08 - Designing Approximating Curves
Last time

- Interpolating curves
 - Monomials
 - Lagrange
 - Hermite

- Different control types

- Polynomials as a vector space
 - Basis transformation

- Connecting curves to splines
Disadvantages

• Monomials
 • unintuitive control, inefficient

• Lagrange
 • non-local control, oscillation for higher order polynomials, continuity for splines

• Hermite
 • requires setting tangent

• Catmull-Rom
 • unintuitive bending
Bezier Basis
Smooth Curves

- General parametric form
- Weighted sum of coefficients and basis functions

\[
p(t) = \sum_{i=0}^{n} c_i F_i^n(t)
\]

Coefficients: \(c_i \in \mathbb{R}^k\)
Basis functions: \(F_i^n(t) \in \Pi^n\)
What might be “good” basis functions?

- Intuitive editing
 - Control points are coefficients
 - Predictable behavior
 - No oscillation
 - Local control

- Mathematical guarantees
 - Smoothness, affine invariance, linear precision, ...

- Efficient processing and rendering
What might be “good” basis functions?

- Approximation instead of interpolation
- Bézier- and B-Spline curves
Beziers Curves

- Curve based on Bernstein polynomials

\[p(t) = \sum_{i=0}^{n} c_i B^*_i(t) \]

Control points \(c_i \in \mathbb{R}^k \)

Bernstein polynomials \(B^*_i(t) \in \Pi^n \)

Control polygon
Bernstein Polynomials

- Bernstein polynomials
 \[B_i^n(t) = \binom{n}{i} t^i (1 - t)^{n-i} \]
- Binomial coefficients
 \[\binom{n}{i} = \begin{cases} \frac{n!}{i!(n-i)!} & \text{if } 0 \leq i \leq n \\ 0 & \text{otherwise} \end{cases} \]
- \[p(t) = \sum_{i=0}^{n} c_i B_i^n(t) \]
- linear:
 \[p(t) = c_0 (1 - t) + c_1 t \]
- quadratic:
 \[p(t) = c_0 (1 - t)^2 + c_1 2t(1 - t) + c_2 t^2 \]
- cubic:
 \[p(t) = c_0 (1 - t)^3 + c_1 3t(1 - t)^2 + c_2 3t^2 (1 - t) + c_3 t^3 \]
Properties

- Partition of Unity
 \[\sum_{i=0}^{n} B_i^n(t) = 1 \]

- Non-negativity
 \[B_i^n(t) \geq 0, \quad t \in [0, 1] \]

- Maximum
 \[\max_{t \in [0,1]} B_i^n(t) : t = \frac{i}{n} \]

- Symmetry
 \[B_i^n(t) = B_{n-i}^n(1 - t) \]
Properties of Bezier Curves

• Geometric interpretation of control points
Properties of Bezier Curves

- Geometric interpretation of control points
- Convex hull
 - Polynomials positive
 - No oscillation
Properties of Bezier Curves

- Geometric interpretation of control points
- Convex hull
- Affine invariance
 - Barycentric combinations
Properties of Bezier Curves

• Geometric interpretation of control points
• Convex hull
• Affine invariance
• Endpoint interpolation
• Symmetry
Properties of Bezier Curves

- Geometric interpretation of control points
- Convex hull
- Affine invariance
- Endpoint interpolation
- Symmetry
- Linear precision
Properties of Bezier Curves

- Geometric interpretation of control points
- Convex hull
- Affine invariance
- Endpoint interpolation
- Symmetry
- Linear precision
- Quasi-local control
Variation Diminishing

• Curve “wiggles” no more than control polygon
Variation Diminishing

• Curve “wiggles” no more than control polygon
• For any line, number of intersections with control polygon \(\geq \) intersection with curve
Variation Diminishing

• Curve “wiggles” no more than control polygon
• For any line, number of intersections with control polygon \(\geq \) intersection with curve
Variation Diminishing

- Curve “wiggles” no more than control polygon
- For any line, number of intersections with control polygon \(\geq \) intersection with curve
Variation Diminishing

• Curve “wiggles” no more than control polygon
• For any line, number of intersections with control polygon
 \geq intersection with curve
Variation Diminishing

- Curve “wiggles” no more than control polygon
- For any line, number of intersections with control polygon \geq intersection with curve

