
Crossing number of toroidal graphsJ�anos Pa
h� and G�eza T�othyR�enyi Institute, Hungarian A
ademy of S
ien
esAbstra
tIt is shown that if a graph of n verti
es 
an be drawn on the torus without edge 
rossingsand the maximum degree of its verti
es is at most d, then its planar 
rossing number
annot ex
eed 
dn, where 
 is a 
onstant. This bound, 
onje
tured by Brass, 
annotbe improved, apart from the value of the 
onstant. We strengthen and generalize thisresult to the 
ase when the graph has a 
rossing-free drawing on an orientable surfa
eof higher genus and there is no restri
tion on the degrees of the verti
es.1 Introdu
tionLet Sg be the 
ompa
t orientable surfa
e with no boundary, of genus g. Given a simplegraph G, a drawing of G on Sg is a representation of G su
h that the verti
es of G arerepresented by points of Sg and the edges are represented simple (i.e., non-sel�nterse
ting)
ontinuous ar
s in Sg, 
onne
ting the 
orresponding point pairs and not passing throughany other vertex. The 
rossing number of G on Sg, 
rg(G), is de�ned as the minimumnumber of edge 
rossings over all drawings of G in Sg. For 
r0(G), the \usual" planar
rossing number, we simply write 
r(G).Let G be a graph of n verti
es and e edges, and suppose that it 
an be drawn on thetorus without 
rossing, that is, G satis�es 
r1(G) = 0. How large 
an 
r(G) be? Clearly, wehave 
r(G) < �e2�, and this order of magnitude 
an be attained, as shown by the followingexample. Take �ve verti
es and 
onne
t any pair of them by e20 vertex-disjoint paths oflengths two. In any drawing of this graph in the plane, every subdivision of K5 gives riseto a 
rossing. Therefore, the number of 
rossings must be at least e2400 .Peter Brass suggested that this estimate 
an be substantially improved if we impose anupper bound on the degree of the verti
es.�Supported by NSF grant CCR-00-98246 and grants from NSA, PSC-CUNY, Hungarian Resear
h Foun-dation, and BSFySupported by OTKA-T-038397 and OTKA-T-046246.1



Theorem 1. Let G be a graph of n verti
es with maximum degree d, and suppose that Ghas a 
rossing-free drawing on the torus. Then we have 
r(G) � 
dn, where 
 is a 
onstant.For d � 3, the bound in Theorem 1 
annot be improved, apart from the value of the
onstant 
. Consider the following example. Let d � 4, G = Ck � Ck, where k = pn=d isa large integer and Ck denotes a 
y
le of length k. Obviously, this graph 
an be drawn onthe torus without 
rossings. On the other hand, by a result of Salazar and Ugalde [SU04℄,its planar 
rossing number is larger than (45 � ")k2, for any " > 0, provided that k is largeenough. Substitute every edge e of G by bd4
 new verti
es, ea
h 
onne
ted to both endpointsof e. The resulting graph G0 has at most n verti
es, ea
h of degree at most d. It 
an bedrawn on the torus with no 
rossing, and its planar 
rossing number is at least�45 � "� k2 � d216 > 121nd:To see this, it is enough to observe that there is an optimal drawing of G0 in the planewith the property that any two paths of length two 
onne
ting the same pair of verti
es
ross pre
isely the same edges. The same 
onstru
tion 
an be slightly modi�ed to showthat 
r(G) 
an also grow linearly in n if the maximum degree d is equal to three.Theorem 1 
an be strengthened as follows.Theorem 2. Let G be a graph of n verti
es of maximum degree d that has a 
rossing-freedrawing on Sg, the orientable surfa
e of genus g. Then we have 
r(G) � 
d;gn, where 
d;gis a 
onstant depending on d and g.We 
an drop the 
ondition on the maximum degree and obtain a more general statement.Theorem 3. Let G be a graph of n verti
es with degrees d1; d2; : : : ; dn, and suppose that Ghas a 
rossing-free drawing on Sg. Then we have
r(G) � 
g nXi=1 d2i ;where 
g is a 
onstant depending on g.To simplify the presentation and to emphasize the main idea of the proof, in Se
tion 2�rst we settle the planar 
ase (Theorem 1). In Se
tion 3, we redu
e Theorem 3 to a similarupper bound on the 
rossing number of G in Sg�1 (Theorem 3.1). This latter result isestablished in Se
tion 4.2 The planar 
ase: Proof of Theorem 1We 
an assume that d � 3. It is suÆ
ient to prove that 
r(G) � 
d(n � 1) holds for anytwo-
onne
ted graph G satisfying the 
onditions. Indeed, if G is dis
onne
ted or has a 
ut2



