1

A8

7
5

6

1

3

2
4

l1 ≈ (1,0,0,0,0,0,0,0)

r1 ≈ (−1,0,0,0,0,0,0,1)
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2-nd case: Cj are sinks in the initial network

Delete the limiting steps from cycles Cj . The obtained acyclic

reaction network Ai → Aφ(i) is the right approximation.

A2

A1

A4

A5

A3

1

6

3

5

42

A2

A1

A4

A5

A3

1 3

5

42

A2

A1

A4

A5

A3

1 3

42
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2-nd case: Cj are sinks in the initial network
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Sequence of reduced models

A2

A1

A4

A5

A3

1

6

3

5

42

A2

A1

A4

A5

A3

1 3

5

42

A2

A1

A4

A5

A3

1 3

42
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Sequence of reduced models

A2
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Sequence of reduced models
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3-rd case: some of Cj are not sinks

Slow reactions
leave the cycle.

A2

A1

A4

A5

A3

1

3

5

6

42

Pool species in
cycles;

A2+A3+A4

A1 A5

1

k
5 k

4 /k
3

6

Renormalize
constants of
outgoing slow
reactions.

Compare
renormalized
constants to
other constants;

k5k4/k3 > k6

k5k4/k3 < k6

Prune, restore
cycles

A2

A1

A3

A5

A4

1

3

k
5 k

4 /k
3

2

A2

A1

A3

A5

A4

1

3

6

2
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Nonlinear networks

I Timescales are not inverses of parameters in the model.
They involve concentrations and can change with time.

I Main ideas: quasi-steady state approximation,
quasi-equilibrium.

I Given the trajectories c(t) of all species solution of
dc
dt = f(c), the imposed trajectory of the i-th species is a
solution c∗i (t) of the equation fi(c1(t), . . . ,ci−1(t),
c∗i (t),ci+1(t), . . . ,cn(t)) = 0. We say that a species i is
slaved if the distance between the trajectory ci(t) and
some imposed trajectory c∗i (t) is small for some time
interval I, supt∈I |log(ci(t))− log(c∗i (t))|< δ, for some
δ > 0 sufficiently small.
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Slaved species - NFκB model
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Small concentration slaved species -

quasi-steady state approximation
Example: Michaelis-Menten mechanism.

S+E
k+1


k−1

SE
k2→ P +E

QSS approximation (Briggs-Haldane): quasi-steady state
species are low concentration, fast species.
Pooling of reactions.

S
R(S,Etot)−→ P

dP
dt

=−dS
dt

= k2ES, k1S.(Etot −E) = (k−1 + k2)ES

R(S,Etot) = k2Etot .S/(km +S)
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Small concentration slaved species -

quasi-equilibrium approximation
QE approximation (Michaelis-Menten): quasi-equilibrium
reactions are fast, reversible reactions.
Pooling of species. Stot = S+ES, Etot = E +ES.

Stot
R(Stot ,Etot)−→ P

dP
dt

=−dStot

dt
= k2ES, k1(Stot −ES).(Etot −ES) = k−1ES

R(Stot ,Etot ) = k2
2Etot Stot

(Etot +Stot + k−1/k1)(1+
√

1−4Etot Stot /(Etot +Stot + k−1/k1)2

R(Stot ,Etot )≈ k2
Etot Stot

k−1/k1 +Stot
, if Etot << Stot
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Graph rewriting operations - pooling and

pruning of reactions and species
Let Sf be the stoichiometric matrix of the fast subsystem: fast
reactions for QE; reactions producing or consuming fast species
for QSS.
Pooling
For QSS define reaction pools, solutions of Sf γ = 0: routes.
For QE define species pools, solutions of bT Sf = 0:
conservation laws.
Impose minimality conditions R(γ′)⊂ R(γ)⇒ γ′ = 0∨ γ′ = γ

elementary modes.
Pruning
Quasi-steady state species and quasi-equilibrium reactions can
be pruned (singular perturbations).

Dominated reactions can be also pruned (regular perturbations).
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Hierarchy of NFκB models M(39,65,90), BIOMD0000000227
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Hierarchy of NFκB models M(34,60,82) MODEL7743631122
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Hierarchy of NFκB models M(24,65,62) MODEL7743608569
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Hierarchy of NFκB models M(16,34,46) MODEL7743576806
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Hierarchy of NFκB models M(14,30,41) MODEL7743528808
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Hierarchy of NFκB models M(14,25,33) MODEL7743444866
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Tropical geometry and model reduction
Multi-scale models of computational biology satisfy:

I vectors fields of ODE models are ratios of multivariate
polynomials Pi(x) = ∑α∈A aαxα2

2 . . .xαn
n .

I reduction methods exploit dominance relations between
monomial rate terms.

I the dominant (reduced) subsystem depends on the
time-scale, it can change with time (hybrid models).

Tropical geometry offers convenient solutions to:

I solve systems of polynomial equations Pi(x) = 0 with
separated monomials.

I simplify and hybridize rational ODE systems
dxi
dt = Pi(x)/Qi(x),1≤ i ≤ n, with separated monomials.
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Litvinov-Maslov tropicalization
Replace multivariate polynomials by piece-wise smooth,
max-plux polynomials.
∑α∈A aαx

α→ exp[maxα∈A{log(aα)+< log(x),α >}].
The tropical manifold is the set of points where max-plus
polynomials are not smooth.

logx

logy

Max(ay + cx +bx2y) = ay
Max(ay + cx +bx2y) = cx

Max(ay + cx +bx2y) = bx2y

The tropical manifold of the polynomial ay + cx +bx2y on
“logarithmic paper”.
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Tropicalization of Tyson et al. 91 cell cycle

model

2D reduced model.

y ′3 = k ′4y4 + k4y4y2
3 − k6y3,

y ′4 =−k ′4y4− k4y4y2
3 + k1,

Tropicalization.

y ′3 = Dom{k ′4y4,k4y4y2
3/C2,−k6y3},

y ′4 = Dom{−k ′4y4,−k4y4y2
3/C2,k1},

Cell cycle oscillates, also passes from one “mode” to another:

life is hybrid.
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Tropical geometry and hybridization
Full or partial tropicalizations can be used as hybrid cell cycle
models (Noel et al 2011, 2012).

The dominant subsystem of linear networks with total separation
is a full tropicalization.
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QE, QSS and sliding modes of the tropicalization

dx/dt =
M1−M2+M3−M4,
dy/dt = M2−M1+M5

Some monomials of the polynomial equations dx
dt = P(x),

can be pruned (are dominated) on the tropical manifold. The
pruned version dx

dt = P̃(x), where P̃ is obtained from P by
removing dominated monomials, corresponds to the fast
subsystem of the QE and QSS approximations.
Theorem:QE and QSS conditions imply the existence of sliding
modes on the tropicalization. Use sliding modes of the
tropicalization to detect QE ans QSS conditions...in progress!
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Conclusions

I Network with many, well separated, time scales, can be
reduced to simpler networks, in a way that does not
depend on the exact values of the parameters, but on their
order relations.

I Tropical geometry is the natural framework for unifying
various approaches to this problem.

I The algorithms are ready to use for backward pruning
strategies: find effective, critical parameters.

I Need some rough estimates of timescales and
concentration ranges.
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