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Abstract

Any set of n points in strictly convex position in the plane has at most L@J triples

that induce equilateral triangles of side length one. This bound cannot be improved. The
case of general triangles is also discussed.

1 Introduction

What is the maximum number of times that the unit distance can occur among n points in
the plane? This more than fifty years old question of Paul Erdés, published in the American
Mathematical Monthly [E46], opened a whole new area of research in combinatorial geometry
[PA95].

An important variant of this problem, raised by Erdés and Leo Moser [EM59], is the fol-
lowing. At most how many times can the unit distance occur among the vertices of a convex
n-gon, i.e., among n points in the plane in strictly conver position? Denote this maximum by
u®™(n). Erdés and Moser noticed that u®"(n) > |5(n —1)/3], as is shown by a configura-
tion containing |(n—1)/3] congruent copies of a rhombus with side length one and angle 27/3,
rotated by small angles around one of its vertices belonging to such an angle (see Fig. 1). They
also suggested that this bound may be tight.

Thirty years later, Herbert Edelsbrunner and Péter Hajnal [EH91] came up with a better
construction showing that 4™ (n) > 2n — 7. This is the best currently known lower bound. On
the other hand, Fiiredi [F90] proved that u®™(n) = O(nlogn) (see [BPO1] for a very simple
inductional argument).

An equilateral triangle of side length omne is called a unit triangle. The aim of this note is
to show that if, instead of unit segments, we count the number of unit triangles determined
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Figure 1: The Erdés-Moser configuration

by n points in strictly convex position in the plane, then the maximum is attained by the
Erdés-Moser configuration depicted in Fig. 1. More precisely, we have

Theorem 1. Any set of n points in strictly convex position in the plane has at most |_2(n3—_1)J
triples which induce unit triangles. This bound is tight for all n > 0.

If we do not require strict convexity, we obtain a somewhat different answer. A set of n
points in the plane is said to be in conver position, if none of its elements is contained in the
interior of a triangle induced by three others.

Theorem 2. Any set of n points in convex position in the plane has at most n—2 triples which
induce unit triangles. This bound is tight for all n > 1.

The proofs of Theorems 1 and 2 are given in Sections 2 and 3, resp. In Section 4, we discuss
the analogous questions for non-unit triangles. Our methods yield the following bounds.

Theorem 3. Any set of n points in strictly convex position in the plane has at most 2n triples
which induce congruent copies of a fixed triangle with a given orientation.

The investigation of repeated triangles (or, more generally, simplices) in various point sets
was initiated by Erdds and Purdy [EP71, EP76]. For some other results of this kind and their
higher dimensional analogues, see Abrego and Fernandez-Merchant [AF00] and Agarwal-Sharir
[ASO1], resp.

2 Points in strictly convex position — Proof of Theorem 1

Throughout this section, let S be a fixed set of n points in the plane in strictly convex position.
Let convS denote the convex hull of S. Connect two points =,y € S by a straight-line segment
(or edge), if S induces a unit triangle, one of whose sides is zy. If zyz is a clockwise oriented
unit triangle induced by S, then zy is said to be a left edge with respect to x and a right edge
with respect to y. It is called a rightmost left edge with respect z, if there is no left edge that can
be obtained from zy by a clockwise rotation around z with an angle smaller than 7. Similarly,
xy is called a leftmost right edge with respect to y, if there is no right edge that can be obtained
from zy by a counter-clockwise rotation around y with an angle smaller than 7. Obviously,
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Figure 2: Illustration to the proof of Lemma 2.1

there is at most one rightmost left and at most one leftmost right edge with respect to each
vertex.

We need the following observation.

Lemma 2.1. Let zy be a left edge with respect to x (and hence a right edge with respect to y).
Then xy is either the rightmost left edge with respect to x or the leftmost right edge with respect
to y.

Proof: Let zyz be a clockwise oriented unit triangle. Assume, in order to obtain a contradic-
tion, that xa is the rightmost left edge with respect to « and yb is the leftmost right edge with
respect to y, for some a # y and b # x. Then, there exist a’, b’ € S such that zaa’ and yb'b are
clockwise oriented unit triangles.

Let C; and C, denote the semi-circles obtained by intersecting the unit circles centered at
z and y, resp., with the half-plane containing z bounded by the line zy. Let y; be the point
of C; opposite to y, and let z; be the point of Cy opposite to x. Finally, let yo denote the
midpoint of the arc of C; between y; and z, and let x5 denote the midpoint of the arc of C,
between z; and z. (See Fig. 2.)