vertex, then it 
an be obtained as the union of two graphs G1 and G2 with n1 and n2verti
es that have at most one vertex in 
ommon, so that we have n1 + n2 = n or n + 1.Arguing for G1 and G2 separately, we obtain by indu
tion that
r(G) = 
r(G1) + 
r(G2) � 
d(n1 � 1) + 
d(n2 � 1) � 
d(n� 1);as required.Let G be a two-
onne
ted graph with maximum degree d and 
r1(G) = 0. Fix a 
rossing-free drawing of G on the torus. We 
an assume that the boundary of ea
h fa
e is 
onne
ted.Indeed, if one of the fa
es 
ontains a 
y
le not 
ontra
tible within the fa
e, then 
uttingthe torus along this 
y
le we do not damage any edge of G. Therefore, G is a planar graphand there is nothing to prove.If our drawing is not a triangulation, then by adding O(n) extra verti
es and edges we
an turn it into one so that the maximum degree of the verti
es in
reases by at most four.We have to apply the following easy observation.Lemma 2.1. Let G be a two-
onne
ted graph with n verti
es of degree at most d (d � 3).Suppose that G has a 
rossing-free drawing on the orientable surfa
e of genus g su
h thatthe boundary of ea
h fa
e is 
onne
ted. Any su
h drawing 
an be extended to a triangulationof the surfa
e with at most 19n+ 36(g � 1) verti
es of maximum degree at most 3d.Proof. First 
onsider a 
y
le f = x1x2 : : : xn(f) bounding a single fa
e in the drawing ofG. Note that some verti
es xi 2 V (G) and even some edges may appear along this 
y
leseveral times. Take a simple 
losed 
urve 
0 = p1p2 : : : pn(f) inside the fa
e, running very
lose to f and passing through the (new) points pi in this 
y
li
 order. In the ring betweenf and 
0, 
onne
t ea
h vertex xi to pi and pi+1 (where pn(f)+1 := p1).Divide 
0 into m0 := dn(f)d�1 e 
onne
ted pie
es, ea
h 
onsisting of at most d� 1 verti
es,su
h that the last vertex of ea
h pie
e �i is the �rst vertex of �i+1, where 1 � i � m0 and�m0+1 := �1. Pla
e a simple 
losed 
urve 
1 = q1q2 : : : qm0 in the interior of 
0. In the ringbetween 
0 and 
1, 
onne
t ea
h qi to all points in �i. (If m0 = 1 or 2, then 
1 degeneratesinto a point or a single edge.) If 
1 has more than three verti
es, repeat the same pro
edurefor 
1 in the pla
e of 
0, and 
ontinue as long as the interior of the fa
e is not 
ompletelytriangulated. We addedn(f) +m0 +m1 + : : : < n(f) + n(f) + n(f)2 + n(f)4 + : : : < 3n(f)new verti
es, and their maximum degree is at most d + 3. The degree of every originalvertex of f in
reased by at most twi
e the number of times it appeared in f .If we triangulate every fa
e of G in the above manner, the resulting drawing G0 de�nesa triangulation of the surfa
e with fewer than n+Pf 3nf � n+ 6jE(G)j verti
es, ea
h of3



