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Abstract

A drawing of a graph in the plane is called a thrackle if every pair of edges meets precisely
once, either at a common vertex or at a proper crossing. Let t(n) denote the maximum number
of edges that a thrackle of n vertices can have. According to a 50 years old conjecture of Conway,
t(n) = n for every n ≥ 3. For any ε > 0, we give an algorithm terminating in eO((1/ε2) ln(1/ε))

steps to decide whether t(n) ≤ (1 + ε)n for all n ≥ 3. Using this approach, we improve the best
known upper bound, t(n) ≤ 3

2 (n− 1), due to Cairns and Nikolayevsky, to 167
117n < 1.428n.
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1 Introduction

A drawing of a graph (or a topological graph) is a representation of the graph in the plane such
that the vertices are represented by distinct points and the edges by (possibly crossing) simple
continuous curves connecting the corresponding point pairs and not passing through any other
point representing a vertex. If it leads to no confusion, we make no notational distinction between
a drawing and the underlying abstract graph G. In the same vein, V (G) and E(G) will stand for
the vertex set and edge set of G as well as for the sets of points and curves representing them.

A drawing of G is called a thrackle if every pair of edges meet precisely once, either at a common
vertex or at a proper crossing. (A crossing p of two curves is proper if at p one curve passes from
one side of the other curve to its other side.) More than forty years ago Conway [18, 2, 15]
conjectured that every thrackle has at most as many edges and vertices, and offered a bottle of
beer for a solution. Since then the prize went up to a thousand dollars. In spite of considerable
efforts, Conway’s thrackle conjecture is still open. It is believed to represent the tip of an “iceberg,”
obstructing our understanding of crossing patterns of edges in topological graphs. If true, Conway’s
conjecture would be tight as any cycle of length at least five can be drawn as a thrackle, see [17].
Two thrackle drawings of C5 and C6 are shown in Figure 1.

Figure 1: C5 and C6 drawn as thrackles

Obviously, the property that G can be drawn as a thrackle is hereditary: if G has this property,
then any subgraph of G does. It is very easy to verify (cf. [17]) that C4, a cycle of length four,
cannot be drawn in a thrackle. Therefore, every “thrackleable” graph is C4-free, and it follows
from extremal graph theory that every thrackle of n vertices has at most O(n3/2) edges [6]. The
first linear upper bound on the maximum number of edges of a thrackle of n vertices was given by
Lovász et al. [12]. This was improved to a 3

2(n− 1) by Cairns and Nikolayevsky [3].
The aim of this note is to provide a finite approximation scheme for estimating the maximum

number of edges that a thrackle of n vertices can have. We apply our technique to improve the
best known upper bound for this maximum.

To state our results, we need a definition. Given three integers c′, c′′ > 2, l ≥ 0, the dumbbell
DB(c′, c′′, l) is a simple graph consisting of two disjoint cycles of length c′ and c′′, connected by a
path of length l. For l = 0, the two cycles share a vertex. It is natural to extend this definition
to negative values of l, as follows. For any l > −min(c′, c′′), let DB(c′, c′′, l) denote the graph
consisting of two cycles of lengths c′ and c′′ that share a path of length −l. That is, for any
l > −min(c′, c′′), we have

|V (DB(c′, c′′, l))| = c′ + c′′ + l − 1.
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The three types of dumbbells (for l < 0, l = 0, and l > 0) are illustrated in Figure 2.

Figure 2: Dumbbells DB(6, 6,−1), DB(6, 6, 0), and DB(6, 6, 1)

Our first theorem shows that for any ε > 0, it is possible to prove Conway’s conjecture up to a
multiplicative factor of 1 + ε, by verifying that no dumbbell smaller than a certain size depending
on ε is thrackleable.