The point a cannot belong to the closed arc [yi1,y2] of Cy, because then we would have
z € conv{y,a,a'}, contradicting our assumption that S is in strictly convex position. Thus,

a must lie on the open arc (y,ys) of Cp. This yields that either a or o’ must belong to the

—

arc (z,y2] C Cp. Similarly, either b or b’ must belong to the arc (z,z2] C Cy. So we have
z € conv{z,y,a,a’,b,b'}, the desired contradiction.

Notice that if we make the somewhat weaker assumption that the elements of S are in
convex (but not necessarily strictly convex) position, i.e., no element of S lies in the interior of
a triangle induced by three others, then there is one possibility: z =a =10. 1

Assume without loss of generality that every element x € S belongs to at least one unit
triangle induced by S. Otherwise, we can discard z and prove Theorem 1 by induction. Let P;
(resp. P») denote the set of ordered pairs (z,e), where z € S and e is the rightmost left (resp.
leftmost right) edge with respect to z.

According to our assumption, for each z € S there is precisely one rightmost left edge and
precisely one leftmost right edge with respect to z. Therefore, we have |P;|+ |P| = 2n. On the



other hand, Lemma 2.1 implies that each side of a unit triangle contributes at least one element
to P; or P,. Denoting the set of unit triangles by U, we obtain |P;| + |P,| > 3|U|, whence

|Pi|+ || _ 2n

Ul < .
Ul = 3 3

This bound is only slightly weaker than the statement of Theorem 1.

To establish Theorem 1, it is sufficient to prove the following.

Lemma 2.2. There exist at least two ordered pairs (z,y) such that e = zy is a rightmost
left edge with respect to = and a leftmost right edge with respect to vy, i.e., (z,e) € P, and
(y7 6) € P2-

Proof: We may suppose again that every point of S belongs to at least one unit triangle. For
any z € S, let R(z) denote the intersection of convS with the open half-plane to the right of
the directed line :@ supporting the rightmost left edge at xz. Similarly, let L(z) denote the
intersection of convS with the open half-plane to the left of the directed line T2 supporting the
leftmost right edge at z. Let R = {R(z) |z € S} and £ = {L(z) |z € S}.

Notice that any minimal element of R U £ under containment belongs to R N L. Indeed,
assume that, say, R(z) is such a minimal element, and let zgy, be the rightmost left edge with
respect to zo. Then z(yy is a right edge with respect yo. Moreover, it must be the leftmost right
edge with respect to 1o, otherwise L(1y) would be a proper subset of R(z¢), contradicting the
minimality of R(zp). Thus, we have L(yg) = R(z¢), which yields that the pair (zg, 1) meets
the requirements of the lemma.

Moreover, we can find another ordered pair (1, y1) with this property, by choosing a minimal
element among the sets in R N L entirely contained in L(zg). It is not hard to verify that
(zo,y0) # (z1,y1). (However, it is possible that 1 = yo and y; = z¢.) 11

In view of Lemma 2.2, we now obtain that 2n = |P;| + |P2| > 3|U| + 2, and Theorem 1
follows.

3 Relaxing the condition — Proof of Theorem 2

Here we consider the case when the points are in convex, but not necessarily strictly convex,
position. Consider a set of five points, z,y, z,1,2', with the following property: zyz is a
clockwise oriented, zy'z and zyz' are counter-clockwise oriented unit triangles. We refer to
such a set as a special configuration.

The proof is by induction. For n = 3, the assertion is trivial. Let S be a set of n > 3 points
in convex position, and assume that Theorem 2 has already been proved for sets with fewer
than n elements.

If S has no five points that form a special configuration, then, according to the remark at
the end of the proof of Lemma 2.1, we can apply the argument in the last section to conclude
that || < 22| <n -2,



Figure 3: Definition of three auxiliary rays

Thus, we may suppose that S has five points, z,y, 2,1, 2/, forming a special configuration.
It is enough to show that S has a point incident to at most one unit triangle. Indeed, by
removing such a point and applying the induction hypothesis to the remaining set, the result
follows. If y' is incident to only one unit triangle, we are done. Suppose that there is another
unit triangle, different from zy'z, which is incident to '. It is easy to verify that the point z
obtained by reflecting z about 3’z must belong to S. In exactly the same way, we can argue
that either z; is incident to only one unit triangle or the point zo obtained by the reflection of
z about z17' also belongs to S. This procedure must end in finitely many steps, and produce
a point incident to only one unit triangle.

4 General triangles — Proof of Theorem 3

We now extend the arguments in the previous sections to general triangles. Throughout this
section, let Ty = xoypzo be a fixed clockwise oriented triangle such that xgyg is one of its longest
sides, and let S be a fixed set of n points in convex position in the plane. Consider a triangle
T = xyz congruent to Ty, whose vertices belong to S and correspond to zg,yo, and zy, resp.
Just like before, zy is said to be a left edge with respect to  and a right edge with respect to
y. We say that zy is a rightmost left edge with respect to x (resp. a leftmost right edge with
respect to y), if there is no triangle 7' congruent to 7', induced by S, that can be obtained from
T by a clockwise rotation around z (resp. by a counter-clockwise rotation around y) with an
angle smaller than .