degree at most d0 := 3d. By Euler's formula, we have n+ 6jE(G)j � n+ 18(n� 2 + 2g), asrequired. 2In the sequel, slightly abusing the notation, we write G for the triangulation G0 and dfor its maximum degree d0.If G has no non
ontra
tible 
y
le, i.e., no 
y
le represented on the torus by a 
losed
urve not 
ontra
tible to a point, then we are done, be
ause G is a planar drawing sothat 
r(G) = 0. Otherwise, 
hoose a non
ontra
tible 
y
le C with the minimum numberof verti
es, �x an orientation of C, and let k := jV (C)j. Let El (and Er) denote the setof edges not belonging to C that are in
ident to at least one vertex of C and in a smallneighborhood of this vertex lie on the left-hand side (respe
tively right-hand side) of C.Note that the sets El and Er are disjoint, but this fa
t is not ne
essary for the proof.Repla
e C by two 
opies, Cr and Cl, lying on its right-hand side and left-hand side.Conne
t ea
h edge of Er (respe
tively El) to the 
orresponding vertex of Cr (respe
tivelyCl). Cut the torus along C, and atta
h a disk to ea
h side of the 
ut.The resulting spheri
al (planar) drawing G1 represents a graph, slightly di�erent fromG. To transform it into a drawing of G, we have to remove Cl and (re)
onne
t the edges ofEl to the 
orresponding verti
es of Cr. In what follows, we des
ribe how to do this without
reating too many 
rossings.Let Ĝ1 denote the dual graph of G1, that is, pla
e a vertex of Ĝ1 in ea
h fa
e of G1, andfor any e 2 E(G1) 
onne
t the two verti
es assigned to the fa
es meeting at e by an edgeê 2 E(Ĝ1). Let r and l denote the verti
es of Ĝ1 lying in the fa
es bounded by Cr and Cl.
C

C

lC
r

Figure 1: C is the shortest non
ontra
tible 
y
le.Lemma 2.2. In Ĝ1, there are k vertex-disjoint paths between the verti
es r and l.4



Proof. By Menger's theorem, the maximum number p of (internally) vertex-disjoint paths
onne
ting r and l in Ĝ1 is equal to the minimum number of verti
es whose deletion separatesr from l. Choose p su
h separating verti
es, and denote the 
orresponding triangular fa
esof G by f1; : : : ; fp. The interior of the union of these fa
es must 
ontain a non
ontra
tible
losed 
urve that does not pass through any vertex of G. Let Æ be su
h a 
urve whosenumber of interse
tion points with the edges of G is minimum. Choose an orientationof Æ. Let e1; : : : ; eq denote the 
ir
ular sequen
e of edges of G interse
ted by Æ. By theminimality of Æ, we have q � p, be
ause the interior of ea
h triangle fi 
ontains at mostone maximal 
onne
ted pie
e of Æ. Let vi be the right endpoint of ei with respe
t to theorientation of Æ. Noti
e that vi is adja
ent to or identi
al with vi+1, for every 1 � i � q(where vq+1 := v1). Therefore, the 
ir
ular sequen
e of verti
es v1; : : : ; vq indu
es a 
y
le inG that 
an be 
ontinuously deformed to Æ. Thus, we have a non
ontra
tible 
y
le of lengthq � p in G, whi
h implies that k, the length of the shortest su
h 
y
le, is at most p, asrequired. 2
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Figure 2: Pulling the edges in El through the 
orridor B.By Lemma 2.1, the graph Ĝ has at most 2jV (G)j � 26n verti
es. A

ording to Lemma2.2, there is a path 
onne
ting r and l in Ĝ with fewer than 26nk internal verti
es. The
orresponding fa
es of G1 form a \
orridor" B between Cr and Cl. Delete now the verti
es ofCl from G1. Pull every edge in El through B, and 
onne
t ea
h of them to the 
orrespondingvertex of Cr. See Figures 1 and 2. Noti
e that during this pro
edure one 
an avoid 
reatingany 
rossing between edges belonging to El.We give an upper bound on the number of 
rossings in the resulting planar drawing of5



