02 - Acquisition

Acknowledgements: Olga Sorkine-Hornung
Geometry Acquisition Pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/reconstruction: Integration of scans into a single mesh

Postprocess:
- Topological and geometric filtering
- Remeshing
- Compression
Geometry Acquisition Pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/reconstruction: Integration of scans into a single mesh

Postprocess:
- Topological and geometric filtering
- Remeshing
- Compression
Geometry Acquisition Pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/reconstruction: Integration of scans into a single mesh

Postprocess:
- Topological and geometric filtering
- Remeshing
- Compression
Geometry Acquisition Pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/reconstruction: Integration of scans into a single mesh

Postprocess:
- Topological and geometric filtering
- Remeshing
- Compression
Surface Reconstruction

• Generate a mesh from a set of surface samples
Implicit Function Approach
Implicit Function Approach

• Define a function

\[f : \mathbb{R}^3 \rightarrow \mathbb{R} \]

with value > 0 outside the shape and < 0 inside
Implicit Function Approach

- Define a function
 \[f : \mathbb{R}^3 \rightarrow \mathbb{R} \]
 with value > 0 outside the shape and < 0 inside
- Extract the zero-set
 \[\{ \mathbf{x} : f(\mathbf{x}) = 0 \} \]
Geometry Acquisition Pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/reconstruction: Integration of scans into a single mesh

Postprocess:
- Topological and geometric filtering
- Remeshing
- Compression
Scanning
Touch Probes
Touch Probes

- Physical contact with the object
- Manual or computer-guided

Advantages:
- Can be very precise
- Can scan any solid surface

Disadvantages:
- Slow, small scale
- Can’t use on fragile objects
Optical Scanning

- Infer the geometry from light reflectance

- Advantages:
 - Less invasive than touch
 - Fast, large scale possible

- Disadvantages:
 - Difficulty with transparent and shiny objects
Optical scanning – active lighting
Time of flight laser

• A type of laser rangefinder (LIDAR)
• Measures the time it takes the laser beam to hit the object and come back
Optical scanning – active lighting

- Accommodates large range – up to several miles (suitable for buildings, rocks)
- Only for static scenes, object motion introduces noise
Optical scanning – active lighting

Triangulation laser

- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the image allows triangulation: we get the distance to the object
Optical scanning – active lighting
Triangulation laser

• Laser beam and camera
• Laser dot is photographed
• The location of the dot in the image allows triangulation: we get the distance to the object
Optical scanning – active lighting
Triangulation laser

• Laser beam and camera
• Laser dot is photographed
• The location of the dot in the image allows triangulation: we get the distance to the object
Optical scanning – active lighting
Triangulation laser

- Very precise (tens of microns)
- Small distances (meters)
Optical scanning – active lighting
Structured light

- Pattern of visible or **infrared** light is projected onto the object
- The distortion of the pattern, recorded by the camera, provides geometric information
- Very fast – 2D pattern at once
 - Even in real time, like Kinect 1.0
- Complex distance calculation, prone to noise
Optical scanning – passive stereo

- No need for special lighting/radiation
- Two (or more) cameras
- Feature matching and triangulation
Imaging

- Ultrasound, CT, MRI
- Discrete volume of density data
- First need to segment the desired object (contouring)
Registration

Acknowledgement: Niloy Mitra
http://resources.mpi-inf.mpg.de/deformableShapeMatching/EG2012_Tutorial/
Problem Statement

\[M_1 \approx T(M_2) \]

T: Translation + Rotation
Local vs Global

Global Registration
Arbitrary Transformation

Local Registration
“Small” Transformation

Given M_1, \ldots, M_n, find T_2, \ldots, T_n such that

$$M_1 \approx T_2(M_2) \cdots \approx T_n(M_n)$$
Correspondences

• How many points are needed to define a unique rigid transformation?

• The first problem is finding corresponding pairs!

\[p_1 \rightarrow q_1 \]
\[p_2 \rightarrow q_2 \]
\[p_3 \rightarrow q_3 \]

\[Rp_i + t \approx q_i \]
ICP: Iterative Closest Point

• Idea: Iteratively (1) find correspondences and (2) use them to find a transformation

• Intuition: If you have the right correspondences, then the problem is easy
ICP: Iterative Closest Point

• Idea: Iteratively (1) find correspondences and (2) use them to find a transformation

• Intuition: If you don’t have the right correspondences, you still can make progress
ICL: Iterative Closest Point

This algorithm converges to the correct solution only if the starting scans are “close enough”
Basic Algorithm

