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PLANAR SEPARATORS*

NOGA ALONf, PAUL SEYMOURZ, anp ROBIN THOMAS§

Abstract. The authors give a short proof of a theorem of Lipton and Tarjan, that, for every planar graph
with n > 0 vertices, there is a partition (A, B, C) of its vertex set such that | 4|, | B| < 2n, |C| < 2(2n)",
and no vertex in A4 is adjacent to any vertex in B. Secondly, they apply the same technique more carefully to
deduce that, in fact, such a partition (A, B, C) exists with | 4|, | B] <%n,and [C| = 3(2n)' *: this improves
the best previously known result. An analogous result holds when the vertices or edges are weizhted,

Key words. separators, k-shields. corner

1. The Lipton-Tarjan theorem. Our first objective is to give a short proof of
the following theorem of Lipton and Tarjan [3] (¥ (G) denotes the vertex set of the
graph G):

(1.1). Let G be a planar graph with n > 0 vertices. Then there is a partition (A, B.
C) of V(G) such that | 4], | B| <3n, |C] < 2V2Vn, and no vertex in A is adjacent to
anyin B.

Proof. We may assume that G has no loops or multiple edges, that n = 3, and (bv
adding new edges to () that G is drawn in the plane in such a way that every region is
bounded by a circuit of three edges. (Circuits have no ‘“repeated” vertices.) Let
k= [@J. For any circuit C of G, we denote by A(C) and B(C) the sets of vertices
drawn inside C and outside C, respectively; thus (A(C), B(C), V'(C)) is a partition of

V(G), and no vertex in A(C) is adjacent to any in B(C). Choose a circuit C of G such
that

(i) |V(C)| = 2k,
(i) | B(C)| < in, i
(111) subject to (i) and (ii), | A(C)| = | B(C)] is minimum,
(This is possible because the circuit bounding the infinite region satisfies (i) and (ii).)
We suppose, for a contradiction, that | A(C)| = _%n. Let D be the subgraph of G
drawn in the closed disc bounded by C. For u, v € V(C), let ¢(u, v) (respectively.

d(u, v)) be the number of edges in the shortest path of C (respectively. D) between
iand v.

(1) e(u,v)y=d(u,v) foralu veV(C).

For certainly. d(u, v) < ¢(u, v), since C is a subgraph of D. If possiblz, choose a
pair i, v e V(C) with d(u, v) minimum such that d(u, v) < ¢(u. v). Let P be a path

of D between u and v, with d(u, v) edges. Suppose that some internal veriex w of P
belongs to 17(C). Then

d(u, w)+d(w, v)=d(u, v) <clu, v) <clu, w)+ c(w, v),

and so either d(u. w) < ¢(u, w) or d(w. v) < ¢(w, v): either case is contrary to the
choice of u, v. Thus there is no such w. Let C, C,, C> be the three circuits of C U P.
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where | A(C))| = | 4(C,)|. Now | B(C,)| < 2n, since
n—|B(C)| = |A(C)| + | V(C))|
> 3(|A(C)| + |A(C)| + | V(P)| —2)=3|A(C)| = in.

However, | V(C,)| = |V(C)|, since | E(P)| = c(u, v), and so C, satisfies (i) and (ii).
By (iii), B(C)) = B(C), and, in particular, ¢(u, v) < 1, which is impossible since
d(u, v) < c(u, v). This proves (1).

Suppose that [ ¥(C)| < 2k. Choose ¢ € E(C) and let P be the two-edge path of D
such that the union of P and e forms a circuit bounding a region inside of C. Let v be
the middle vertex of P and let P’ be the path C\e. Now P # P/, since 4(C) # &, and
sové V(C)by(1). Hence PU P'is a circuit satisfying (i) and (ii), contrary to (iii).
This proves that | V(C)| = 2k.

Let the vertices of Cbe vy, vy, ..., U3t -, Vs = Vg, in order. There are k + | vertex-
disjoint paths of D between {vy, Vi, ..., vk} and-{ Vg, Uk sy, ..., Uy }; for otherwise,
by a well-known form of Menger's theorem for planar triangulations, there is a path of
D between v, and vy with <k vertices, contrary to (1),

Let these paths be Py, P, ..., Py, where P, has ends v;, vy (0 < [ < k).
By (1),

| V(P)| = min(2i + 1, 2(k — i) + 1),
and so :

n=|V(G) = 2 min(2i+1,2(k—i)+1)= §(k+ 1)%
O=r=k

Yetk + | > Van by the definition of k, a contradiction. Thus our assumption that
|A(C)] = %n was false, and so |4(C)| < 3n and (4(C), B(C), V(C)) is a partition
satisfying the theorem. O

2. Shields. In the remainder of the paper, we use the same technique more carefully
to improve (1.1) numerically. A separator in a graph G is a partition (4, B, C) of I'( ()
such that | 4|, | B| = 3|¥(G)| and no vertex in A is adjacent to any vertex in B: its
order is | C|. Therefore, it is implied by (1.1) that any planar graph with »n vertices has
a separator of order < 8'/?n'/?, and we might try to find the smallest constant X such
that every planar graph with n vertices has a separator of order < An'/*. The Lipton-
Tarjan result (1.1) asserts that A < 8'/* ~ 2.828, and this was improved by Gazit [2],
who showed that A < % ~ 2.333. We give a further improvement, showing that \ <
3:2'2 ~ 2.121. Incidentally, the best lower bound known appears to be that of Djidjev
[1], who showed that

A =1V4rV3 ~ 1.555.

Actually, we prove a slight strengthening, below (and indeed, we prove an extension
when the vertices or edges have weights).

(2.1). Let G be a loopless graph with n vertices, drawn in a sphere 2. Then there is
a simple closed curve F in Z, meeting the drawing only in vertices, such that
n o+ 3ny, ny + 30y < 2n/3, and ny < 3(2n)"/?, where F passes through ns vertices and

the two open discs bounded by F contain n, and n, vertices, respectively.

We are concerned with graphs drawn in a disc or sphere Z and, to simplify notation,
we usually do not distinguish between a vertex of the graph and the point of = used in
he drawing to represent the vertex, or between an edge and the open line segment

Tepresenting it. A subset of £ homeomorphic to the closed interval [0. 1] s called