Theorem 1. Let c ≥ 6 and l ≥ −1 be two integers with the property that no dumbbell DB(c′, c′′, l′)
with −c′/2 ≤ l′ ≤ l and with even 6 ≤ c′, c′′ ≤ c can be drawn in the plane as a thrackle. Let
r = bl/2c. Then the maximum number of edges t(n) that a thrackle on n vertices can have satisfies
t(n) ≤ τ(c, l)n, where

τ(c, l) =





47c2+116c+80
35c2+68c+32

if l = −1,

1 + 2c2r+4cr2+22cr+7c2+22c+8r2+24r+16
2c2r2+14c2r+4cr2+16cr+24c2+12c

if l ≥ 0,

as n tends to infinity.

As both c and l get larger, the constant τ(c, l) given by the second part of Theorem 1 approaches
1. On the other hand, assuming that Conway’s conjecture is true for all bipartite graphs with
up to 10 vertices, which will be verified in Section 4, the first part of the theorem applied with
c = 6, l = −1 yields that t(n) ≤ 617

425n < 1.452n. This bound is already better than the bound 3
2n

established in [3].
By a more careful application of Theorem 1, we obtain an even stronger result.

Theorem 2. The maximum number of edges t(n) that a thrackle on n vertices can have satisfies
the inequality t(n) ≤ 167

117n < 1.428n.

Our method is algorithmic. We design an eO((1/ε2) ln(1/ε)) time algorithm to prove, for any ε > 0,
that t(n) ≤ (1+ ε)n for all n, or to exhibit a counterexample to Conway’s conjecture. The proof of
Theorem 2 is computer assisted: it requires testing the planarity of certain relatively small graphs.

For thrackles drawn by straight-line edges, Conway’s conjecture had been settled in a slightly
different form by Hopf and Pannwitz [10] and by Sutherland [16] well before Conway was born,
and later, in the above form, by Erdős and Perles. Assuming that Conway’s conjecture is true,
Woodall [17] gave a complete characterization of all graphs that can be drawn as a thrackle. He
also observed that it would be sufficient to verify the conjecture for dumbbells. This observation is
one of the basic ideas behind our arguments.

Several interesting special cases and variants of the conjecture are discussed in [3, 4, 5, 9, 12,
13, 14].

In Section 2, we describe a crucial construction of Conway and summarize some earlier results
needed for our arguments. The proofs of Theorems 1 and 2 are given in Sections 3 and 4. The
analysis of the algorithm for establishing the (1 + ε)n upper bound for the maximum number of
edges that a thrackle of n vertices can have is also given in Section 4 (Theorem 7). In the last
section, we discuss some related Turán-type extremal problems for planar graphs.
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2 Conway’s doubling and preliminaries

In this section, we review some earlier results that play a key role in our arguments.
A generalized thrackle is a drawing of a graph in the plane with the property that any pair

of edges share an odd number of points at which they properly cross or which are their common
endpoints. Obviously, every thrackle is a generalized thrackle but not vice versa: although C4 is
not thrackleable, it can be drawn as a generalized thrackle, which is not so hard to see.

We need the following simple observation based on the Jordan curve theorem.

Lemma 3. [12] A (generalized) thrackle cannot contain two vertex disjoint odd cycles.

Lovász, Pach, and Szegedy [12] gave a somewhat counterintuitive characterization of generalized
thrackles containing no odd cycle: a bipartite graph is a generalized thrackle if and only if it is
planar. Moreover, it follows immediately from Lemma 3 and the proof of Theorem 3 in Cairns and
Nikolayevsky [3] that this statement can be strengthened as follows.

Lemma 4. [3] Let G be a bipartite graph with vertex set V (G) = A∪B and edge set E(G) ⊆ A×B.
If G is a generalized thrackle then it can be redrawn in the plane without crossing so that the cyclic
order of the edges around any vertex v ∈ V (G) is preserved if v ∈ A and reversed if v ∈ B.

We recall a construction of Conway for transforming a thrackle into another one. It can be used
to eliminate odd cycles.

