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State of the Union: of Geometric Objects

Pankaj K. Agarwal, Janos Pach, and Micha Sharir

ABSTRACT. Let C be a set of geometric objects B. The combinatorial complexity
of the union ofC is the total number of faces of all dimensions on its boundafye
survey the known upper bounds on the complexity of the union geometric objects
satisfying various natural conditions. These bounds plagrdral role in the analysis of
many geometric algorithms, and the techniques used tmdttase bounds are interesting
in their own right.

1. Introduction

LetC = {C1,...,C,} be a set ol geometric objects, such as disks or convex poly-
gons in the plane, or balls, cylinders, or convex polyheditree and higher dimensions.
LetU(€) = .-, C; denote the union of the objects & The combinatorial complexity
(or complexity for brevity) ofl(C) is the number of faces of all dimensions on its bound-
ary; see below for a formal definition. Several combinataaiad algorithmic problems
in a wide range of applications, including linear programgyirobotics, solid modeling,
molecular modeling, and geographic information systeras,lie formulated as problems
that seek to calibrate the complexity of the union of a sethjéats, or to compute their
union. We begin by reviewing some of these applications.

Linear programming. Given a familyC = {C,...,C,} of n halfspaces iR¢, we
want to maximize a linear function ovéd;_, C;. Since the maximum (if it exists) is
achieved at the boundary of the common intersection, thblgmo can be reformulated
as minimizing a linear function over the boundarylgf_; C;, whereC; is the (closed)
halfspace complementary €;; see Figure 1. The worst-case running time of the simplex
algorithm, as well as many other naive solutions to lingagpmming, is proportional to
the total number of vertices df(C). According to McMullen’'s Upper Bound Theorem
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(@ (b)

Figure 1. An instance of two-dimensional linear programming: (a) Shaded region denotes the feasible region
Ni~, C;; (b) The shaded region denotef*_, C;.

[101, 102, this number cannot exceed

(" )+ (a0,

with equality for polytopes that are dual to cyclic or anyeatsimplicial neighborly poly-
tope.ANKAJ SAYS: Please check! Regarding the dimensiahas a constant, an assump-
tion that we will follow throughout this survey, we can writds bound a® (nl%/2)).

Robotics. Assume that we have a robot systésnwith d degrees of freedom, i.e., we
can represent each placementidhs a point inR?. We call the space of all placements
the configuration spacef B. Suppose the (say, three-dimensional) workspacB s
cluttered with a family0 = {O,...,0,,} of polyhedral obstacles whose shapes and
locations are known.B is allowed to move freely in a motion that traces a continuous
path in the configuration space, bithas to avoid collision with the obstacles. For each
0;, let C; C R? be the set of placements &f at which it collides with the obstacle
0O;. C; is referred to as thé€’'-obstacle(or expanded obstacienduced byO,. SetC =
{Cy,...,Cy}. Thefree configuration spadé = R4\ U(C) is the set of alfreeplacements

of B, i.e., placements at which does not intersect any obstacle.

For instance, leB be a convex polygonal object withvertices that is only allowed
to translate inR?. LetO = {Oy,...,0,,} be a set ofn convex polygonal obstacles in
R2. Fix a reference point (the origin) within B. A placement of3 can be represented
by specifying ther- andy-coordinates ob. B intersects an obstact; if and only if o
belongs to the “expanded obstacle; = O; © (—B), where® denotes thévlinkowski
sumi.e.,

C’i:{x—b|x60i,b€B}.
HenceF = R? \ U(C); see Figure 2.

Going back to the general case, letc R¢ be a given initial free placement d3.
Then the set of all free placements Bfthat can be reached frotd via a collision-free
continuous motion corresponds to the connected compofé&htontainingZ. The prob-
lem of determining whether there exists a collision-frethfeom an initial configuration
I to a final configuratior” is equivalent to determining whethérand F' lie in the same
connected component Bf

This close relationship between union of regions and mqilanning has been a major
motivation for studying the former problem, and has led tosiderable work on various
aspects of the union problert, 70, 94, 112, 114 The complexity ofU(C) serves as a
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Figure 2. The space of free placements of the robbis the complement of the union of the expanded obstacles
C;.

trivial lower bound for the running time of many motion-ptang algorithms that compute
the entire free space. However, in view of the precedingudision, there is also con-
siderable interest in bounding the combinatorial compyeaf, and constructing, a single
connected component of the complemerit(¢€) [69, 114.

(a) (b)

Figure 3. Representing (chain A of) the protein 1A22 as the union oftatballs: (a) atoms are drawn using
van der Waals radii, and (b) solvent accessible model.

Molecular modeling. A molecule can be modeled as the union of a family of balls,rehe
the radius of each ball depends on the atom that it modelsteng@dsition of each ball
depends on the molecular structure. In Ya@ der Waals modgh molecule is a family of
possibly overlapping balls, where the radius of each balktermined by the van der Waals
radius of the corresponding atom in the molecule; see Figed. Lee and Richard9g]
proposed another model, callsdlvent accessiblmodel, which is used to study the in-
teraction between the protein and solvent molecules. Aeprds modeled as a family
of balls in this model as well, but the balls representingasont molecules are shrunk to
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points and the balls representing atoms in the protein dliegéa by the radius of the sol-
vent molecule]10. See Figure 3 (b). Even though these models ignore variddisianal
properties of molecules, they have been useful in a variedypplications. Many problems
in molecular modeling can be formulated as problems rel@gegometric, combinatorial,
or topological properties of the union of balls. S€8[71, 10Qfor more details.

Constructive solid geometry. Constructive solid geometry (CSG), a widely used tech-
nigue in computer aided design (CAD) and computer graptiesmethod for representing
a complex object as a Boolean function of simple objectdddadrimitives); see Figure 4.
Often CSG provides a rather simple representation of a llisaamplex object, using a
Boolean formula cleverly. A challenging problem in this aiie to compute the bound-
ary representation of the complex object from the given Banlfunction, which basically
reduces to the problem of computing the union or intersaatibtwo (or more) objects.
Much work has been done in CSG on developing simple, robffatieat algorithms for
computing the boundary representation. S P71 for more details.

Figure 4. Representing a complex object as a Boolean function of pviesi. The figure is taken frond].

Proximity problems. Let P and(Q be two finite point sets iiR?. Thedirected Hausdorff
distancefrom P to @, denoted byi(P, @), is

h(P = ma i -
(P,Q) gleggzrggl\p qll,

where|| - || denotes the Euclidean norm, but other metrics can also bsidened. The
Hausdorff distancébetweenP and @ is H(P,Q) = max{h(P,Q),h(Q,P)}. Itis a
widely used metric to measure similarity between two pogéiss LetB(z, ) denote the
ball of radiusr centered atc. Thenh(P,Q) < r if and only if P is contained in the
union quQ B(g,r). Hence, the decision problem of computing the Hausdorfadise,
i.e., testing whethef/ (P, Q) < r, can be formulated as point location in the union of
a set of congruent balls (or, more generally, of translafethe unit ball of the given
norm) [10, 77, 78.

Small-sizes-nets. Given a point sei?, an admissible collectiof® of ranges(subsets of
P), and a parameter> 0, ans-netof (P, R) is a subsefv C P with the property that any
range that contains at leasf’| points of P contains at least one point 8f. By now,z-net
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is a standard tool used in the design and analysis of geanagrorithms; seeJ7, 104
for more general definitions and for applicationsecefiets. If theVC-dimensiorof the
range space, se8]] for the definition, has a finite valug (in geometry, this is the case
when the ranges have simple shape, such as halfspacestdtadisedra, etc.), there exist
e-nets of size(cd/e) log(d/¢e), for some constant [31, 76, 88. A challenging question
is to identify the situations in which the logarithmic factwan be removed or replaced
by a smaller factor. See, e.g., Matoudakal. [99 for a result of this type, for the case
when the ranges are halfplanes in the plane or halfspacésdaa timensions. Clarkson
and Varadarajar3g] have shown that if the complexity of the union of anyanges inR

is sufficiently close t@)(r), then the above general bound on the size of the smaHest
for (P, R) can be improved.

Conflict-free colorings. A coloring of a familyC of regions in the plane is callezbnflict-
freeif for each pointp € U(C), there is at least one region containingvhose color is
uniqgue among all regions i® that contairp. This definition was motivated by a frequency
allocation problem for cellular telephone network&], Minimizing the number of fre-
guencies used by the system requires minimizing the numfbeslors in a conflict-free
coloring of the transmission ranges of the base-statiottm And Smorodinskyl[3] have
shown that whenever the fami@/has the property that the complexity of the union of any
r ranges inC is O(r), there is a conflict-free coloring using oniy(log® D) colors, where
D denotes the maximum number of regionsCirintersected any region d&. For other
results on conflict-free coloring that exploit the comptgaf the union of the regions to
be colored, see Har-Peled and Smorodingig}.|

These examples illustrate the wide scope of problems thmabedormulated in terms
of, or are closely related to, the union of a collection of gedric objects. Before proceed-
ing further, we formalize our notation and introduce additl terminology.

Preliminaries and notation. We assume that each obj&ct in the given collectiort is

a (real) semi-algebraic sétln many cases we will also assume that e@gthas constant
description complexity, which is the case, e.g., for batidinders, or tetrahedra. How-
ever, we will also consider objects of non-constant desioricomplexity, such as convex
polyhedra. In many planar instances, we will even relax graisalgebraic condition, by
considering fairly arbitrary curves with the main restidct that each pair of them intersect
in a constant number of points.

Eachfaceof U(C) (or, more precisely, 0DU(C)) is a maximal connected (relatively
open) subset oPU(C) that lies in the intersection of the boundaries of a fixed stib§
objects, and avoids all other objects@fAs usual, we refer to faces of dimensiomand
1 asverticesandedgegor elementary arcs respectively. Theombinatorial complexity
of U(C), denoted by (C), is the total number of faces, of all dimensions, that appear
OU(C). Note that, in certain cases, this notion of a face is tocetit: if the boundary
of an objectC' € € is not a single algebraic surface, we typically regard eaelimal
connected portion of it that lies on a single surface (vg)ias a separate “face” (this is the
case, e.g., for convex polygons or polyhedra). In this casermay want to define a face
of U(C) to be a maximal connected region that lies in the interseaifa fixed subset of
faces of individual objects iff (and avoids all other such faces and objects). In such cases,

1A subset ofR9 is called areal semi-algebraic sef it can be described as a finite Boolean combination of
polynomial inequalities. A semialgebraic set ltamstant description complexitfyit can be described in terms
of a constant number of polynomials inequalities, with astant bound on the number of variables and on the
degrees of the corresponding polynomials.
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we will continue to use the notatiot(C) to denote the combinatorial complexity tfC)
under this refined definition of a face. It will be clear fronetbontext which of the two
quantities we are denoting ®(C).