- **Select** (e.g., 1000) random points
- **Match** each to closest point on other scan, using data structure such as k-d tree
- **Reject** pairs with distance $> k$ times median
- **Construct** error function:
 \[E := \sum_i (Rp_i + t - q_i)^2 \]
- **Minimize** (closed form solution in “Estimating 3-D rigid body transformations: a comparison of four major algorithms”, http://dl.acm.org/citation.cfm?id=250160)
Important Variant

Point-to-Point

Point-to-Plane

See http://resources.mpi-inf.mpg.de/deformableShapeMatching/EG2012_Tutorial/ for details
Representation
Libigl Tutorial

[102_DrawMesh]
Polygonal Meshes

- Boundary representations of objects
Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
- Error is $O(h^2)$
Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
- Error is $O(h^2)$
Polygonal Meshes

- Polygonal meshes are a good representation
 - approximation $O(h^2)$
 - arbitrary topology
 - piecewise smooth surfaces
 - adaptive refinement
 - efficient rendering
Polygon

- Vertices:
- Edges:
- Closed:
- Planar: all vertices on a plane
- Simple: not self-intersecting

\[v_0, v_1, \ldots, v_{n-1} \]
\[\{(v_0, v_1), \ldots, (v_{n-2}, v_{n-1})\} \]
\[v_0 = v_{n-1} \]
\[v_0 \in \mathbb{R}^n \]
Polygonal Mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh.
- The intersection of two polygons in M is either empty, a vertex, or an edge.

\[M = \langle V, E, F \rangle \]

vertices \quad edges \quad faces
Polygonal Mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
A finite set M of closed, simple polygons Q_i is a polygonal mesh.

The intersection of two polygons in M is either empty, a vertex, or an edge.

Every edge belongs to at least one polygon.

Each Q_i defines a face of the polygonal mesh.
Polygonal Mesh

- A finite set \(M \) of closed, simple polygons \(Q_i \) is a polygonal mesh.
- The intersection of two polygons in \(M \) is either empty, a vertex, or an edge.
- Every edge belongs to at least one polygon.
- Each \(Q_i \) defines a face of the polygonal mesh.
A finite set M of closed, simple polygons Q_i is a polygonal mesh.

The intersection of two polygons in M is either empty, a vertex, or an edge.

Every edge belongs to at least one polygon.

Each Q_i defines a face of the polygonal mesh.
A finite set \(M \) of closed, simple polygons \(Q_i \) is a polygonal mesh.

The intersection of two polygons in \(M \) is either empty, a vertex, or an edge.

Every edge belongs to at least one polygon.

Each \(Q_i \) defines a face of the polygonal mesh.
Polygonal Mesh

- Vertex **degree** or **valence** = number of incident edges
Polygonal Mesh

- Vertex **degree** or **valence** = number of incident edges
Polygonal Mesh

- **Boundary**: the set of all edges that belong to only one polygon
 - Either empty or forms closed loops
 - If empty, then the polygonal mesh is closed
Triangle Meshes

• Connectivity: vertices, edges, triangles

• Geometry: vertex positions

\[V = \{v_1, \ldots, v_n\} \]
\[E = \{e_1, \ldots, e_k\}, \quad e_i \in V \times V \]
\[F = \{f_1, \ldots, f_m\}, \quad f_i \in V \times V \times V \]
\[P = \{p_1, \ldots, p_n\}, \quad p_i \in \mathbb{R}^3 \]
Manifolds

- A surface is a closed \textbf{2-manifold} if it is everywhere locally homeomorphic to a disk.
Manifolds

• For every point \(x \) in \(M \), there is an \textbf{open} ball \(B_x(r) \) of radius \(r > 0 \) centered at \(x \) such that \(M \cap B_x \) is homeomorphic to an open disk

\[
B_x(r) = \{ y \in \mathbb{R}^3 \: s.t. \: \| y - x \| < r \}
\]
Manifolds

• Manifold with boundary: a vicinity of each boundary point is homeomorphic to a half-disk
Examples

• For each case, decide if it is a 2-manifold (possibly with boundary) or not. If not, explain why not.
Examples

• Bonus cases
Manifolds

- In a manifold mesh, there are at most 2 faces sharing an edge
 - Boundary edges: have one incident face
 - Inner edges have two incident faces
- A manifold vertex has 1 connected ring of faces around it, or 1 connected half-ring (boundary)
Manifolds