Lemma 2.1 generalizes as follows.

Lemma 4.1. Let T = zyz be a clockwise oriented triangle congruent to Ty, which is induced by
a set of points in strictly convex position, and let xy be a longest edge of T'. Then zy is either
a rightmost left edge with respect to x or a leftmost right edge with respect to y.

To prove this, we need a little preparation. Suppose without loss of generality that xy
induces a horizontal line and z is to the right of y (see Fig. 3). Denote by 7, 7, and 7 the
rays emanating from z, pointing upwards, to the left and to the right, resp. Let @) be the convex
cone (quadrant) bounded by ¥ and 7, and let Q' be the convex cone bounded by ¥ and 7)



Claim 4.2. Assume that zy is not a rightmost left edge with respect to x, i.e., there is a
triangle T' = xy'z' that can be obtained from T by a clockwise rotation around = with an angle
0 < ¢ < m. Then at least one vertex u € T' must belong to the set Q \ {z}.

Proof: Let a,(, and v denote the angles of T' at z,y, and z, resp. By the maximality of zy,
we have that v > a,8. If 0 < ¢ < m — 2, then we have 2’ € Q \ {z} and we are done. If
m— 2y < ¢ < a, then z is in the interior of convT”, contradicting our assumption that the
points are in convex position. Hence, using the fact that # — 2y < 7 — 2, we can suppose that
¢ > a. In fact, we can also assume that ¢ > «. Indeed, ¢ = « implies v = z, 8 = 7, whence
p=a=m—2y <7 — 2a, and this case has been handled before.

If a < ¢ < m™—20, then z is in the interior of the convex hull of z,y, and y’, contradiction.
Ifr—28<¢p<7m—a, wehave y € D\ {z}. To see this, it is enough to note that the height
of T belonging to zz is at least as large as the height belonging to the longest side, xy.

Finally, if T — a < ¢ < 7, then z must belong to conv{y,y’,2’}, again a contradiction. i

By symmetry, we obtain that if zy is not a leftmost right edge with respect to y, then
at least one element ' € S must belong to the set @'\ {z}. Therefore, if zy is neither a
rightmost left edge with respect to z, nor a leftmost right one with respect to ¥y, then we have
z € conv{z,y, u,u'}, which completes the proof of Lemma 4.1.

Now we are in a position to establish Theorem 3.

Count the number of pairs (e,z), where z € S and e is either a rightmost left edge or a
leftmost right edge with respect to x, corresponding to the edge ey = xoyo of Tp. According to
Lemma 4.1, the number of these pairs is at least the number of congruent copies of Ty induced
by S, which have the same orientation. On the other hand, every x € G belongs to at most 2
such pairs, and the theorem follows. I

Remark 4.3. A more careful analysis of the extreme cases shows that, if Tj is not an isosceles
triangle, Lemma 4.1 and Theorem 3 remain true under the weaker assumption that the points
of S are in convex (but not necessarily in strictly convex) position.

Remark 4.4. In some special cases it is not hard to improve Theorem 3. Suppose, for example,
that Ty is not an acute triangle , i.e., using the same notation as in the proof of Claim 4.2, we
have v > ©/2. Assume further that o > 2. Then, under the assumptions in Lemma 4.1, we
can argue that zy is necessarily the rightmost left edge with respect to z. Now every congruent
copy T' = zyz of Ty with a given orientation gives rise to a unigue rightmost left edge at . On
the other hand, there is at most one such rightmost left edge incident to each vertex v € S.
Thus, we obtain

Theorem 4. Assume Ty is a non-acute triangle, one of whose acute angles is at least twice
as large as the other. Then any set of n points in convex position in the plane has at most n
copies of Ty with a given orientation.

To see that this bound can be attained, let vy, ..., v, denote the vertices of a regular n-gon
(n > 6) listed in clockwise order, and set Ty = zoyp2o, where zy = vg11,y0 = v1, and 2zg = vg
for some 3 <k <n/2.



Figure 4: n = 16 points with 2n — 8 congruent triangles

We conjecture that the upper bound 2n in Theorem 3 can be replaced by n, without
making any assumption on the angles of the triangle. Moreover, for non-isosceles triangles,
this conjecture may remain true for point sets in convex (but not necessarily strictly convex)
position (cp. Remark 4.3). However, it is not hard to construct a set of n points lying on two
parallel lines, which has 2n — 8 copies of a suitable isosceles triangle.
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