The study of the union of geometric objects falls into thedardopic ofarrange-
mentsof geometric objects, which has been studied since the s¢paper by J. Steiner in
1826 [117, and which has received much attention in the last quagatury. Slightly
modifying the traditional definition, tharrangementof a finite collectionC of (full-
dimensional) geometric objects R, denoted asi(€), is the decomposition dk? into
relatively open connected faces of dimensions ., d induced by, where eaclfaceis a
maximal connected set of points lying in the intersectiothefinteriors of a fixed subset
of € and of the boundaries of another fixed subset, and avoidghalt eets of. As above,
if the boundaries of the objects 6fdo not have constant description complexity, the ar-
rangement itself is refined accordingly. Note th&L) is a substructure ofi(C), in the
sense that each face tfC) is also a face ofi(C). U(C) typically contains in its interior
many faces of4(C), but they are ignored in the analysis of its complexity. Ashsu:(C)
is bounded by the combinatorial complexity.4fC), which, in the worst case, i@ (n?)
if the objects inC are semi-algebraic sets of constant description complgki]. In the
worst case, the asymptotic boundit) can indeed b&®(n). This is the case, for exam-
ple, whenC is a family ofn large and flat “plates” irR¢, each being the region enclosed
between a pair of parallel and sufficiently close hyperpdan®ee Figure 5 for a simple
planar construction involving triangles. Howevergifsatisfies certain natural conditions,
x(C) may be smaller. For example, the case of halfspaces, meuttatrove, yields the par-
ticularly favorable bound®(n'4/2!) on x(€). The challenge is thus to identify classes of
objects for which the bound on(€) is substantially smaller tha@(n?). As we shall see,
in most of the cases that we will review herg() is close taO(n¢~1). Easily constructed
matching lower bounds indicate that this is the best “ordanagnitude” one can hope
for in most of these favorable instances. We will occasilynade the shorthand notation
O*(f(n)) to denote bounds of the forL. f(n) - n, which hold for anye > 0, where the
constant of proportionalitg’. depends om, and typically tends tec ase decreases t0.

Figure 5. n pairwise crossing triangles witB (n2) intersection points on the boundary of their union.

The rest of the survey is organized as follows. We review thewkn results on the
complexity of the union of planar objects in Section 2, andhoée-dimensional objects
in Section 3. We also sketch proofs of some of the main resuWlis then briefly review
in Section 4 the (very few) known results in higher dimensio®ection 5 discusses the
relationship between the union of objects and generalizzdno6i diagrams, and gives a
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brief review of the recent progress in the analysis of the glexity of these diagrams. We
conclude in Section 6 with a short discussion of the topicitgsklatives.

2. Union of Planar Objects

In this section we review the known results on the union ofngewic objects in the
plane. The study of the union of planar objects goes backleaat the early 1980s, when
researchers were interested in the union of rectanglessks dmnotivated by VLSI design,
biochemistry, and other application®7, 82, 89, 10p However, the early work focused
on computing the union or its measure, rather than boundsnmpimplexity.

2.1. Union of pseudo-halfplanesLetd = {f1, ..., f»} be a set of totally defined
continuous univariate functions. For eagh let C; be the set of points lying on one of
the sides of (above or below) the graph fBf We refer toC; as apseudo-halfplanelf
C; lies below (resp., abovel}, it is called alower (resp.,uppel) pseudo-halfplane. Set
C={Cy,...,C,}. Ifeachf; is alinear function, theAU(C) is the boundary of a convex
polygon, sox(C) is linear. For more general functions, the boundsxgfi) are more
involved, and are related to lower and upper envelopes, et fis follows.

The lower envelopef a collectiond of functions, as above, denoted by, is the
pointwise minimum of the functions ifi, i.e.,

Ly(z) = min fi(=).
Theupper envelopés defined as the pointwise maximumd®fi.e.,
Ug(z) = max fi(x).

If each(; is a lower pseudo-halfplane, th&ltC) is the region lying below the upper enve-
lope ofF. Similarly, if eachC; is an upper pseudo-halfplane, tHé() is the region lying
above the lower envelope 6% A fundamental observation (seEld) is that if the graphs
of any pair of functions irff intersect in at most points, for any fixed constant then
the graph of the lower or upper envelope®tonsists of at most(n) elementary arcs,
where)(n) is the maximum length of afn, s) Davenport-Schinzel sequencee 114
for more details. Obviously;(n) is an increasing function of. Letting a(n) denote the
extremely slowly growing inverse Ackermann function, tfesbknown bounds oh,(n)
are

A1(n) n,

A2(n) = 2n-—1,

Az(n) = O(na(n)),

Mi(n) = O(n-2°M),
A2sya(n) n - 200" () fors > 1,
Aasps(n) = na(n)?@ ™) fors > 1.

The case when some of the regionstére lower pseudo-halfplanes and some are
upper pseudo-halfplanes is not that much harderJle{resp., 3 ) denote the subset of
those functions ir#F that bound lower (resp., upper) pseudo-halfplanes.imhenl(C)
is the complement of theandwich regionconsisting of those points that lie above the
upper envelop&l ;- and below the lower envelodey+. See Figure 6. It is known (and
easy to show) that the complexity of the sandwich regionapprtional to the sum of the
complexities ofUs- and ofLs+. We thus have the following result.
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Figure 6. Functions ind— (resp.,F 1) are drawn with dashed (resp., solid) lines. The sandwiglorebetween
Ug- andLg4+, the complement of((C), is shaded.

THEOREMZ2.1. LetC be a set of: pseudo-halfplanes such that the boundaries of any
pair of them intersect in at mostpoints. Then(C) = O(\;(n)).

2.2. Regions with few pairwise boundary intersectionsLetC = {C;,Cs,...,C,}
be a family ofn simply connected regions in the plane, each bounded by desiclgsed
Jordan curve. Assume, for simplicity, that these curvesrageneral positioni.e., any
two of them cross only a finite number of times (two curggesand~, are said tocross
each other at a point, if; passes from one side 6f to the other at this point), no two
curves touch each other, and no three curves pass throughra@o point?

In this subsection we consider the case in which the boueslafiany pair of regions
in € cross in a small number of points, and derive linear, or fieaar bounds for the
complexity of their union.

Union of pseudo-disks. If the boundaries of any two distinct regions@ncross at most
twice, thenC is called a family ofpseudo-disksSee Figure 7. In this especially favorable
case, we have the following result.

(a) (b)

Figure 7. (a) A family of pseudo-disks. (b) Another family af pseudo-disks witlén — 12 elementary arcs on
the boundary of its union.

THEOREM 2.2 (Kedemet al.[81]). LetC = {C1,Cs,...,C,} be a family ofn >
3 pseudo-disks in the plane. Then the boundar§((®) consists of at mosin — 12
elementary arcs, and this bound is tight in the worst case.

20ne can extend the general position assumption to othexnioss and to higher dimensions; s&&4.
A perturbation-based argumertt14] shows that the asymptotic upper bound ©fC) is not affected by the
general-position assumption in most cases.



STATE OF THE UNION: OF GEOMETRIC OBJECTS 9

Figure 8. The proof of Theorem 2.2 for disks.

We present the proof of Theorem 2.2 for the case of circulsksdi (A more direct
proof for the union of circular disks based on the so-cdilgidg transform which extends
to higher dimensions, is given in Section 4.) Assign to e@glts centerp;, and connect
p; to p; by a straight-line segment if and onlydt”; andoC); cross each other, and at least
one of their crossing points belongsaddl(C); see Figure 8. Itis easy to verify that no two
segments in the resulting geometric graptcross each other, i.eG is planar. Indeed,
suppose there were a pair of intersecting segmentspgayandp,p,. The disks centered
atp;, p; (resp.,pk, pi) intersect on the boundary of the uniorgf (resp.,vi;). Let? be
the bisector ob;; andvy,;. Since the segmenisp;, prp; cross each other, they partition
the plane into four quadrants, one of which is disjoint franThis implies that, there must
be a point, sayp; such thap; andv;;, the point onD; lying on 9U(C), lie on the opposite
sides of?; see Figure 9. Thefip; — vi|| < ||pi — vijl|, i.€., vy lies in the interior ofD;,
which contradicts the assumption that appears o (C).

Hence G has at mossn — 6 edges, each of which corresponds to at most two vertices
of OU(C). Consequently, the number of crossings@(C), and hence the number of
elementary arcs, is at moéh — 12. In other words, theomplexityof U(C') is at most
linear inn. A lower-bound construction (which can also be realizesgsiormal disks),
in which the number of elementary arcs is exaétty— 12, is shown in Figure 7(b). The
proof for the case of general pseudo-disks also uses ptgremd follows as a special case
of the proof of a more general result (Theorem 2.5), giveerlat this section.

We conclude the discussion on pseudo-disks by giving twongles of pseudo-disks
that arise in practice. First, recall the example of tratisteal motion planning in the plane.

LEMMA 2.3 (Kedemet al.[81]). Let O, 05 be two disjoint convex objects in the
plane, and letB be another convex object in the plane. Then the boundarigbheof
Minkowski sumg’; = O @ B andCy = Oy @ B cross at most twice.

Proof: We argue that’; andC5, have exactly two common outer tangents, from which the
lemma follows easily. For a convex objectand for eacl¥ € [0, 27), definef(C, 6) to be
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Figure 9. The proof that= is planar.

Figure 10. The proof thatC; andC> have only two common outer tangents.

the signed distance from the originto the unique tangent(C, 0) to C at orientatiord,
which hasC' lying to its left; f(C, 9) is positive (resp., negative) iflies to the left (resp.,
right) of 7(C, 9). It easily follows from the definition of Minkowski sums that

f(C1,0) = f(O1,0)+ f(B.,0)

See Figure 10. Hence(C,0) = 7(Cs, 0), i.e.,C; andC> have a common outer tangent
at orientatiord, if and only if 7(O1,0) = 7(02, §), i.e.,0; andO2 have a common outer
tangent at orientatiof. SinceO; andO-, are disjoint, they have exactly two common outer
tangents, and the claim follows. O

Lemma 2.3 in conjunction with Theorem 2.2 implies thadit= {O4,...,0,} is a
set ofn > 3 pairwise-disjoint convex obstacles aftis a convex “robot” translating in
the plane, thedF, the boundary of the free space, has at nast 12 elementary arcs. If
B and the obstacles are convex polygons, sothhask vertices, and the total number of
obstacle vertices is, thenF hasO(kn + s) vertices, of which at mogin — 12 are convex
intersection vertices df.

Another commonly occurring example of pseudo-disks is #emfhomothets Let
B be a convex object in the plane, and foK i < n, let C; be a homothetic copy aB,
i.e.,C; = \;B + x; for arbitrary parameters; > 0 andx; € R2. SetC = {Cy,...,C,}.
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It is known (and easy to show) thétis a family of pseudo-disks. Henc&l((C) has at
most6n — 12 elementary arcs.

Allowing three intersections. What happens if we somewhat weaken the condition in
Theorem 2.2, by assuming that the boundaries of any two mend§e& cross at most
threetimes, rather than twice? At first glance this problem seenietfoolish because two
closed curves in general position can cross onlgaennumber of times. However, by a
slight modification we obtain a meaningful question with enswhat surprising answer.

THEOREM2.4 (Edelsbrunnegt al.[47]). Let{~1,72,...,7,} be afamily of. simple
curves in general position in the upper halfplape- 0. Assume that the endpoints of each
curve are on the:-axis, and that any two curves cross at most three timesCLéénote the
bounded region enclosed byand thez-axis (see Figure 11 (a)). Ther{C) = O(na(n)),
and this bound is asymptotically tight.

1 1232 4 3 5 5 467 67
@) (b)

Figure 11. (a) Union of 3-intersecting regions. (b) The cure it switches from one input curve to another
at hollow circles, and the filled circles denote the vertioéthe U(C) that are not switching points df; ¥ =
(1,1,2,2,3,3,4,4,4,5,4,6,6,7,7).