Let G be a thrackle or a generalized thrackle which contains an odd cycle C. In the literature,
the following procedure is referred to as Conway’s doubling: First, delete from G all edges incident
to at least one vertex belonging to C, including all edges of C. Replace every vertex v of C by
two nearby vertices, v1 and v2. For any edge vv′ of C, connect v1 to v′2 and v2 to v′1 by two edges
running very close to the original edge vv′, as depicted in Figure 3. For any vertex v belonging
to C, the set of edges incident to v but not belonging to C can be divided into two classes, E1(v)
and E2(v): the sets of all edges whose initial arcs around v lie on one side or the other side of C.
In the resulting topological graph G′, connect all edges in E1(v) to v1 and all edges in E2(v) to
v2 so that every edge connected to v1 crosses all edges connected to v2 exactly once in their small
neighborhood. See Figure 3. All other edges of G remain unchanged. Denote the vertices of the
original odd cycle C by v1, v2, . . . , vk, in this order. In the resulting drawing G′, we obtain an even
cycle C ′ = v1

1v
2
2v

3
1v

4
2 . . . v1

2v
2
1v

3
2v

4
1 . . . instead of C. It is easy to verify that G′ is drawn as a thrackle,

which is stated as part (ii) of the following lemma (see also Lemma 2 in [3]).

Figure 3: Conway’s doubling of a cycle
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Lemma 5. (Conway, [17, 3]) Let G be a (generalized) thrackle with at least one odd cycle C. Then
the topological graph G′ obtained from G by Conway’s doubling of C is

(i) bipartite, and
(ii) a (generalized) thrackle.

Proof. It remains to verify part (i). Let k denote the length of the (odd) cycle C ⊆ G, and let C ′

stand for the doubled cycle in G′. The length of C ′ is 2k. Let π denote the inverse of the doubling
transformation. That is, π identifies the opposite pairs of vertices in C ′, and takes C ′ into C.

Suppose for a contradiction that G′ is not bipartite. In view of Lemma 3, no odd cycle of G′

is disjoint from C ′. Let D′ be an odd cycle in G′ with the smallest number of edges that do not
belong to C ′. We can assume that D′ is the union of two paths, P1 and P2, connecting the same
pair of vertices u, v in C ′, where P1 belongs to C ′ and P2 has no interior points on C ′.

If π(u) 6= π(v), that is, the length of P1 is not 0 or k, then π(D′) = π(P1) ∪ π(P2) is a simple
cycle in G. Notice that the lengths of P1 and P2 have different parities. If the length of P1 is even,
say, then, according to the rules of doubling, the initial and final pieces of P2 in small neighborhoods
of u and v are on the same side of the (arbitrarily oriented) cycle C ′. Consequently, the initial and
final pieces of π(P2) in small neighborhoods of π(u) and π(v) are on the same side of C. On the
other hand, using the fact that G is a generalized thrackle, the total number of intersection points
between the odd path π(P2) and the odd cycle C is odd (see the proof of Lemma 2.2 from [12]).
This yields that the initial and final pieces of π(P2) in small neighborhoods of π(u) and π(v) must
lie on different sides of C, a contradiction.

The cases when P is odd and when π(u) = π(v) can be treated analogously.

Finally, we recall an observation of Woodall [17] mentioned in the introduction, which motivated
our investigations.

As thrackleability is a hereditary property, a minimal counterexample to the thrackle conjecture
must be a connected graph G with exactly |V (G)|+1 edges and with no vertex of degree one. Such
a graph G is necessarily a dumbbell DB(c′, c′′, l). If l 6= 0, then G consists of two cycles that share
a path or are connected by a path uv. In both cases, we can “double” the path uv, as indicated in
Figure 4, to obtain another thrackle G′. It is easy to see that G′ is a dumbbell consisting of two
cycles that share precisely one vertex. Moreover, if any of these two cycles is not even, then we can
double it and repeat the above procedure, if necessary, to obtain a dumbbell DB(b′, b′′, 0) drawn as
a thrackle, where b′ and b′′ are even numbers.

Thus, in order to prove the thrackle conjecture, it is enough to show that no dumbbell DB(c′, c′′, 0)
consisting of two even cycles that share a vertex is thrackleable.