• If closed and not intersecting, a manifold divides the space into inside and outside
• A closed manifold polygonal mesh is called polyhedron
Orientation

• Every face of a polygonal mesh is orientable
• Clockwise vs. counterclockwise order of face vertices
• Defines sign/direction of the surface normal
Orientation

• Consistent orientation of neighboring faces:
Orientability

• A polygonal mesh is orientable, if the incident faces to every edge can be consistently oriented
 • If the faces are consistently oriented for every edge, the mesh is oriented

• Notes
 • Every non-orientable closed mesh embedded in \mathbb{R}^3 intersects itself
 • The surface of a polyhedron is always orientable
Global Topology of Meshes

- **Genus**: $\frac{1}{2} \times$ the maximal number of closed paths that do not disconnect the graph.
- Informally, the number of handles ("donut holes").
Global Topology of Meshes

- **Genus:** $\frac{1}{2} \times$ the maximal number of closed paths that do not disconnect the graph.
- Informally, the number of handles ("donut holes").
Global Topology of Meshes

- **Genus**: \(\frac{1}{2} \times \) the maximal number of closed paths that do not disconnect the graph.
 - Informally, the number of handles ("donut holes").
Euler-Poincaré Formula

• Theorem (Euler): The sum

\[\chi(M) = v - e + f \]

is \textbf{constant} for a given surface topology, no matter which (manifold) mesh we choose.

• \(v \) = number of vertices
• \(e \) = number of edges
• \(f \) = number of faces
Euler-Poincaré Formula

• For orientable meshes:

\[v - e + f = 2(c - g) - b = \chi(M) \]

• \(c \) = number of connected components
• \(g \) = genus
• \(b \) = number of boundary loops

\[\chi(\text{sphere}) = 2 \quad \chi(\text{torus}) = 0 \]
Implication for Mesh Storage

• Let’s count the edges and faces in a closed triangle mesh:
 • Ratio of edges to faces: \(e = \frac{3}{2} f \)
 • each edge belongs to exactly 2 triangles
 • each triangle has exactly 3 edges
Implication for Mesh Storage

• Let’s count the edges and faces in a closed triangle mesh:
 • Ratio of edges to faces: \(e = \frac{3}{2} f \)
 • each edge belongs to exactly 2 triangles
 • each triangle has exactly 3 edges
 • Ratio of vertices to faces: \(f \sim 2v \)
 • \(2 = v - e + f = v - \frac{3}{2} f + f \)
 • \(2 + f / 2 = v \)
Implication for Mesh Storage

• Let’s count the edges and faces in a closed triangle mesh:
 • Ratio of edges to faces: $e = \frac{3}{2}f$
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges
 • Ratio of vertices to faces: $f \sim 2v$
 - $2 = v - e + f = v - \frac{3}{2}f + f$
 - $2 + f / 2 = v$
 • Ratio of edges to vertices: $e \sim 3v$
 • Average degree of a vertex: 6
Regularity

- Triangle mesh: average valence = 6
- Quad mesh: average valence = 4

- Regular mesh: all faces have the same number of edges and all vertex
degrees are equal
- Quasi-regular mesh:
 - a lot of vertices have degree 6 (4). Sometimes also refers to mostly equilateral
 faces.
Regularity

• Quasi-regular
Regularity

• Quasi-regular
Regularity

- Semi-regular mesh: connectivity is a result of $N>0$ subdivision steps
Regularity

- **Semi-regular mesh:** connectivity is a result of $N > 0$ subdivision steps
Triangulation

- Polygonal mesh where every face is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated
Triangulation

- Polygonal mesh where every face is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated
Polygonal vs. Triangle Meshes

- Triangles are flat and convex
 - Easy rasterization, normals
 - Uniformity (same # of vertices)
- 3-way symmetry is less natural
- General polygons are flexible
 - Quads have natural symmetry
- Can be non-planar, non-convex
 - Difficult for graphics hardware
- Varying number of vertices
Polygonal vs. Triangle Meshes

- Edge loops are ideal for editing
Polygonal vs. Triangle Meshes

- Quality of triangle meshes
 - Uniform Area
 - Angles close to 60
- Quality of quadrilateral meshes
 - Number of irregular vertices
 - Angles close to 90
 - Good edge flow
Polygonal vs. Triangle Meshes