Note that if eachy; is anz-monotone curve, then Theorem 2.4 follows from Theo-
rem 2.1. However, as seen in Figure 11 (a), nonmonotone sumnay cause holes in the
union (i.e., bounded components of the complement of them)nwhich makes the proof
of the above theorem less obvious and quite technical. Tdwf pf Edelsbrunneet al.[47]
proceeds by constructing a cuiv¢hat starts at-oo on thex-axis and proceeds to the right,
always following one of they;, consistently with its orientation, possibly switchingar
at intersection points, but never visiting a point more tbane, and eventually ending at
++oo on thez-axis. The curvé traces each arc &f(C) exactly once, consistently with the
orientation of the corresponding input curve, and all holeld(C) lie outsiderl’, i.e.,T" can
be continuously deformed withitd(C), so as to coincide with the-axis; see Figure 11 (b).
The proof then continues by labeling each elementary afctbfit appears 06U (C) with
the curve to which it belongs, producing a sequeRagf labels. One can then show that
if one removes every symbol & which is equal to its predecessor, then the remaining
sequence is afn, 3) Davenport-Schinzel sequence, and thus its lengt(isx(n)). One
can also show that the number of deleted label3(is«(n)), which completes the proof
of Theorem 2.4. The details can be found4][

Beyond three intersections.If we allow the boundaries of two objects @to cross at
mostfour times, therl((C) can have quadratic complexity. As illustrated in Figurengre
is a family ofn triangles in which every pair intersect in precisely fouirge, and all4(g)
intersection points belong to the boundary of their unioowver, Whitesides and Zhao
[122 discovered that by excluding certain types of crossingsiben the members df,
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it is still possible to prove a linear upper bound on the caripy of U(C) even if pairs
of members of¢ may intersect in more than two points. More precisely, a fargiof
simply connected regions bounded by simple closed curvgsnieral position in the plane
is calledk-admissiblgwith & even) if for any pailC;, C; € C,

(i) C;\ C;andC; \ C; are connected, and

(i) 0C; andoCj cross in at mosk points.
See Figure 12. Theorem 2.2 is a special case of the followiagrem (withk = 2).

THEOREM 2.5 (Whitesides and Zhad 27). LetC = {Cy,Cs,...,C,} be ak-
admissible family of. > 3 simply connected regions in general position in the plane.
ThendU(C) consists of at most(3n — 6) elementary arcs, and this bound cannot be
improved.

Ca C2

C1
(a) (b)

Figure 12. A pair of regions belonging to a (a)-admissible family, (b) nonadmissible family’{ \ C> is
disconnected).

Proof: We sketch the proof given irlpqg (see also10§). As usual, it suffices to bound
the number of vertices df(C). For everyC; that contributes at least one arct(C), we
fix a pointp; in the interior of such an arc. For any pdif, C; € C that generate a vertex
q onoU(C), we draw an edge;; betweerp, andp,, as follows. Starting fronp;, follow
0C; to ¢ (in any direction), and from there follo&C; to p; (in any direction); note that
the edges; may self-intersect. Lell be the resulting graph; see Figure 13.

Figure 13. The union of pseudo-disks via a planarity argument. Eachtpgiis labeled as, and pointsy;; are
labeled agj. Heree(1, 2) ande(3, 4) cross each other six times.

We claim that any two edges &f that are notincident to the same vertex cross an even
number of times. We sketch the proof of this claim for the aafseseudo-disksk = 2).
Lete;; andey, be two edges off, where the first (resp., second) edge passes through an
intersection point;; (resp.gx,) of the boundaries of’;, C; (resp.,Cy, C¢), which lies on



STATE OF THE UNION: OF GEOMETRIC OBJECTS 13

the boundary of the union. Each of the poinfs, qi¢ splits its respective edge into two
“half-edges.” We claim that any pair of half-edges crosswawmenumber of times, that is,
either twice or not at all. If this were not the case, then thie half-edges would cross
exactly once, and then the pseudo-disk property is easdliy s2imply that one endpoint
of each half-edge must lie in the interior of the other ohj&dtich is impossible, since
each half-edge starts and ends at a point on the boundarg ahibn. This argument also
applies to any eveh > 2, exploiting condition (i) above.

A remarkable result by Chojnacki (alias Hanardy] (see also96, 121, and [LO§] for
a new proof), states that if a graghcan be drawn in the plane so that any two of its edges
not incident to the same vertex cross an even number of tithea G is planar. Hence,
we can conclude thdi is planar, so it has at mo3t — 6 edges. That is, there are at most
3n — 6 pairs{C;, C;} contributing vertices td((C), and each of them can contribute at
mostk such points. O

Counting regular vertices. If 9C; anddC); intersect in precisely two points, then we call
these intersection pointegular, otherwise their intersection points are calle@gular.
See Figure 14(a). A vertex df(C) is regular if it is a regular intersection point, and
irregular otherwise. I is a set of pseudo-disks, then all verticeQidt) are regular. A
natural way to generalize Theorem 2.2 is to obtain sharp é®on the number of regular
vertices inl(C) even if the boundaries of some pairs of object8 intersect at more than
two points.

(@) (b)

Figure 14. (a) Regular (filled circles) and irregular (hollow circlegrtices of planar unions. (b) A union of
convex polygons with quadratically many regular vertices.

Let C be a family ofn > 3 regions in general position in the plane, and/&t) and
I(C) denote, respectively, the number of regular and irregudstices ofU/(C). Pach and
Sharir [LOG have shown that if the objects thare convex then

(1) R(C) < 2I(C) + 6n — 12.

This result is sharper than Theorem 2.2, in the sense thagstablishing the upper
bound6n — 12 on the number of elementary arcs (or the number of intei@eqints) on
oU(@), one does not have to insist that all boundary intersectmntp of pairs of objects
of € be regular. It suffices to require that all verticesldiC) be regular. The extension of
the above result to nonconvex regions remains elusive:

OPEN PROBLEM 1. Is it true that for every se€ of n simply connected regions in
general position in the plane, one h&C) < 2I(€) + 6n — 12?
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@ (i)

Figure 15. The lower-bound construction for the number of regularigeg on the union of rectangles and disks.

It is not hard to show that the coefficient 6{C) in (1) cannot be replaced by any
constant smaller tha? Moreover, in generak(C) can bed(|C|?) = ©(n?) in the worst
case, as is illustrated in Figure 14(b), unless we limit thmher of times the boundaries
of a pair of curves ir€ are allowed to cross each other (this number is not boundex by
constant in Figure 14(b)). However, we cannot expelih@ar upper bound even under
such an assumption (unless we deal with pseudo-disks): ijonawe can construct a
family € of n disks and rectangles in general position in the plane saigfR(C) =
Q(n*/3), as follows. Take a system af/2 lines andn/2 points with©(n*/?) incidences
between them104. Fix two sufficiently small parametefs < ¢ < &’ < 2¢. Shift each
line by distances and2¢, and create a sufficiently long rectangle bounded by theeghif
copies. Expand each point into a disk of radilis See Figure 15. With an appropriate
choice ofz, £/, the resulting family of rectangles and disks l&g3:*/3) regular vertices on
the boundary of their union.

For the special case of rectangles and disks, this boungispietically tight [L8]. If
Cis a set ofn simply connected regions so that the boundaries of any p#iem intersect
in at mosts points, for some constart> 0, then there exist$ = §(s) > 0 such that({(C)
hasO(n?~9) regular vertices18]. Recently, the bound has been improvedito(n?/3),
where the constant of proportionality dependsgand on the hidden > 0), if the objects
in C areconveq61]. See also%9 for some related results.

OPENPROBLEM 2. LetC be a set of simply connected regions in general position in
the plane, so that the boundaries of any pair of them intérseat most some constant
number,s, of points. Obtain a sharp bound aR(C), which depends only on (and s),
and not onl (C).

2.3. Union of fat objects. The construction depicted in Figure 5, showing that the
union ofn triangles may havquadraticcomplexity, uses extremely narrow triangles. On
the other hand, as we saw in Section 2.2, the complexity o@ithien ofn circular disks
or (axis-parallel) squares is linear, thereby raising thegtion whether the union of “fat”
objects has small complexity. In the last fifteen years thisstion has been answered in the
affirmative under various notions of fatned<l[ 51, 53, 54, 98, 1(7In fact, these results
have motivated the study of faster geometric algorithmsafeariety of applications, for
fat objects in two and three dimensions [7, 38, 80, 90, 115, 116 In this section we
review the known results on the complexity of the union ofdflainar objects, starting with
the simplest case of fat triangles.

Union of fat triangles. For any fixedox > 0, a triangle is called-fatif each of its angles
is at leastv. MatouSeket al.[98] have proved that the complexity of the unionsof.-fat
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triangles isO(n loglog n), for any fixeda > 0. Their proof is based on the fact that every
family C of n «-fat triangles in the plane determines at most a linear nurobéoles
namely, bounded components of the complemeft(@). The strongest known bound on
the number of holes (in terms of its dependencedis the following.

THEOREMZ2.6 (Pach and Tardo4(7]). Any familyC of n a-fat triangles in the plane
determineD((n/a)log(1/«)) holes. This bound is tight up to the logarithmic factor in
the worst case.

We sketch a proof of the above theorem, with a larger constiptoportionality on
«, using the following lemma, which follows from a more gerieesult by de Berg37].

LEMMA 2.7. Let G, be a set ofy; -fat triangles inR?, and letC, be another set of
as-fat triangles inR?. Thenx(€) = O(k(C1) /a1 + K(C2)/a2).

— A A

Figure 16. Replacing a fat triangle by three canonical triangles.

Proof of Theorem 2.6 (Sketch): We first replace each trianyle C by three(a/2)-fat
triangles contained i\, by bending the edges & inwards, as depicted in Figure 16, so
that the directions of the edges of the new triangles belorthée family of theO(1/«)
so-called‘canonical” directions ja/2, j = 0,1, ... During the bending, the holes of the
unionexpand so their number can decrease only when two holes merge iotoranon
hole. However, this can happen only when the bending swéepsgh a triangle vertex,
which can happen only once per vertex, and thus implies tireahtimber of holes can go
down by at mos8n.

Thus, we obtairO(1/a?) canonical familiesof (a/2)-fat triangles with fixed edge
directions, so that each family consistshmimothetic trianglesLet n; denote the number
of triangles in theth family. It suffices to bound the number of holes in the urabthese
families. Each hole in the union can be charged to its leftmedex. Since any vertex of
the union is also a vertex of the union of juato families it suffices to establish a linear
upper bound on the complexity of the union of two canonicalifes.

As stated in Section 2.2, the union of homothetic triangles lmear complexity, so
the union of all members of singlecanonical family ha)(n) size. Next, consider the
union of two families, say; andj. Since the triangles in each family afe/2)-fat and
homothetic to each other, by Lemma 2.7, the complexity ofuthien of triangles in fam-
ilies ¢ andj is O((n; + n;)/a). Summing over all pairs of families, we obtain that the
complexity of the union of new trianglesi$(n/a?), thereby implying that the number of
holes inU(C) is O(n/a?). O

Theorem 2.6 can be used to establish a more general upped lbautne number of
holes determined by a family of triangles with given angles.