- Application: intersection computation
De Casteljau Algorithm

• Developed independently
• Successive linear interpolation
• Example: parabola

\[p(t) = (1 - t) \left[c_0(1 - t) + c_1t \right] + t \left[c_1(1 - t) + c_2t \right] \]

• Recursive scheme behind Bernstein Polynomials

\[B_i^n(t) = (1 - t)B_i^{n-1}(t) + tB_{i-1}^{n-1}(t) \]

• Curves as series of linear interpolations
De Casteljau Algorithm

• Exploit recursive definition of Bernstein polynomials
Repeated convex combination of control points

\[c^k_i = (1 - t)c^{k-1}_i + tc^{k-1}_{i+1} \]
\[c^0_i := c_i \]
De Casteljau Algorithm

• Exploit recursive definition of Bernstein polynomials
 Repeated convex combination of control points

\[c_i^k = (1 - t)c_i^{k-1} + tc_{i+1}^{k-1} \]
\[c_i^0 := c_i \]
De Casteljau Algorithm

- Exploit recursive definition of Bernstein polynomials
 Repeated convex combination of control points

\[c_i^k = (1 - t) c_i^{k-1} + t c_{i+1}^{k-1} \]

\[c_i^0 := c_i \]
De Casteljau Algorithm

• Exploit recursive definition of Bernstein polynomials
 Repeated convex combination of control points

\[c_i^k = (1 - t)c_i^{k-1} + tc_{i+1}^{k-1} \]

\[c_0^0 := c_i \]
De Casteljau Algorithm

i33www IRA UKA de applets mocca html noplugin BezierCurve AppDeCasteljau index.html
Disadvantages

- Still global support of basis functions for each curve segment
- Insertion of new control points?
- Continuity conditions restrict control polygon
 - No “inherent” smoothness control
Basis splines (B-splines)
Why?

- The control points of Bezier curves have global support.
- We can obtain local support if we split the curve into smaller Bezier segments, but we have to be careful with the borders to guarantee smoothness.
- B-spline curves are a generalization of this construction.

Ingredients

Bezier

B-spline

\[m = n + p + 1 \]

Basis degree \(p \)

Knots Points \(m + 1 \)

Control Points \(n + 1 \)
Basis functions

- Piecewise-polynomial
- C^p
- Symmetric
- Shifted
- Nonnegative
- Partition of unity
- Local support
Recursive definition

Degree

Knot Span

\[N^0_i(t) = \begin{cases}
1 & \text{if } i \leq t < i + 1 \\
0 & \text{otherwise}
\end{cases} \]

\[N^d_i = \left(\frac{t-i}{d} \right) N^{d-1}_i + \left(\frac{i+d+1-t}{d} \right) N^{d-1}_{i+1} \]

Non-uniform knots

\[N_{i,0}(u) = \begin{cases}
1 & \text{if } u_i \leq u < u_{i+1} \\
1 & \text{otherwise}
\end{cases} \]

\[N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u) \]

The support is always:

(1 + degree) knot spans
Basis functions

http://www.cs.technion.ac.il/~cs234325/Applets/applets/bspline/GermanApplet.html
Basis functions

http://www.cs.technion.ac.il/~cs234325/Applets/applets/bspline/GermanApplet.html
Definition

\[p(t) = \sum_i c_i N_i^d(t) \]
Special curves

Interpolating curve
Increase the multiplicity of the first and last knots

Closed curve
Overlap the first and last control points, and align the corresponding knots

Properties

Notation: \(m + 1 \) knots, \(n+1 \) control points, \(p \) degree

1. B-spline curve is a piecewise curve with each component a curve of degree \(p \)
2. Equality \(m = n + p + 1 \) must be satisfied
3. Strong Convex Hull Property: A B-spline curve is contained in the convex hull of its control polyline
4. Local Modification Scheme: changing the position of control point \(P_i \) only affects the curve \(C(u) \) on interval \([u_i, u_{i+p+1}) \)
5. B-spline curve is \(C^{p-k} \) continuous at a knot of multiplicity \(k \)
6. Variation Diminishing Property
7. Bézier Curves Are Special Cases of B-spline Curves
8. Affine Invariance
Knot Insertion

• We want to insert a new knot without changing the shape of the curve

• Since $m = n + p + 1$, adding a knot must be compensated:
 • by changing the degree of the curve (global)
 • by adding a new control point (local)
Inserting a knot