G. Using that jCj = k and jErj � dk, we 
an 
on
lude that by pulling ea
h edge through the
orridor B, we 
reate at most 26nk 
rossings per edge. Thus, the total number of 
rossings
annot ex
eed dk � 26nk = 26dn, whi
h 
ompletes the proof of Theorem 1. 23 Redu
ing Theorem 3 to Theorem 3.1Given a graph G, let n(G) and �(G) denote the number of verti
es of G and the sum of thesquares of their degrees.Theorem 3 provides an upper bound for the 
rossing number of a graph G that 
an bedrawn on Sg without 
rossing. Next we show that this bound 
an be dedu
ed by repeatedappli
ation of the following result. In ea
h step, we redu
e the genus of the surfa
e by one.Theorem 3.1. Let G be a two-
onne
ted graph with 
rg(G) = 0. Then we have 
rg�1(G) �
�g�(G), for some 
onstant 
�g � 1.Proof of Theorem 3 using Theorem 3.1. As in the proof of Theorem 1, we 
an assumethat G is two-
onne
ted. Consider a 
rossing-free drawing of G0 := G on Sg. A

ording toTheorem 3.1, G0 
an be drawn on Sg�1 with at most 
�(G) 
rossings. Pla
e a new vertexat ea
h 
rossing, and apply Theorem 3.1 to the resulting graph G1. Pro
eeding like this,we obtain a series of graphs G2; G3; : : : ; Gg, drawn on Sg�2; Sg�3; : : : ; S0, respe
tively, withno 
rossing.We 
laim that for any i, 0 � i � g,�(Gi) � (17)i0� Yg�i<j�g 
�j1A�(G)holds. This is obviously true for i = 0. Let 0 < i � g, and assume that the 
laim hasalready been veri�ed for i� 1. Noti
e that, apart from the original verti
es of Gi�1, everyother vertex of Gi has degree four. Thus, applying Theorem 3.1 to the graph Gi�1 that hada 
rossing-free drawing on Sg�i+1, we obtain�(Gi) � �(Gi�1) + 16
rg�i(Gi�1) � �(Gi�1) + 16
�g�i+1�(Gi�1)� (1 + 16
�g�i+1)(17)i�10� Yg�i+1<j�g 
�j1A�(G) � (17)i0� Yg�i<j�g 
�j1A�(G);whi
h proves the 
laim.It follows from the 
onstru
tion that Gg is a planar graph, and we haven(Gg)� n(G) < �(Gg) � 17g 0� gYj=1 
�j1A�(G):6



Repla
ing the n(Gg)�n(G) \new" verti
es of Gg by proper 
rossings, we obtain a drawingof G in the plane with at most 17g �Qgj=1 
�j��(G) 
rossings. This 
ompletes the proof ofTheorem 3. 2.4 Redu
ing the genus by one: Proof of Theorem 3.1It remains to prove Theorem 3.1.All non
rossing 
losed 
urves C on Sg belong to one of the following three 
ategories:1. C is 
ontra
tible (to a point);2. C is non
ontra
tible and twosided, i.e., it separates Sg into two 
onne
ted 
omponents;3. C is non
ontra
tible and onesided.Let us 
ut the surfa
e Sg along C, and atta
h a disk along ea
h side of the 
ut. If C is
ontra
tible, we obtain two surfa
es: one homeomorphi
 to Sg and the other homeomorphi
to the sphere S0. If C is non
ontra
tible and twosided, then we obtain two surfa
es home-omorphi
 to Sa and Sb, for some a; b > 0 with a + b = g. Finally, if C is non
ontra
tibleand onesided, then we get only one surfa
e, Sg�1 [MT01℄.First we need an auxiliary statement, interesting on its own right.Theorem 4.1. Let G be a graph with a 
rossing-free drawing on Sg. If G has no non
on-tra
tible onesided 
y
le, then G is a planar graph.Proof. We follow the approa
h of Cairns and Nikolayevsky [CN00℄, developed to handlea similar problem on generalized thra
kles. Let S be a very small 
losed neighborhood ofthe union of all edges of the drawing of G on Sg. Then S is a 
ompa
t 
onne
ted surfa
ewhose boundary 
onsists of a �nite number of 
losed 
urves. Atta
hing a disk to ea
hof these 
losed 
urves, we obtain a surfa
e S0 with no boundary. We show that S0 is asphere. To verify this 
laim, 
onsider two 
losed 
urves, �0 and �0, on S0. They 
an be
ontinuously deformed into 
losed walks, �1 and �1, along the edges of G. Let � and � bethe 
orresponding 
losed walks along the edges of G in the original drawing on Sg. By theassumption, � divides Sg into two parts, therefore, � 
rosses � an even number of times.Sin
e the original drawing of G on Sg was 
rossing-free, every 
rossing between � and �o