3 Proof of Theorem 1

Let c ≥ 6 and l ≥ −1 be two integers, and suppose that no dumbbell DB(c′, c′′, l′) with−c′/2 ≤ l′ ≤ l
and with even 6 ≤ c′, c′′ ≤ c can be drawn in the plane as a thrackle. For simpler notation, let
r = bl/2c.

Let G = (V,E) be a thrackleable graph with n vertices and m edges. We assume without
loss of generality that G is connected and that it has no vertex of degree one. Otherwise, we
can successively delete all vertices of degree one, and argue for each connected component of the
resulting graph separately.
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Figure 4: Doubling the path uv

As usual, we call a graph two-connected if it is connected and it has no cutvertex, i.e., it cannot
be separated into two or more parts by the removal of a vertex [6].

We distinguish three cases:

(A) G is bipartite;

(B) G is not bipartite, and the graph G′ obtained by performing Conway’s doubling of a shortest
odd cycle C ⊂ G is 2-connected;

(C) G is not bipartite, and the graph G′ obtained by performing Conway’s doubling of a shortest
odd cycle C ⊂ G is not 2-connected.

In each case, we will prove that m ≤ τ(c, l)n.

(A) By Lemma 4, in this case G is planar. We fix an embedding of G in the plane. According
to the assumption of our theorem, G contains no subgraph which is a dumbbell DB(c′, c′′, l′), for
any even 6 ≤ c′ ≤ c′′ ≤ c, and −c′/2 ≤ l′ ≤ l. We also know that G has no C4. We are going to
use these conditions to bound the number of edges m = |E(G)|.

Notice that it is unnecessary to exclude dumbbells DB(c′, c′′, l′) with l′ < −c′/2, because for
such values of the parameters, exchanging the roles of two arcs of the cycle of length c′, we obtain
that DB(c′, c′′, l′) = DB(c′, c′ + c′′ + 2l′,−c′ − l′) with c′ + c′′ + 2l′ < c′′ ≤ c and max(−c′/2,−(c′ +
c′′ + 2l′)/2) ≤ −c′ − l′ < 0. A similar argument shows that there is no need to exclude pairs of
cycles such that the edges shared by them do not form a connected arc along one of them.

Suppose first that G is two-connected. Let f denote the number of faces, and let fc stand for
the number of faces with at most c sides. By double counting the edges, we obtain

2m ≥ 6fc + (c + 2)(f − fc). (1)

If l = −1, then applying the condition on forbidden dumbbells, we obtain that no two faces of
size at most c share an edge, so that 6fc ≤ m. If l ≥ 0, Menger’s theorem implies that any two
faces of size at most c are connected by two vertex disjoint paths. Since any such path must be
longer than l, to each face we can assign its vertices as well as the r = bl/2c closest vertices along
two vertex disjoint paths leaving the face, and these sets are disjoint for distinct faces. Thus, we
have f(2r + 6) ≤ n. In either case, we have
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fc ≤




m
6 if l = −1,

n
2r+6 if l ≥ 0.

(2)

Combining the last two inequalities, we obtain

f ≤ (c− 4)fc + 2m

c + 2
≤





(c−4)m
6

+2m

c+2 if l = −1,

(c−4) n
2r+6

+2m

c+2 if l ≥ 0.

In view of Euler’s polyhedral formula m + 2 = n + f , which yields

m ≤




6c+2
5c+4n− 12c+24

5c+4 if l = −1,

2cr+4r+7c+8
2cr+6c n− 2cr+4r+6c+12

cr+3c if l ≥ 0.
(3)

It can be shown by routine calculations that the last estimates, even if we ignore their negative
terms independent of n, are stronger than the ones claimed in the theorem. (In fact, they are also
stronger than the corresponding bounds (5) and (4) in Case (B); see below.)

If G is not 2-connected, then consider a block decomposition of G, and proceed by induction
on the number of blocks. The induction goes through, because the negative terms in (3), which are
independent of n, are smaller than −2.

(B) In this case, we establish two upper bounds on the maximum number of edges in G: one
that decreases with the length of the shortest odd cycle C ⊆ G and one that increases. Finally, we
balance between these two bounds.