THEOREM 2.8 (Pach and Tardo407). LetC = {C;,C,,...,C,} be a family of
n > 1 triangles in the plane, and let; denote the smallest angle 6%, for 1 < i < n.
Supposd) < a1 < as < --- < ap, and letk < n be the largest integer satisfying
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Zle a; < m. ThenC determinesD(nk log k) holes. Furthermore, there exists a family
e ={C1,C%,...,CL}, whereC! is congruent ta”; andC’ determines2(nk) holes.

Proof: Note that eact;, for k < 4, is w/(k + 1)-fat, so the union oy 1,...,C,,
denoted by, hasO(nk log k) holes. AddingCy,...,Cy to W creates at mosD(nk)
new holes. O

If we considelinfinite wedgegi.e., convex cones) rather than triangles, then the same
bound holds not only for the numberlobles but also for theeomplexityof the union. The
following result strengthens some earlier boundsli, [53.

THEOREM 2.9 (Pach and Tardo407]). LetC be a family ofn wedges in the plane
with angles) < a1 < as < -+ < a, < 7. Letk < n be the largest integer satisfying
Zle a; < 7. If k> 2, thenk(C) is O(nklog k). Furthermore, there exists a family of
wedges with angles;, as, . . ., a,, which determine® ((w — «a,, )nk) holes.

By plugging Theorem 2.6 in the proof given i§], one obtains the following bound
on the complexity of the union of fat triangles.

THEOREM2.10. For any fixeda > 0, the boundary of the union ef a-fat triangles
in the plane consists of at maS{(n/«) log lognlog(1/a)) elementary arcs.

MatouSeket al. [98] have also proved that if, in addition to being fat, all triges
have roughly the same size (i.e., the ratio between any pdiameters is bounded by a
constant), then their union has linear complexity. On tephand, by slightly modifying
theQ2(na(n)) lower-bound construction for the lower envelopesicfegments]23, one
can construck equilateral triangles (but of very different sizes), whasén has a slightly
superlinear (i.e.2(na(n))) complexity. Herea(n) is the inverse Ackermann function
(and unrelated to the fatness parameter). We conclude sieeistiion on fat triangles by
mentioning an obvious open problem.

OPEN PROBLEM 3. What is the maximum complexity of the uniomak-fat trian-
gles?

Union of fat convex objects. Extending the notion of fatness to more general objects, we
call a convex object in the planea-fat, for o« > 1, if there exist two concentric disks
D, D’, suchthatD C C C D’, and the ratio between the radii 8f and D is at mosto.
See Figure 17. Note that this extends the definition of fatfmdriangles: am-fat triangle
is easily seen to ba’-fat as a convex object, for a suitaklé > 1, and vice versa. Efrat
and Sharir $4] have shown that the complexity of the unioniokimply shaped convex
a-fat objects in the plane i©*(n), where the constant of proportionality depends on the
maximum number of intersections between any pair of bouadaiThe proof uses both
the bound on the complexity of the union of fat triangles, #relbound on the number of
regular vertices of the union; see (1).

We also remark that the complexity of the unionoérbitrary convexpolygonswith
atotal ofs vertices is9 (n? + sa(n)) [20], wherea(n) is the inverse Ackermann function.

Union of fat non-convex objects. There are other, more general, notions of “fatness” that
extend to non-convex objects, and for which the combinateamplexity of the union of

n “fat” planar objects remain®*(n). For instance, call a possibly non-convex objéect
a-roundif for each pointp € 0C, there exists a disk C C of radiusa diam(C') such that

p € 0D; see Figure 17. Informallyy-round objects cannot have convex corners, nor can
they have very thin bottlenecks (but they can have reflexarsjn Efrat and Katz32] have
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) ¢

round round not round

fat and convex

(a, B)-covered

Figure 17. Fat-like planar objects with near-linear union complexity

shown that the complexity of the union afa-round objects i$)(As(n) logn), wheres

is a constant that depends on the description complexithiefrtput objects. This result
has been further extended by Efraf] to so-called «, 3)-covered objects: An object is

(«, B)-coveredf for each pointp € dC, there exists an-fat triangleT” that ha as a ver-
tex, is contained i, and each of its edges is at legstiam(C') long; see Figure 17. Thus,
these objects are not necessarily smooth, but their cooaensot be too sharp. Efréb]]

has shown that i€ is a collection ofn («, 3)-covered objects, each pair of whose bound-
aries intersect in at most= O(1) points, thens(C) = O(\,12(n) log® nloglogn). The
bound was recently improved by de Berg@g\, o (n)log”n). See also90, 115, 11%

for other related results.

3. Union of Objects in Three Dimensions

3.1. Overview. Starting in the mid 1990s, research on the complexity of thieruof
geometric objects has shifted to the study of instancesr@ethnd higher dimensions. As
mentioned in the introduction, the maximum complexity af timion ofn. simply shaped
objects inR? is ©(n?), and this bound can already be attained by flat boxes. Theneeay
few particularly favorable cases for which the union comjiieis linear inn, including
the cases of halfspaces and of axis-parallel unit cub8s33. In general, though, the
goal is to find classes of objects for which the maximum coxiptef the union is nearly
guadratic. Indeed, in most of the cases studied so far (ddwiteviewed below), the
complexity of the union can be quadratic (and sometimesijiguper-quadratic) in the
worst case. This is the case, e.g., for balls, cubes, congayinders, and halfspaces
bounded byry-monotone surfaces of constant description complexity.

As the evidence discovered so far suggests, there are seupatant classes of ob-
jects inR* whose union has at most nearly-quadratic complexity, inmlete analogy to
the planar situation. One such class is the cladatobbjects, where, in complete anal-
ogy with the planar case, a compact convex objéés calleda-fat if the ratio between
the radii of the smallest enclosing ball and of the largestiiibed ball ofC' is at most
a. Other notions of fatness, such @asoundnesshave also been extendedRd [19]. A
prevailing conjecture is that the maximum complexity of thréon of such fat objects is
indeed at most nearly quadratic. Such a bound has howevezguite elusive to obtain
for general fat objects, and this has been recognized as faithe onajor open problems
in computational geometryp, Problem 4]. Nevertheless, considerable progress towards
establishing this bound has recently been made, as we wittlgleview.

As in the plane, another candidate class of objects with lsumén complexity are
Minkowski sums of pairwise disjoint convex objects with aefixconvex object. In the
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plane, this class was handled by showing that its memberpsaedo-disks, and then
by applying the general linear bound &1] (Theorem 2.2). However, the analysis of the
union of such Minkowski sums is considerably hardeRin(because they are not “pseudo-
balls"—see below), and there are only a few (albeit impditarstances for which a near-
guadratic bound has been establishkz] R1; see Section 3.4.

A third class of objects with small union complexity ggeeudo-halfspacese., re-
gions lying above or below amy-monotone surface (the graph of a continuous totally
defined function). This extends the class of pseudo-hal§daand was one of the first
classes to be studied.

We note that extending the notion of pseudo-disks to threedsions does not seem
to lead to any new insights. A family of regionsR?¥ is said to consist opseudo-ballsif
the boundaries of any two members intersect in a single dlogere, and the boundaries of
any three members intersect in at most two points. It isatita show that the complexity
of the union of a collectior® of n pseudo-balls i€)(n?), by considering the portion of
the union boundary on the boundary of each membet s&parately, and by applying
Theorem 2.2. Hence, in particular, the complexity of theoarof» balls inR? is O(n?);
it is easy to construct examples where the union®és?®) vertices, even with unit balls,
and even when the unit balls all have a common point; 836 Fomewhat surprisingly,
Minkowski sums of disjoint convex bodies with a fixed convéyent are nopseudo-balls
see a more detailed discussion below.

3.2. Union of pseudo-halfspacesLet¥ = { fi,..., f,} be afamily ofn continuous
totally defined bivariate functions (in, y). As in Section 2.1, we refer to the region lying
below (resp., above) the graph fifas the lower (resp., uppgsseudo-halfspadeounded
by that graph. For each< i < n, let C; be one of these two pseudo-halfspaces, and let
denote the collectioqC1, ..., C,}.

Halperin and Sharir{2] have proved that if each function ify is of constant descrip-
tion complexity, then the complexity of the lower or uppevelope ofF is O*(n?). This
immediately implies that if all th€;’s are lower (or all are upper) pseudo-halfspaces, then
their union ha)* (n?) complexity. Agarwalet al.[9] have established af*(n?) bound
on the complexity of the sandwich region between the lower @pper envelopes of two
respective families of a total ef bivariate functions, each of constant description complex
ity. The proof is based on the following interesting resukt ¥ and§ be two collections
of a total ofn bivariate functions, as above, and Ity (resp.,Mg) denote theminimiza-
tion diagramof F (resp.,9), namely, thery-projection of the lower envelope 6f (resp.,
§). Then theoverlayof the two minimization diagrams has*(n?) complexity. Note that
we make no assumption on any relation betw&eand§. Also, the result continues to
hold when one or both diagrams are replaced by the respentixénization diagrami.e.,
thexy-projection of the respective upper envelope. This implesfollowing result.

THEOREM3.1 (Agarwalet al.[9]). LetC be a set of, pseudo-halfspaces iR?, each
of which is a semi-algebraic set of constant descriptionglexity. Then the complexity of
U(R) is O*(n?).

3.3. Union of convex polyhedra.As already remarked, an easy extension of the pla-
nar construction shown in Figure 5 shows that the maximumptexity of the union ofn
(axis-aligned or arbitrarily aligned) boxes (or wedgestedrahedra) irR? is ©(n?); see
Figure 18. Moreover, we can easily adapt this constructioshiow that the maximum
union complexity of thre@onconveypolyhedra with a total of facets is9(s3). A natural
guestion is whether a similar lower bound also exists fordbmplexity of the union of
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convex polyhedra, i.e., a bound that is cubic in the numbéaadts. The following result
by Aronov et al.[22] answers this question in the negative, and calibrateserbptess,
the true maximum complexity of such a union.

Figure 18. Union of n plates inR3, which can be viewed as thin boxes, wi{n?) complexity.

THEOREM3.2 (Aronovet al.[22]). The complexity of the union afconvex polyhedra
in R3 with a total ofs facets isO(n? + sn log n). This complexity can b@(n? + sna(n))
in the worst case.

It is interesting to note that the above bound is cubic onthanumber of polyhedra,
but it is onlylinearin s. (Compare with the boun@(n? + sa(n)) for the case of convex
polygons in the plane0].) The cubic term disappears in the special case where tlye po
hedra inC are Minkowski sums of pairwise-disjoint convex polyhedr#iwanother fixed
convex polyhedron—see the following subsection for dstail

The proof of Theorem 3.2 given irRf] is rather technical; we highlight two of its
key ingredients that are useful in some other contexts toe. ndte that techniques for
analyzing the union of objects iR3 (and in higher dimensions) are rather scarce; we
will mention some of these techniques as we encounter iosgaim which they can be
exploited.

Special quadrilaterals and special cubes—Junctions in thanion. Let € be a family
of n convex polyhedra with a total of facets, and le€;, Cs, Cs be three members &
with the following property: There exists a fackt of C1, such that) = F; N Co N Cs
is a quadrilateral, having two opposite edgesiorn, and two opposite edges @d’;, and
no other member of intersects?). In this case, we call) a special quadrilatergl see
Figure 19.