- Suppose the new knot t lies in knot span $[u_k, u_{k+1})$
- Only the basis that corresponds to $P_k, P_{k-1}, \ldots, P_{k-p}$ are non-zero
- Thus, the operation is **local**!
- To add the knot, we substitute the control points P_{k-p+1} to P_{k-1} with Q_{k-p+1} to Q_k using special corner cutting rules:

 $$ Q_i = (1 - a_i)P_{i-1} + a_i P_i $$

 $$ a_i = \frac{t - u_i}{u_{i+p} - u_i} \quad \text{for} \quad k - p + 1 \leq i \leq k $$

- **Remember** to also add t to the knot vector!
Example

- $p = 3$ (cubic)
- $P_2 P_3 P_4 P_5$ are affected

\[
a_i = \frac{t - u_i}{u_{i+p} - u_i} \quad \text{for } k - p + 1 \leq i \leq k
\]

\[
a_5 = \frac{t - u_5}{u_8 - u_5} = \frac{0.5 - 0.4}{1 - 0.4} = \frac{1}{6}
a_4 = \frac{t - u_4}{u_7 - u_4} = \frac{0.5 - 0.2}{0.8 - 0.2} = \frac{1}{2}
a_3 = \frac{t - u_3}{u_6 - u_3} = \frac{0.5 - 0.0}{0.6 - 0.0} = \frac{5}{6}
\]

\[
Q_i = (1 - a_i)P_{i-1} + a_i P_i
\]

\[
Q_5 = \left(1 - \frac{1}{6}P_4\right) + \frac{1}{6}P_5
Q_4 = \left(1 - \frac{1}{2}P_3\right) + \frac{1}{2}P_4
Q_3 = \left(1 - \frac{5}{6}P_2\right) + \frac{5}{6}P_3
\]
Incremental rendering
De Boor’s Algorithm

• It is a generalization of de Casteljau’s algorithm

• It provides a numerically stable way to find a point on the B-spline

• The implementation requires to iteratively add new knots using the knot insertion algorithm

• The algorithm works because:

 • If a knot \(u \) is inserted repeatedly so that its multiplicity is \(p \), the last generated new control point is the point on the curve that corresponds to \(u \)
De Boor’s Algorithm
Algorithm

- Find the knot interval that corresponds to the point you want to evaluate
- Find the affected control points
- Start the corner cutting, until you have a single control point left
Example

- $p = 3$ (cubic)
- $P_1 P_2 P_3 P_4$ are affected

\[
\begin{array}{cccccccccc}
 u_0 & u_1 & u_2 & u_3 & u_4 & u_5 & u_6 & u_7 & u_8 & u_9 & u_{10} \\
 0 & 0 & 0 & 0 & 0.25 & 0.5 & 0.75 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{align*}
a_{4,1} &= \frac{u - u_4}{u_4 - u_3} = 0.6 \times 0.8 \\
a_{4,3} &= \frac{u - u_4}{u_4 + 1 - u_3} = 0.53 \\
a_{2,1} &= \frac{u_2 + 1 - u_2}{u_2 + 1 - u_3} = 0.6 \\

P_{4,3} &= (1 - a_{4,3})P_{3,2} + a_{4,3}P_{4,2} = 0.4P_{3,2} + 0.6P_{4,2} \\
&= 0.4 \times 0.2 + 0.6 \times 0.4 = 0.64
\end{align*}
\]
Relation with De Casteljau’s

• The algorithm is similar to de Casteljau’s, but with two important differences:

 • The weights used in the corner cutting change at every subdivision step

 • The effect of the corner cutting is local
Subdividing a B-spline

- We want to split a B-spline into two different curves:
 - let u be the splitting point
 - we want to define two B-splines defined on $[0,u]$ and $[u,1]$
Subdivision algorithm

• Apply de Boor’s at u

• Traverse the control points vector always turning right

• The knot vector for the first curve, contains all the knots in $[0,u)$ followed by $p+1$ copies of u
Example
Subdividing a B-spline into Bézier segments

• If you subdivide a B-spline curve at every knot, then each curve segment becomes a Bézier curve of degree p

• This result follows from this lemma, that links the B-spline basis functions with the Bézier basis functions:

 - If the first [last] $n+1$ knots are 0 [1], then the i-th B-spline basis function of degree n is identical to the i-th Bézier basis function for all i in the range of 0 and n

• This means that the Bézier basis functions are special cases of B-spline basis, and that Bézier curves are special cases of B-spline curves
References

4th Edition by Steve Marschner, Peter Shirley

Chapter 15

Course notes: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/