E. Van Egeraat
Data Structures

• What should be stored?
 • Geometry: 3D coordinates
 • Connectivity
 • Adjacency relationships
 • Attributes
 • Normal, color, texture coordinates
 • Per vertex, face, edge
• What should be supported?
 • Rendering
 • Geometry queries
 • What are the vertices of face #2?
 • Is vertex A adjacent to vertex H?
 • Which faces are adjacent to face #1?
• Modifications
 • Remove/add a vertex/face
 • Vertex split, edge collapse
Data Structures

- How good is a data structure?
 - Time to construct
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy

- Criteria for design
 - Expected number of vertices
 - Available memory
 - Required operations
 - Distribution of operations
Triangle List

- STL format (used in CAD)
- Storage
 - Face: 3 positions
 - 4 bytes per coordinate
 - 36 bytes per face
 - Euler: \(f = 2v \)
 - \(72\times v \) bytes for a mesh with \(v \) vertices
- No connectivity information

<table>
<thead>
<tr>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (x_0) (y_0) (z_0)</td>
</tr>
<tr>
<td>1 (x_1) (x_1) (z_1)</td>
</tr>
<tr>
<td>2 (x_2) (y_2) (z_2)</td>
</tr>
<tr>
<td>3 (x_3) (y_3) (z_3)</td>
</tr>
<tr>
<td>4 (x_4) (y_4) (z_4)</td>
</tr>
<tr>
<td>5 (x_5) (y_5) (z_5)</td>
</tr>
<tr>
<td>6 (x_6) (y_6) (z_6)</td>
</tr>
<tr>
<td>... (\ldots) (\ldots) (\ldots) (\ldots)</td>
</tr>
</tbody>
</table>
Indexed Face Set

- Used in formats OBJ, OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - 36*v bytes for the mesh
- No explicit neighborhood info

<table>
<thead>
<tr>
<th>Vertices</th>
<th></th>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>x0 y0 z0</td>
<td>t0</td>
</tr>
<tr>
<td>v1</td>
<td>x1 x1 z1</td>
<td>t1</td>
</tr>
<tr>
<td>v2</td>
<td>x2 y2 z2</td>
<td>t2</td>
</tr>
<tr>
<td>v3</td>
<td>x3 y3 z3</td>
<td>t3</td>
</tr>
<tr>
<td>v4</td>
<td>x4 y4 z4</td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td>x5 y5 z5</td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td>x6 y6 z6</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Indexed Face Set: Problems

- Information about neighbors is not explicit
 - Finding neighboring vertices/edges/faces costs $O(#V)$ time!
 - Local mesh modifications cost $O(V)$

- Breadth-first search costs $O(k*#V)$ where $k = # \text{ found vertices}$
Neighborhood Relations

- All possible neighborhood relationships:
 1. Vertex – Vertex \(VV \)
 2. Vertex – Edge \(VE \)
 3. Vertex – Face \(VF \)
 4. Edge – Vertex \(EV \)
 5. Edge – Edge \(EE \)
 6. Edge – Face \(EF \)
 7. Face – Vertex \(FV \)
 8. Face – Edge \(FE \)
 9. Face – Face \(FF \)

We’d like \(O(1) \) time for queries and local updates of these relationships
Halfedge data structure

• Introduce orientation into data structure
 • Oriented edges
Halfedge data structure

- Introduce orientation into data structure
- Oriented edges
Halfedge data structure

- Introduce orientation into data structure
 - Oriented edges
- Vertex
 - Position
 - 1 outgoing halfedge index
- Halfedge
 - 1 origin vertex index
 - 1 incident face index
 - 3 next, prev, twin halfedge indices
- Face
 - 1 adjacent halfedge index
- Easy traversal, full connectivity
Halfedge data structure

• One-ring traversal
• Start at vertex
Halfedge data structure

• One-ring traversal
 • Start at vertex
 • Outgoing halfedge
Halfedge data structure

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge
Halfedge data structure

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge
 - Next halfedge
Halfedge data structure

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge
 - Next halfedge
 - Twin ...
Halfedge data structure

• Pros: *(assuming bounded vertex valence)*
 • $O(1)$ time for neighborhood relationship queries
 • $O(1)$ time and space for local modifications (edge collapse, vertex insertion...)

• Cons:
 • Heavy – requires storing and managing extra pointers
 • Not as trivial as Indexed Face Set for rendering with OpenGL / Vertex Buffer Objects
Halfedge Libraries

- CGAL
 - www.cgal.org
 - Computational geometry
- OpenMesh
 - www.openmesh.org
 - Mesh processing

- We will not implement a half-edge data structure in the class. Instead we will work with Indexed Face Set and augment it to have fast queries.
Thank you