Aronov et al.[21, 23 have introduced this notion, and have shown that, for eahyjt
collectionsC as above, the complexity of the union®is O* (n2+Q(n, s)), whereQ(n, s)
is an upper bound on the number of special quadrilateraleyrsabcollection of. They
have then shown that, for collectio®@sof Minkowski sums of pairwise disjoint convex
polyhedra with another fixed polyhedrafi(n, s) = O(ns).

Pachet al.[105 have extended this notion to that sfpecial cubeswhere a special
cube is an intersection of three member£pfvhich has the combinatorial structure of a
cube, where each of the three intersecting polyhedra dnnés a pair of opposite facets to
the intersection, and no other membeiGaiheets the “cube”. Pact al. have shown that
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@ special quadrilateral
1 P

Figure 19. A special quadrilateral in the union of polyhedra.

the union complexity of is proportional to roughly:? plus the number of special cubes
in any subcollection of.

Thus, the problem of bounding the complexity of the unionu@as to that of bounding
the number of special quadrilaterals or cubes. This has eeafor special quadrilaterals,
in the context of Minkowski sums of pairwise-disjoint cory@lyhedra with another fixed
polyhedron, in 21], using a fairly intricate topological argument, and foesfal cubes, in
the context of arbitrarily aligned nearly congruent cubefliog, using a plane sweeping
argument.

Charging schemes.This technique can be used in a variety of scenarios. Her&ketels
in a special case how it can be applied to convex polyhedra.

Let C be a family ofn convex polyhedra ifiR?, each with a constant number of facets,
and consider the problem of bounding the complexityd€). Clearly, the number of
vertices ofU(C) that are vertices of some member ®for that are double-intersection
points, lying on an edge of some member and on a facet of andgh@(n?). Therefore,
we have to bound the number of triple-intersection pointshenboundary of((C), i.e.,
points that belong to the boundaries of three distinct memteC. Assuming that the sets
are in general position, no point can belong to the boundarfienore than three distinct
members.

Consider the arrangementinduced by the boundaries of the polyhedr&irDefine
thelevelof a vertex of this arrangement to be the number of membetslvdt contairv in
their interior. The number of triple-intersection verticat level is denoted by; = V;(C).
We have to bound; (C), that is, the number of triple-intersection vertices atlé

Each vertex of the union is incident to three edges of the arrangemertach lead-
ing awayfrom the union boundary; that is, each such edge is contamgug intersection
segment of two of the facets containingand leads into the interior of the third polyhe-
dron. We follow each of these edges, and charge the three vertices that are the other
endpoints of these edges. See Figure 20.

The favorable situation is when all three charged verticgestrgple-intersection ver-
tices at levell. In this case, each of them can be charged at most three tsaesg-
ure 20), so the number of charging vertieesf this kind is at most/ (€), the number
of triple-intersection vertices at levél The case where one of the charged vertices is not
a triple intersection is easy, because there are 6tly?) such vertices (in the entire ar-
rangement), and each is charged only a constant number e$ tiso there can be at most
O(n?) charging vertices of this kind.

Let us denote by (C) the number of vertices at level0 for which at least one of
the charged vertices is a triple intersection vertex thed #iks at leveD. We thus obtain
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Figure 20. The charging scheme. The three dashed edges emanating fead into the interior of the union.

the inequality

Vo(€) < Vi(C) + Vi (€) + O(n?).
The main difficulty is in obtaining a nearly quadratic boundig"(C). In general, this is
impossible: for instance, when the memberg afre large, and thin plates that form a grid,
one can easily check thah (€) = Vi (€) = ©(n3). Suppose, however, that we are in a
favorable situation, and have somehow managed to show{h@) = O*(n?). Then we
get

Vo(€) < VA(€) + 0% (n?).

Let R be a random subset ¢f obtained by removing one element uniformly at random.
An easy calculation shows that

E(Vy(R)) = =

—v(0) + VA (e)

n
Combining this with the preceding inequality, and writilig(m) for the maximum value
of V4(€) for |C| = m, we obtain
1 1
EVO(B) < EVl(G) +O*(n)
n—3

= EW®) - Vo(€) + 0" (n)

< Vg(n—l)—n_3

Vo(€) + 0" (n),

or
n—2

Vo(n) < Vo(n —1) 4+ O*(n).

n
Dividing this by (n — 1)(n — 2), we obtain a telescoping recurrence that solvdgta) =
O*(n?). If the overhead terriyy (€) is strictly O(n?), the recurrence solves @(n? logn).

The above scheme is a special instance of a technique dedetypTaganskyl[18,
119, built upon earlier cruder charging schemes. As alreadgache real challenge is to
boundVj;(€). One way of doing so is to apply the charging scheme repeatetere in
the next stage we want to bound the number of ldvetiges of the arrangement with both
endpoints at level, by charging them to more complex local structures that thwee
level-0 vertices connected by two levéledges, and so on. This multi-stage scheme ends
when the overhead term is the number of special quadrilatdefined above (or can be
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pushed further until the overhead term counts the numbgyexfial cubes). Sed 5, 118
for details.

An interesting feature, hidden in this quick review, is ttteg only bottleneck in the
analysis is to bound the number of special quadrilateral€ohtrast, it is relatively easy
to give a quadratic upper bound for the number of “speciaygoahs” with more than four
vertices, where such a polyga@p is the intersection of a facet of one memberCoivith
two other members df, so that no fourth member &f meetsQ); see e.g.§2).

3.4. Robots with three degrees of freedom: Complexity of théree space.A spe-
cial class of problems that involve unions in three dimensiarises in motion planning
for robots with three degrees of freedom. Recall that in tlaise theconfiguration space
which represents all possible placements of the given réhas 3-dimensional, and each
obstacleO in the physical environment (the workspaceR) generates aaxpanded ob-
stacle(or C-obstacle}D*, which is the locus of all placements &fat which it intersects
O. The free portior¥ of the configuration space is then the complement of the uoion
the C-obstacles.

In this subsection we review several results that arisei;dbntext. As already dis-
cussed in the general setting, the naive bound on the coibypddX is cubic in the number
of possible contacts between feature®aind features of the obstacles. In many instances,
this bound can be attained, but there are several specesd vd®re better, nearly quadratic,
bounds can be established.

Let B be a robot with three degrees of freedom, so that each platerhé& can be
parametrized by three real parameters. For simplicityyéeassume that the configuration
space, the set of all placementsBf is R3. Two special cases of such a robot that we
consider are: a planar object that is allowed to translateratate amid obstacles R?,
and a three-dimensional object allowed only to translat& abstacles iR3. Bounding
the complexity off in the former case was one of the first applications that ledastudy
of the union of objects ifR? [94, 91.

O3

T 2

(a) (b)

Figure 21. (a) Representation of a placement®f (b) A triple contact.

Translation and rotation in 2D.. Let B be a convex polygon ifR? that is allowed to
translate and rotate in the plane amid aGet {Oq, ..., O, } of obstacles with pairwise-
disjoint interiors, each of which is a convex polygon, wittotal of s vertices. To parame-
trize the configuration space, we fix a paine B and a rayp emanating fron» and rigidly
attached taB. A placement ofB is then parametrized by a poifit, b, tan(6/2)) € R3,
where(a, b) are the coordinates efandd is the counterclockwise angle from theaxis

to p; see Figure 21(a). A placement Bfis freeif B does not intersect any obstacle at this
placement, andemi-fredf B makes contact with one or more obstacles at this placement
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but does not intersect the interior of any obstacle. A genawntact between the bound-
aries of B and an obstacle can be represented by a(pair) whereo is a vertex ofB and
w is an edge of the obstacle, @iis an edge of3 andw is a vertex of the obstacle.

For each obstacl@;, let C; denote the corresponding expanded obstacle, which is the
set of placements at whidB intersectg);; C; is a semi-algebraic set whose complexity de-
pends on that o andO;. As noted, puttin® = {C1, ..., C,}, we haveF = R?\ U(C),
andJF is the locus of all semi-free placements. A vertexfdibrmed by the intersection
of the boundaries of three expanded obstacles corresporaplacement of3 at which
it makes three distinct contacts with the obstacles (sear&ig1(b)); these placements are
referred to agritical semi-free placements aritical verticesof IF. It can easily be argued
that if B is a polygon withk vertices then the complexity @ is proportional tak?s? plus
the number of critical vertices.

Figure 22. A nonconvex polygon witlf2(k3s3) critical semi-free placements.

If B is a nonconvex polygon, theli can have2(k*n?) critical vertices, as shown
in Figure 22 [r3. However, the bound improves considerably wheris convex. For
instance, ifB is a line segment, then, as shown in several early works fardue mid
1980s),F hasO(s?) vertices P8, 99. Recently, Agarwalet al.[2] have improved the
bound toO(ns); this improved bound holds even if the obstacle®imre not pairwise
disjoint. In fact, if the obstacles are pairwise disjoiffien the number of critical vertices
of Fis onlyO(n? +s), though the number of vertices Bfformed by the intersection of the
boundaries of a pair of expanded obstacles (edge-facséuiton points) can b®(ns).

The main result for this scenario is:

THEOREM 3.3 (Leven and Shari9f]). If B is a convext-gon, then the complexity
of Fis O(ksA¢(ks)).

Since the number of combinatorially different contactsamein B and the obstacles
is ©(ks), the bound in Theorem 3.3 is nearly quadratic in the numbeoaotacts. Here
is a brief sketch of the analysis i84]. Let ¢ be a (vertex-edge or edge-vertex) contact
between the boundaries &f and of an obstacle, and I8, C R? denote the set of all
placements oB at which the contact is made]’, is a two-dimensional algebraic surface
patch. For each contagt we define a familyC, of O(ks) pseudo-halfplanes iy,
where each pseudo-halfplanerepresents placements at whighis made and another
contact¢’ is “violated"—¢’ is made at placements @i, and B and the corresponding
obstacle intersect at placements within The boundaries of any pair of these pseudo-
halfplanes intersect in at most six points. The main obdenmvan the analysis is that if
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B and the obstacles are in general position and if the contgleXiF is Q(k?s?), then

at least a constant fraction of the vertices@ére vertices ofll(C,), over all contacts
¢. By Theorem 2.1x(Cy) is O(Xs¢(ks)), for each¢, and thus the complexity df is

O(ksX¢(ks)). The details of the proof can be found 84].

Combining this overall approach with a few new observatjansl performing a more
careful analysis, Agarwal and Gujguntg have recently improved the bound on the com-
plexity of F to O(ksAs(kn)).

Van der Stappeet al.[116 have studied the case in which the obstacles are fat, and
have proved a linear bound on the complexityfofinder certain reasonable assumptions.
We refer the reader to their paper for more details.

Translational motion planning in R, Let B be a convex object ilR? that is allowed to
translate amid a s€t = {0, ..., O, } of n obstacles, each of which is a convex polytope.
We fix a pointo € B and represent a placement®by specifying the coordinatés, y, z)

of 0. As mentioned in the introduction, the expanded obstéglgenerated by, is now
the Minkowski sumO; @ (—B) of O, and the reflected image B of B, and, as usual,
F = R?\ U(C), whereC = {C4,...,C,}. This has led to the extensive study of the
complexity of (and algorithms for constructing) the uniohaofamily € of Minkowski
sums of this kind irR3.