urs at a vertex of G. Using the fa
t that in the new drawing of G on S0, the 
y
li
 orderof the edges in
ident to a vertex is the same as the 
y
li
 order of the 
orresponding edgesin the original drawing, we 
an 
on
lude that �1 and �1 
ross an even number of times. Itis not hard to argue that then the same was true for �0 and �0. Thus, S0 is a surfa
e withno boundary in whi
h any two 
losed 
urves 
ross an even number of times. This implies7



that S0 is a sphere. Consequently, we have a 
rossing-free drawing of G on the sphere, thatis, G is a planar graph. 2Proof of Theorem 3.1. As in the previous se
tion, let �(G) denote the the sum of thesquared degrees of the verti
es of G. A grid of size k � k is the 
ross produ
t Pk � Pk oftwo paths of length k. The verti
es of Pk � Pk with degrees less than four are said to formthe boundary of the grid. The proof of Theorem 3.1 is based on the same idea as that ofTheorem 1, but some important details have to be modi�ed.Suppose that G is a two-
onne
ted graph of n verti
es, drawn on Sg without 
rossing.We 
an also assume that G has no 
rossing-free drawing on Sg�1, otherwise Theorem 3.1 istrue by indu
tion. In parti
ular, it follows that every fa
e of the drawing of G on Sg has a
onne
ted boundary.Repla
e ea
h vertex v of degree d(v) > 4 by a grid of size d(v) � d(v) and 
onne
t theedges in
ident to v to distin
t verti
es on the boundary of the grid, preserving their 
y
li
order. The resulting 
rossing-free drawing of G0 has at most �(G) verti
es, ea
h of degreeat most four. Every fa
e has a 
onne
ted boundary, so that we 
an apply Lemma 2.1 toturn G0 into a triangulation G00 with at most 19�(G) + 36(g � 1) verti
es, ea
h of degreeat most twelve. Restri
ting G0 and G00 to any grid substituting for a vertex in G, the onlydi�eren
e between them is that ea
h quadrilateral fa
e in G0 is subdivided by one of itsdiagonals into two triangles in G00. Color all edges along the boundaries of the grids blue,and all other grid and diagonal edges of G00 that lie in the interior of some grid red.If G00 has no non
ontra
tible onesided 
y
le, then we are done by Theorem 4.1. Oth-erwise, pi
k su
h a 
y
le C with the smallest number k of verti
es. Without in
reasing itslength too mu
h, we 
an repla
e all red edges of C by blue edges. Indeed, the �rst vertexand the last vertex of any maximal red path in C must belong to the boundary of the samegrid. Repla
e ea
h su
h path by the shortest blue path 
onne
ting its �rst and last verti
esalong the boundary of the grid 
ontaining them. The resulting 
y
le C 0 is non
ontra
tible,onesided, and its length is at most 2k. It has no red edges, and we 
an assume without lossof generality that it does not interse
t itself. Fix an orientation of C 0.Let El (and Er) denote the set of edges not belonging to C 0 that are in
ident to atleast one vertex of C 0 and in a small neighborhood of this vertex lie on the left-hand side(respe
tively right-hand side) of C 0.Repla
e C 0 by two 
opies, C 0r and C 0l , lying on its right-hand side and left-hand side.Conne
t ea
h edge of Er and El) to the 
orresponding vertex of C 0r and C 0l . Cut Sg alongC, and atta
h a disk to ea
h side of the 
ut. The resulting surfa
e is Sg�1, and it 
ontainsa 
rossing-free drawing G1 of a graph slightly di�erent from G00. To obtain a drawing ofG00 from G1, we have to remove Cl and (re)
onne
t the edges of El to the 
orrespondingverti
es of Cr without 
reating too many 
rossings.Let Ĝ1 be the dual drawing of G1 on Sg�1. Let r (respe
tively l) be the vertex of8