In the planar case, the crucial property of such a colleatibiinkowski sums was
that each pair of boundaries cross at most twice, so theatifeis a family of pseudo-
disks. The corresponding propertyR¥ (assuming general position) is that each pair of
boundaries intersect in a single connected closed c@ije However, a triple of bound-
aries can intersect in an arbitrarily large number of pgimtisich makes the analysis of the
union complexity considerably harder than in the plane.rigedratic bounds have been
established for only a few special cases, summarized indlf@ing theorems. (In each
part, s effectively denotes the overall complexity of the indivadiMinkowski sums inC,
but its precise definition is slightly different in each case

THEOREM 3.4 (Halperin and Yap74]). If B is a cube, the complexity &f(C) (and
thus ofF) is O(s?a(s)), wheres denotes the overall number of faces of the original poly-
topes inO.

THEOREM3.5 (Aronov and Sharird1]). If B is a convex polytope, the complexity of
U(C) is O(nslogn), wheres denotes the overall number of faces of the polytope in
There exist constructions where the union complexify(issa(n)).

THEOREM 3.6 (Agarwal and Sharirl2)). If B is a ball, the complexity df((C) is
O*(s?), wheres is the total number of faces of the polytope®inin particular taking©®
to be a set of: lines inR?, the complexity of the union afcongruent infinite cylinders in
R3 is O* (n?).

The proofs of these theorems are rather different, and efittem is very technical.
The proof of Theorem 3.4 is based on ideas similar to those g even and Shari©].
The proof of Theorem 3.5 is a special case of the analysiseotfittion of arbitrary convex
polyhedra, given in22], where the main new ingredient is an intricate topologaagu-
ment that shows that the number of special quadrilaterdtsinnion isO(ns). The proof
of Theorem 3.6 is the most involved; it uses a rather comgtaharging scheme, and is
based on several geometric observations that reduce tiéeprdo that of bounding the
complexity of sandwich regions between upper and lowerlepes of bivariate functions.

These results lead to a few natural questions that remasgivetu
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OPEN PROBLEM 4. What is the maximum complexity of the uniomofongruent
cones or tori?

OPEN PROBLEM 5. What is the maximum complexity of the uniomafylinders of
different radii?

Although the upper bound for all these cases is conjectarbd©* (n?), no subcubic
upper bounds are known to date.

3.5. Union of fat objects. Similar to the planar case, a compact convex obfeéct
is calleda-fat, for some constantt > 1, if the ratio between the radii of the smallest
enclosing ball and of the largest inscribed ball(®fis at mosta. In this subsection we
review some of the recent (and slightly less recent) devetags in the analysis of the
complexity of the union of fat objects iR3.

Union of axis-aligned cubes.We begin by considering the simple case of axis-aligned
cubes.

THEOREM 3.7 (Boissonnagt al.[29]; see also33]). The complexity of the union of
n axis-aligned cubes iiR? is O(n?). The bound reduces 10(n) if the cubes are of the
same (or nearly the same) size. Both bounds are tight in thistwase.

Proof: This result is sufficiently simple to allow us to provide a quete proof. We only
need to count the number of vertices of the union that arelentito three facets of three
distinct respective cubes; the number of all other vertigéshe entire arrangement of
the cube boundaries) is onty(n?). Letv be such a vertex, incident to facets, F», I

of three distinct respective cubés, Cs, C3, so thatC is the largest cube among them.
Follow the intersection segmeht N F3 from v into Cy. This segment has to end within
C1, at a point that lies on an edge ©% or C3, and on the remaining facét or F»>. The
number of such terminal points is clearly orfln?), and each of them can be encountered
in such a tracing from only a constant number of vertice$the union. Hence, the number
of these vertices, and thus the complexity of the unio)(is?). The proof for congruent
cubes is also simple, but we omit it. O

Union of arbitrary nearly congruent cubes. If the cubes are not axis-parallel, the prob-
lem becomes much harder. Paehal.[105 have studied the case in which the cubes
have equal (or “almost equal”) size, and have shbifuat the complexity of their union is
O*(n?). The key observation in their analysis is that one can layaacegular grid, where
the size of its cells is somewhat smaller than that of thergagbes, so that (a) each cube
meets only a constant number of cells, and (b) no two oppé&asitets of a cube meet the
same cell. This allows them to consider the union separatedach cell, and to observe
that the union within each cell becomes a union of unbound@d@gaces, (right-angle)
dihedral wedges, and (orthant-like) trihedral wedges. dmalysis thus reduces to that of
bounding the complexity of the union of such wedges. The rteghnical ingredient in
the analysis of 105 is:

THEOREM 3.8 (Pachet al.[105). The complexity of the union ef «-fat dihedral
wedges i€)* (n?), where the constant of proportionality depends on (the éaddand on)
.

SWe do not highlight this result, because it is now subsumettéyesult of Ezra and Sharié4], which we
will shortly present.
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Pachet al.were not as successful in analyzing the complexity of thewwif a-fat
trinedral wedges (wedges whose solid angle is at lagstor any constanty > 0, and
managed to establish a nearly quadratic bound only when #uges are “substantially
fat”, a case that includes wedges formed at a vertex of a dutienot wedges formed at a
vertex of a regular tetrahedron.

A major observation in the analysis afQq is that, for any triple ofa-fat dihedral
wedges, there are many directiomssuch that a plane orthogonal tocuts each of the
three wedges in a cross-section which is itgéHfat, for somen’ > 0 that depends on.
This allows the analysis to proceed by sweeping the givergegdly a plane, considering
only those wedges that meet the plane in fat cross-sectoddyy analyzing critical events
when the boundaries of three of the swept wedges becomerenturinding such a good
sweeping direction for triples of trihedral wedges is hardie general this is impossible
unless the wedges are really “substantially fat”. The agialihen combines the study of
special cubes (as reviewed above) with some other trickspnalude that the complexity
of the union of such wedges is nearly quadratic.

To recap, the technique 0105, powerful as it was, could not handle cubes of arbi-
trary sizes (the grid reduction does not work then), nor dauhandle other kinds of fat
polyhedra (for which the wedges formed at their verticesreesufficiently fat); even the
special case of regular tetrahedra remained open. Botlesétbhortcomings have recently
been overcome by Ezra and Sha6d], who have obtained a nearly quadratic bound for
the complexity of the union ot arbitrary fat tetrahedra. We will review this result below,
and we note that it immediately implies a nearly quadratieritbfor the union complexity
of n arbitrary cubes irR? of arbitrary sizes.

Union of fat tetrahedra and of cubes. We say that a tetrahedron isfat if each of its
solid angles is at least. This definition is compatible with the other standard dé&finis
of fatness. Specifically, the ratio between the radii of thalest enclosing ball and the
largest inscribed ball of an-fat tetrahedron is at most = O(1/+/«). Conversely, if this
ratio is at most’ for some tetrahedron, then it must hefat with o« = Q(1/(a’)?).

dihedral

trihedral

Figure 23. An «-fat trihedral wedge and an-fat dihedral wedge.

To simplify the presentation, let us assume for the momeattwre are given a col-
lection C of n a-fat tetrahedra ohearly equal sizemeaning that the diameters of the
tetrahedra inC are within some constant ratio of each other. Then there isasy grid-
based argument, similar to the one used for nearly equalssubeeduce the analysis of
their union to that of the union af-fat trihedral wedges, namely, trihedral wedges whose
solid angles are at least(see Figure 23). Specifically, assume, for simplicity, tlathe
diameters lie in the interval, ¢, for a fixed constant. We lay out a grid of sufficiently
small (but constant) cell size, so that (a) for any tetrabedrof C and any grid celA,
at most three facets of meetA, and (b) each tetrahedron &crosses onlyO(1) grid
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cells. Hence, within each grid ce\, we need to bound the complexity of the union of
somena «a-fat trihedral wedgegwhich can also degenerate further to dihedral wedges or
halfspaces).

Suppose that we have a bound@f(m?) on the complexity of the union aof. a-
fat trihedral wedges, with a constant of proportionalitgttilepends om. This bound,
combined with the above reduction, implies that the comipjeof the union ofn nearly-
equala-fat tetrahedra i~ , O*(n4) = O*(n?). The case of nearly equal cubes is now
an easy corollary of this result.

The analysis in§4] applies also to the case in which the tetrahedra have arpiizes
(diameters). It is somewhat involved, and we sketch herg smine of its highlights. To
simplify the presentation, we only consider the case ofrihetiral wedges. Lef be a
family of n a-fat trihedral wedges. The main technical tool in the analg$ [64] is the
following lemma.

LEMMA 3.9 (Ezra and ShariH]). Let R be a set of planes inR?, and letiV be an
arbitrary trihedral wedge.

(i) The number of cells oA(R) that meet all three facets oF is onlyO(r).

(i) If we triangulation a cell ofA(R) into tetrahedra using the Dobkin-Kirkpatrick
hierarchical decomposition schen#l], then there are)(log r) tetrahedra in
the triangulation that meet all three facetslaf.

See Figure 24(b) for an illustration. The lemma applies tp, aot necessarily fat,
trihedral wedge. Note also that the planar version of themtenis trivial: In an arrange-
ment ofr lines in the plane, at mosine cellcan meet all three edges of a given triangle
(Figure 24(a)). As another trivial variant in the plane, thenber of cells that meet both
sides of avedgeis O(r).

(@) (b)

Figure 24. (a) In the plane, only one cell of the arrangement can me¢trae edges of a given triangle. (b) In
R3, as many a®)(r) cells can meet all three facets of a given trinedral wedgeltamatic view from the apex
of the wedge).

Lemma 3.9 suggests the following recursive decompositihreme. Take a random
sampleR of r planes that support the facets of the wedge8.oConstruct the arrange-
mentA(R) and decompose each of its cells into tetrahedra, using th&ibdirkpatrick
scheme. We obtain a decomposit®mf R? into O(r?) tetrahedra, with the property that
for each wedgéV of €, the number of tetrahedra that meet all three facetd’of only
O(rlogr). Hence, on average, each tetrahedron is crossed by aOr((istlog r) wedges
of € with this property. Moreover, the standard theory of randsampling /6] allows
us to assume thak has the property that each of the simplices=ofs crossed by the
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boundaries of at mos? (% log r) wedges ofc. To recap, we obtai(r3) subproblems,
each involving at mos® (2 log r) wedges, of which, on average, ordy(Z; logr) are
trihnedral wedges, and the rest are dihedral wedges (orgzalés).

To obtain the asserted near-quadratic bound, the anatygbd]iapplies the decompo-
sition repeatedly, taking to be a sufficiently large constant, and involves a rathesfoar
counting of the vertices that are not passed down the remurdinstead of reconstruct-
ing this somewhat involved analysis, let us consider thiefohg simpler quick-and-dirty
approach. If we choose = /n, we obtainO(n3/2) subproblems, each involving some
numberm of trihedral wedges (which is only logarithmic on average)lO*(n'/?) dihe-
dral wedges. The number of vertices of the union that are éadrby three dihedral wedges
is O*((n'/?)?) = O*(n) [109, and the number of vertices that lie on the boundary of
at least one trihedral wedge@*(mn) (using a rough quadratic bound for each trihedral
wedge separately). Summing over the tetrahedra, and usanfact that then’s sum to
O(nrlogr) = O*(n®/?), yields the overall bound aD* (n°/2) for the complexity of the
union. With the more careful analysis i64], this bound drops t@*(n?).

The above analysis can also be applied to the case of fatéetrarather than wedges
(Lemma 3.9 obviously carries over to this case), but thersictamably more effort is
needed to count vertices that are not passed down the mairsiee. The analysis of
[64] culminates at the following result.

THEOREM 3.10 (Ezra and Sharii6d]). The complexity of the union ef arbitrary
a-fat tetrahedra inR? is O* (n?), where the constant of proportionality dependscon

Union of a-round objects. Let € be a family ofn a-roundobjects inR3. That s, for each
C € €, any pointp € 9C'is incident upon a ball of radius times the diameter af’ that is
fully contained inC. We first consider a special case of this problem, in whichuvther
assume that the diameter of each membe? i betweenl and D, for some constanb.
We may therefore assume that all the balls used in the definilf roundness are of the
same radius.

These assumptions are easily seen to imply thatsfa vertex of the union, incident
upon the boundaries of three sétg, C5, C3, then, with at least some constant probability,
a random directiom has the property that the line througtat directionu intersects each
of the sets’y, Cs, C5 in an interval of length at least’ = («, for some sufficiently small
constanf? > 0. We call a vertex satisfying the above property for a dik@tti au-feasible
vertex. To prove that (@) is O* (n?), it suffices to establish a near-quadratic bound on the
number ofu-feasible vertices for any fixed directian Suppose, without loss of generality,
thatw is the z-direction.

PartitionR?® into horizontal slabs of width/. For each slal, let €1, €~ denote the
family of objects ofC that intersect the top and bottom boundaries téspectively, clipped
to within o. Moreover, retain, for each obje€t € C_, the portion of its top boundary con-
sisting of those points € o for which the vertical segment fromto the bottom boundary
of o is fully contained inC'. Apply a symmetric trimming process to the bottom boundarie
of the objects of}. Putn, = |CF| + |C, |. It can be checked that eackfeasible vertex
that lies in the slalr is a vertex of the sandwich region between (the trimmed posti
of) the upper envelope of the top boundaries of object8 irand the lower envelope of
the bottom boundaries of objects@} . See Figure 25. As mentioned in Section 3.2, the
number of vertices in the sandwich regiori$(n2). However,Y" n, = O(n), because
each object ir€ can cross only)(1) slabs. Therefore(C) = > O*(n2) = O*(n?).
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B
=

Figure 25. Reducing the union of nearly equalround objects ifR3 to sandwich regions.

The above argument fails when the diameters of the objedtsdiffer significantly.
This has been overcome by Aronev al.[19], who have extended the nearly quadratic
bound to this case, using a somewhat more involved techpighieh is also based on
reducing the problem to sandwich regions between envelopes

THEOREM3.11 (Aronovet al.[19]; Agarwal and Sharir]2]). LetC be a family ofz
3-dimensionak-round objects of constant description complexity. Thencibmplexity of
U(C) is O* (n?).

Despite all the progress reviewed in this section, the falhg general question is still
open.

OPENPROBLEM 6. What is the maximum complexity of the uniomaf-fat objects
of constant description complexity R¢? What if they are convex?

4. Beyond Three Dimensions

In higher dimensions, the problem of bounding the compjexithe union of geomet-
ric objects becomes even more complicated, and only veryréswits are known, which
we duly review here.

Union of pseudo-halfspacesAs already mentioned in the introduction, the complexity
of the union ofn halfspaces (each bounded by a hyperplanéydnis O(nl4/2l). For
pseudo-halfspaces (regions lying above or below the grapbroe continuous function of
constant description complexity), the bounds are not timatls As shown by Sharir13,

the complexity of the lower (or upper) enveloperofd — 1)-variate functions of constant
description complexity i©* (n?~1). Hence, the union of pseudo-halfspaces, all of which
are lower (or all upper) i©* (n4—1).

However, this is not known to hold in the mixed case, whereespseudo-halfspaces
are lower and some are upper,dn> 5 dimensions. As in two and three dimensions,
we seek bounds on the complexity of the sandwich region etvadower and an upper
envelope, which turns out to be a hard problem do> 5. An O*(n?) bound on the
complexity of the sandwich region iR* was proved by Koltun and Shari8§. As in the
three-dimensional case, this is based on a nearly cubicdhastablished ing6], on the
complexity of the overlay of two minimization and/or maxiration diagrams, this time
of trivariate functions. These results yield a nearly cuimeind on the complexity of the
union of n pseudo-halfspaces of constant description complexi®‘in The problem of
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whether sandwich regions have asymptotically smaller derity than that of the entire
arrangementis still open fat > 5.

OPEN PROBLEM 7. What is the maximum complexity of the unionnopseudo-
halfspaces of constant description complexitiRih for d > 52

Linearization. The so-called linearization technique can be used to bdwaedamplexity
of the union of certain classes of regions, by transformimgsé regions to halfspaces.
Specifically, letf (x,a) be a(d + p)-variate polynomial, withv € R? anda € RP. Let
al,...,a" ben points inR?, and setf = {f;(z) = f(x,a’) | 1 <i < n}; thusFis a
collection ofd-variate polynomials. For eaghlet C; be one of the two regiong > 0 or

fi <0,andset = {C4,...,C,}. Suppose thaf(z, a) can be expressed in the form

) [z, a) = hola) + ¢r(a)pr(x) + - - + Yr(a)er(x),
whereyy, . . ., Yy, arep-variate polynomials ang, . . . , ¢ ared-variate polynomials. We
define the mag : R — R* by

e(@) = (p1(z), ..., or(2)).
Then the imagéd’ = {¢(z) | € R?} of R? is ad-dimensional surface iR* (assuming
k > d), and for anyu € R?, f(x,a) maps to the:-variate linear function

ha(y17 cee 7y7€) = w@(a) + 1/11(a)y1 + -+ 1/’1@(@)%@,

in the sense that for any € R?, f(x,a) = h,(¢(x)). The regionC; maps to one of the
two halfspaces bounded by the hyperplane(more precisely, to the intersectionldfvith
such a halfspace), which we denotery. LetH = {h} |1 <4 < n}. ThenlU(C) maps
to U(F) NT. Sincel is a constant-complexity surface, the complexity/d®) is propor-
tional to that ofU(J{). We refer tok as thedimensiorof thelinearizationy, and say that
JF admits a linearization of dimensidn Agarwal and Matou3el8] describe an algorithm
that computes a linearization of the smallest dimensioreupdrtain mild assumptions. If
F admits a linearization of dimensidn then the complexity of((C) is bounded by the
complexity of the union of. halfspaces iiR**1, and it is therefore(n!*/21). The most
popular example of linearization is perhaps the so-cdiftdg transform(see Section 2.2
for the planar case), which is constructed from the polyrami

f(z,a) = (z1 — a1)2 +o At (g — ad)2 - a3+1a
for 2 € R? anda € R?*!. The resulting lifting transformation itself is then
o(x) = (21,22,...,Tq,25 + -+ 273).
This mapsR? to the standard parabolaig);; = 2% + - - -+ 22 in R4*!, and a ball irR? is

mapped to a halfspace R+, which implies that the complexity of the union ofballs
in R%is O(nl4/21),

Axis-aligned cubes. Boissonnakt al.[29] provide an upper bound @d(n!%/?1) for the
union of n axis-parallel cubes iiR?, which improves taD(nl%/2]) when the cubes have
equal (or nearly equal) size. The complexity of the union eimply-shaped convex bodies
in R% with a common interior point is O* (n?~!), which follows from the observation that
the boundary of their union can be interpreted as the uppeiepe ofn (d — 1)-variate
functions (in spherical coordinates abeit A slightly refined bound for polyhedra iR?
with a common interior point was given ii7§].
Koltun and Sharir$6] extended Theorem 3.11 ®?, by proving that the complexity

of the union ofn convexa-round objects ifR* with nearly equal diameters i9* (n?).
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These results have been further generalized by Arat@/.[19] for (not necessarily con-
vex) a-round objects with arbitrary diameters. The only obstdalebtaining analogous
results inR?, for d > 5, is our inability to establish sharp upper bounds on the derily
of sandwich regions (as discussed above) in 5 dimensions.

OPEN PROBLEM 8. What is the maximum complexity of the uniomaf-round ob-
jects of constant description complexity{ for d > 5? What if their diameters are
almost the same?

5. Generalized Voronoi Diagrams

Voronoi diagrams are closely related to unions of geometbjects, in the following
manner. LetC be a set ofn pairwise disjoint convex objects iR, each of constant
description complexity, and lgt be a metric (or a&onvex distance functigi2q). For a
pointz € R?, let ®(x) denote the set of objects 6fthat are nearest tg, i.e.,

P(x) ={C e C|p(z,C) < p(z,C") for eachC’ € C}.

TheVoronoi diagramVor,(€) of € under the metrip (sometimes also simply denoted as
Vor(@)) is the partition ofR? into maximal connected regions of various dimensions, so
that, for each regioi, the setd(x) is the same for ali: € V. For each full-dimensional
region (cell),®(-) generally consists of a single sit& and the cell is called the Voronoi
cellof C. Fori = 1,...,n, let~; be the graph of the function,+1 = p(z,C;), for

r € R, and sefl’ = {v;},. Edelsbrunner and Seidebq] made the rather obvious
observation thaVor,,(C) is theminimization diagranof T', that is, the projection ont&?

of the lower envelope of the surfaceslin

To see the connection between generalized Voronoi diageantsinions of objects,
let € andp be as above (say, for the 3-dimensional case). For an objeet C and a
parameter > 0, defineB(C,r) = {z € R3 | p(x,C) < r}. For a fixedr, the union
K, = UcceB(C,r) is the region consisting of all points € R3 whose smallesp-
distance from a site i is at mostr. This in turn can be interpreted as a “cross-section” of
Vor(€)—itis in fact a level set at height, = r of the lower envelope of the corresponding
collectionI". Moreover, for each sit€; € C, the intersection of K. with the Voronoi cell
of C; is equal to the intersection OfB(C;, r) with that cell.

In general, if the metrip is a norm or a distance function induced by some convex
objectB, that is,p(z,y) = min{\ | y € « + AB}, the resulting “balls’B(C, r) are the
Minkowski sum& & (—rB), for C € €; the minus sign is superfluous gfis a metric
becausds is centrally symmetric in this case. Thus the union of Mink&ixsums of this
kind is a substructure of the corresponding Voronoi diagr&n course, this connection
also holds in any higher dimension.

One immediate conclusion is that the complexityoi(C) is at least as large as that
of K. In practice, establishing a tight bound on the latter camipy is a considerably
easier task, and in many instances the corresponding qoesincerning the complexity
of the entire Voronoi diagram is still open. For instancengider the case in whic8 is
a set of lines ink?, andp is the Euclidean metric. Then the expanded sité§, ), for
C € @, aren congruent infinite cylinders i3, of radiusr. As mentioned above, it is
shown in [L2] that the complexity of the uniok,. of these cylinders i©*(n?), but it is
a major open problem to establish a similar nearly quadtadiond on the complexity of
Vor,(C) (see Open Problem 10). There are (a few known) cases in whdcbdmplexity
of the entire Voronoi diagram is an order of magnitude latban that ofi(,.. For example,
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the complexity of the multiplicatively weighted Voronoiagjram of a point set in the plane
can have quadratic complexitgg], while the size off,. in this case is only linear.