Ĝ1 lying in the fa
e bounded by Cr (respe
tively Cl). Color blue ea
h vertex of Ĝ1 that
orresponds to a fa
e lying inside a grid in G00.Repeating the proof of Lemma 2.2, we obtainLemma 4.2. In Ĝ1, there are k vertex-disjoint paths between the verti
es r and l. 2By Euler's formula, Ĝ1 has at most2jV (G1)j+ 4(g � 2) � 2 (19�(G) + 36(g � 1)) + 4(g � 2) < 40(�(G) + 2g)verti
es. Thus, by Lemma 4.2, there is a path P (rl) between r and l, of length at most40(�(G) + 2g)=k. Repla
ing all blue verti
es of P (rl) by others, we obtain a new path P 0(rl),not mu
h longer than P (rl). First observe that r and l, the two endpoints of P (rl), are notblue. Let uv1v2 : : : vjv be an interval along P su
h that all vi's are blue (1 � i � j), but uand v are not. Then the fa
es 
orresponding to u and v must be adja
ent to the boundaryof some grid in G1. These two fa
es are 
onne
ted by two 
hains of fa
es following the outerboundary of the grid. Repla
e v1; v2; : : : ; vj by the sequen
e of verti
es 
orresponding tothe shorter of these two 
hains. Sin
e the degree of every vertex in G1 is at most twelve,the length of this 
hain is at most 12j. Repeating this pro
edure for ea
h maximal blueinterval of P (rl), we obtain a new path P 0(rl), whose length is at most 480(�(G) + 2g)=k.The 
orresponding fa
es of G1 form a \
orridor" B between Cr and Cl. Now delete r,l, and the verti
es of Cl. In the same way as in the proof of Theorem 1, \pull" all edgesof El through B, and 
onne
t them to the 
orresponding verti
es of Cr. This step 
an be
arried out without 
reating any 
rossing between the edges in El.Now we 
ount the number of 
rossings in the resulting drawing. Sin
e jCj = 2k, jElj �20k. Pulling them through the 
orridor B, we 
reate at most 480(�(G) + 2g)=k 
rossingsper edge, that is, altogether at most X := 9600(�(G) + 2g) 
rossings.Deleting the extra verti
es and edges from G1 and 
ollapsing ea
h grid into a vertex, weobtain a drawing of G on Sg�1, in whi
h the number of 
rossings 
annot ex
eed X. This
on
ludes the proof of Theorem 3.1. 2Referen
es[CN00℄ G. Cairns and Y. Nikolayevsky, Bounds for generalized thra
kles, Dis
rete Comput.Geom. 23 (2000), 191{206.[MT01℄ B. Mohar and C. Thomassen: Graphs on surfa
es, Johns Hopkins Studies in theMathemati
al S
ien
es. Johns Hopkins University Press, Baltimore, MD, 2001.[SU04℄ G. Salazar and E. Ugalde: An improved bound for the 
rossing number of Cm�Cn:a self-
ontained proof using mostly 
ombinatorial arguments, Graphs Combin. 20 (2004),247{253. 9