In the classical case, wheris the Euclidean metric and the object<Liare singletons
(points), the graphs of the distance functigiis, C;) can be replaced by a collection of
hyperplanes ifR?+!, using a straightforward linearization technique, withaffiecting the
minimization diagram. Hence, the maximum possible coniplef Vor(€) is O(n!4/21),
and this is tight in the worst case (see, e83,[L11). In more general settings, though, this
reduction is not possible, and the complexity of the Voratiagram can be much higher.
Applying the observation of§0], and the bounds in Section 4 on the complexity of lower
(or upper) envelopes, we obtain that, under reasonablegegns onp and on the objects
in C, the complexity of the Voronoi diagram 9*(n?). While this bound is nontrivial
(the trivial one being)(n9t1)), in general it is not expected to be tight. For example, in
the case of planar Voronoi diagrams, this bound is neargtiad but the complexity of
“almost every” planar Voronoi diagram is on{y(n). Nevertheless, as mentioned above,
for certain “pathological” distance functions, the copesding planar Voronoi diagram
can indeed have quadratic complexi2g].

Voronoi diagrams of points in R?. As noted above, the complexity of the Euclidean
Voronoi diagram ofn points inR? is ©(n?). It has been a long-standing open problem
to determine whether a similar quadratic or nearly quadradiund holds ifR3 for more
general objects and metrics (here the known bounds on theleaity of lower envelopes
only give an upper bound @*(n?)). The problem stated above calls for improving this
bound by roughly another factor af Since we are aiming for a bound that is “two orders
of magnitude” better than the complexity 4{T"), this appears to be a considerably more
difficult problem than that of bounding the complexity of lemenvelopes. The only hope
of making progress here is to exploit the special structéiteexdistance functions(x, C).

Boissonnatet al.[29] have shown that the maximum complexity of the-Voronoi
diagram of a set of points inR? is ©(n?). Tagansky 118 has proved that the complexity
of the three-dimensional Voronoi diagram of point sitesemralgeneral polyhedral convex
distance function (induced by a polytope wifti1) facets) isO(n? logn). The bound has
been improved by Icking and M&9] to O(n?).

Voronoi diagrams of lines inRR3. Let p be a convex distance function B whose unit
ball is a convex polytope with a constant number of facetecé that not every distance
functionp is necessarily a metricp-fails to be symmetric if the defining polytope (its unit
ball) is not centrally symmetric.) Chewt al.[34] have shown that the complexity of the
Voronoi diagram of: lines inR3 with respect tg is O(n2a(n) log n). Clearly, theL; and
L., metrics satisfy the above assumptions. In these speciascte best known lower
bound for the complexity of the diagramn2a(n)). Koltun and Sharir§7] extended
the theorem of Chewet al.[34] to arbitrary collections of pairwise disjoint line segnten
and triangles, where the respective upper bounds on the legitypof the diagram are
O(n?a(n)logn) andO*(n?).

As already mentioned, in spite of some recent progreds, itknown about the com-
plexity of the Euclidean Voronoi diagram of linesR¥.

OPEN PROBLEM 9. What is the maximum complexity of the Euclidean Voronoi dia-
gram ofn lines or triangles inR3?

If the input lines have a constant number of orientationsntthe complexity of their
Euclidean Voronoi diagram i©*(n?), as shown by Koltun and Shari8f. Dwyer [43]
has shown that the expected complexity of the (Euclidean)nti diagram of a set of
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randomly selected lines iR? is only O(n?/2). For the general case, a recent work by
Everettet al.[58] sheds some light on the geometric and topological streatfibisectors
(resp. trisectors) defined by a pair (resp., triple) of limespace.

Voronoi diagram of moving points in the plane. An interesting special case of gener-
alized Voronoi diagrams ardynamic Voronoi diagramfr moving points in the plane.
Let C be a set of: points in the plane, each moving along some line at some figtaty
ity. The goal is to bound the number of combinatorial chargfabe Euclidean diagram
Vor(€) over time. This dynamic Voronoi diagram can easily be tramskd into a static
three-dimensional Voronoi diagram, by adding the tinaes a third coordinate. The points
become lines iR?, and the “metric* is a distance function induced by a horizontal disk
(that is, the distance from a poiptzo, yo, o) to a linef is the Euclidean distance from
to the point of intersection of with the horizontal plane = ¢,). Cubic or nearly cubic
bounds are known for this problem, even under more geneti@ge [66, 68, 113 but
subcubic bounds are known only in some very special c&&$8HA.

OPEN PROBLEM 10. What is the maximum complexity of the dynamic (Euclidean)
Voronoi diagram ofn moving points in the plane? What if all points move at the same
speed?

A recent study by Agarwadt al.[3] presents some necessary conditions for the dia-
gram to have large complexity, and thereby offers sometintuon why “typical” dynamic
Voronoi diagrams are expected to have small complexity. &tpected complexity of the
dynamic Voronoi diagram of points movingandomlyin the plane isD(n?/?) [44].

Voronoi diagrams in higher dimensions. Next, consider the problem of bounding the
complexity of generalized Voronoi diagrams in higher disiens. As mentioned above,
when the objects ir€ aren points inR? and the metric is Euclidean, the complexity
of Vor(€) is O(nl/21). Asd increases, this becomes significantly smaller than theenaiv
O(n*1) bound or the improved boun@®;* (n?), obtained by viewing the Voronoi diagram
as a lower envelope iR4*!. The same bound @b (n/?/?1) has been obtained i2§] for
the complexity of thel ..-diagram ofn points inRR%; this bound too was shown to be
tight in the worst case. It was thus tempting to conjectuet the maximum complexity
of generalized Voronoi diagrams in higher dimensions iselton /2!, However, this
conjecture was disproved by Arono¥q], who established a lower bound 9{n4~1) for

a general setting. The sites in his construction can be chwsée lower-dimensional
flats, and the distance can be chosn to be either Euclideapalyledral convex distance
function. It is interesting that the lower bound in Aronoegnstruction depends on the
affine dimensiord < k < d — 2 of the sites: It isQ(max {n*+1, nl(@=/211)  For

d = 3, his lower bound does not contradict the conjecture madeehloat the complexity
of generalized Voronoi diagrams should be at most near+gtiadn this case. Also, in
higher dimensions, the conjecture mentioned above isngitlrefuted when the sites are
singleton points. However, very little is known about thi®lpem. For instance, the
following problem remains open.

OPEN PROBLEM 11. What is the maximum complexity of the Voronoi diagram of a
set of points ifR¢ under polyhedral metrics or convex distance functions whost balls
haveO(1) facets?

“This is not really a metric, because the distance betweerpbirtts is defined only when they have the
samet-coordinate.
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Finally, for the general case, Aronov’s construction $¢ilves a gap of roughly a fac-
tor of n between the best known upper and lower bounds, and thussisdge conjecture
that the complexity of such diagrams(@s (n?~!). This is still a major open problem.

OPEN PROBLEM 12. Is it true that, for a set of n pairwise disjoint convex sites of
constant description complexity iR?, and for a metric (or convex distance functign)
whose unit ball has constant description complexity, themmexity ofVor(C) is always
O*(ni=1)?

Medial axis. A special case of Voronoi diagrams is theedial axis Here we are given a
regionC' with a complex boundary, e.g., a (not necessarily convelyaalron with many
faces. We regard each featuredf' (vertex, edge, face) as a separate site, and consider
the Voronoi diagram of these sites within the interior@f The lower-dimensional faces

of the diagram yield a “skeletal” representation @f which has several advantages in
practice p4]. A particularly difficult, and still open, special case Ieetfollowing.

OPEN PROBLEM 13. Let € be a collection of: balls in R3. What is the maximum
complexity of the medial axis &f(C)? What is the maximum complexity when all the balls
have the same radius?

In fact (see Amenta and Kollurilf]), it suffices to bound the complexity of the
Voronoi diagram of the vertices &f(€) within the union. Since the union may ha@¢n?)
vertices in the worst case, and the complexity of the Vorahagram of that many points
in R3 can in general be quadratic in their number, a naive uppentom the complexity
of the medial axis i©)(n*). However, the best known lower bound is only quadratic, and
closing the gap between the bounds is a challenging opetemnob

Voronoi diagrams of regularly sampled points. Dwyer [42] has proved that the expected
size of the (Euclidean) Voronoi diagram of a set of uniforrdigtributed random points
inside a ball inR? is linear. Erickson$5, 54 has studied the complexity of the Voronoi
diagram of a point seP in R3 in terms of thespreadof P, which is the ratio of the largest
and the smallest pairwise distances between the points &frickson has proved that the
complexity of the Voronoi diagram of a set of pointsii with spreadA is O(A®). He
has also proved that this bound is tight in the worst case hoyig anQ2(n?/2) lower
bound for a set of. point nicely distributed on a cylinder, so that their sprea@(./n).
Motivated by the problem of surface reconstruction from ticfesample points, a
considerable amount of work has been dedicated to bounigngpimplexity of the Voronoi
diagram of a set of regularly sampled points on a surfageR?. Golin and Na §7] have
shown that the expected complexity of the Voronoi diagram afniformly distributed
random points on a fixed polyhedral surfacen R? is O(n log? n). AsetS Cc Tis
called an(e, \)-sampleif any ball of radiuse centered at a point df contains at least
one and at mosk points of S. Attali and BoissonnatZ3] have proved that ifS ¢ R?
is an(e, A)-sample on a polyhedral surface, then the size of its Vordragiram is linear.
Attali et al.[25] have proved that ifS ¢ R? is an (e, \)-sample of size: on a generic
(smooth) surface, then its Voronoi diagram lis: log n) complexity. Roughly speaking,
a surface igyenericif the points on the surface at which one of the principal atuve is
locally maximal, form a finite set of curves with bounded léngpheres and cylinders
are not generic surfaces. Note that the assumption of ggtyds probably crucial in the
proof of [25], because of Erickson’s lower-bound construction for p@om cylinders$5].
Recently, Amentat al.[15] have proved that the complexity of the Voronoi diagramof
nicely distributed points on a convexdimensional polyhedron iR? is O(n(?~1)/?); see
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the original paper for details on the sampling condition atiter issues. We conclude this
discussion by mentioning the following open problem:

OPEN PROBLEM 14. What is the maximum complexity of the Voronoi diagram of a
set ofn. points regularly sampled on (or sufficiently near) a smoo#mnifold in R??

6. Discussion

In this survey we have reviewed the extensive work concertiie complexity of the
union of a family of geometric objects in two, three, and ligkhimensions. We also
reviewed the state of the art concerning the complexity okgalized Voronoi diagrams in
three and higher dimensions.

However, we have not discussed algorithms for computingutien of geometric
objects. Several deterministic divide-and-conquer, camided divide-and-conquer, and
randomized incremental algorithms have been proposedtpuote the union for a variety
of special caseslp, 60, 63. Motivated by many applications, considerable work has
addressed related issues, such as computing the volume ahtbn, the gradient of the
volume of union of balls iR? (regarding the volume of the union as a function fr&t
to R), or certain geometric or topological properties of theaimof balls. It is beyond the
scope of this survey to review these results, and we refergheéer to ¢, 46, 48, 49, 93,
103 and the references therein for a sample of such results.
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