By doubling a shortest odd cycle C ⊆ G, as before, we obtain a bipartite thrackle G′ (see
Lemma 5). Let C ′ denote the doubled cycle in G′. By Lemma 4, G′ is a two-colorable planar
graph. Moreover, it can be embedded in the plane without crossing so that the cyclic order of the
edges around each vertex in one color class is preserved, and for each vertex in the other color class
reversed. A closer inspection of the way how we double C shows that as we traverse C ′ in G′, the
edges incident to C ′ start on alternating sides of C ′. This implies that, after redrawing G′ as a
plane graph, all edges incident to C ′ lie on one side, that is, C ′ is a face.

Slightly abusing the notation, from now on let G′ denote a crossing-free drawing with the above
property, which has a 2|C|-sided face C ′. Denoting the number of vertices and edges of G′ by n′

and m′, the number of faces and the number of faces of size at most c by f ′ and f ′c, respectively,
we have n′ = n + |C| = |V (G′)|, m′ = m + |C| = |E(G′)|, and, as in Case (A), inequality (2),

f ′c ≤




1
6m′ if l = −1,

n′
2r+6 if l ≥ 0.

Double counting the edges of G′, we obtain

2m′ ≥ 6f ′c + (c + 2)(f ′ − 1− f ′c) + 2|C|.
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In case l ≥ 0, combining the last two inequalities, we have

f ≤ (c− 4)f ′c + 2(m′ − |C|) + c + 2
c + 2

≤ (c− 4) n′
2r+6 + 2(m′ − |C|) + c + 2

c + 2
.

By Euler’s polyhedral formula, f ′ = m′ − n′ + 2. Thus, after ignoring the negative term, which
depends only on c and l, the last inequality yields

|E(G)| ≤ 2cr + 4r + 7c + 8
2cr + 6c

n + |C| c− 4
2cr + 6c

. (4)

The case l = −1 can be treated analogously, and the corresponding bound on E(G) becomes

|E(G)| ≤ 6c + 12
5c + 4

n + |C| c− 4
5c + 4

. (5)

We now establish another upper bound on the number of edges in G: one that decreases with
the length of the shortest odd cycle C in G. As in [12], we remove from G the vertices of C together
with all edges incident to them. Let G′′ denote the resulting thrackle. By Lemma 3, G′′ is bipartite.
By Lemma 4, it is a planar graph. From now on, let G′′ denote a fixed (crossing-free) embedding
of this graph. According to our assumptions, G′′ has no subgraph isomorphic to DB(c′, c′′, l′), for
any even numbers c′ and c′′ with 6 ≤ c′ ≤ c′′ ≤ c, and for any integer l′ with −c′/2 ≤ l′ ≤ l.

We can bound |E(G′′)|, as follows. By the minimality of C, each vertex v ∈ V (G) that does
not belong to C is joined by an edge of G to at most one vertex on C. Indeed, otherwise, w would
create either a C4 or an odd cycle shorter than C. Hence, if l ≥ 0, inequality (3) implies that

|E(G)| ≤ |E(G′′)|+ |C|+ (n− |C|) ≤ 2cr + 4r + 7c + 8
2cr + 6c

(n− |C|) + n. (6)

In the case l = −1, we obtain

|E(G)| ≤ |E(G′′)|+ |C|+ (n− |C|) ≤ 6c + 2
5c + 4

(n− |C|) + n. (7)

It remains to compare the above upper bounds on |E(G)| and to optimize over the value of |C|.
If l > −1, then the value of |C| for which the right-hand sides of (4) and (6) coincide is

|C| = 2cr + 6c

2cr + 4r + 8c + 4
n.

The claimed bound follows by plugging this value into (4) or (6).
In the case l = −1, the critical value of |C|, obtained by comparing the bounds (5) and (7), is

|C| = 5c + 4
7c + 8

n.

Plugging this value into (5) or (7), the claimed bound follows.

(C) As before, let C be a shortest odd cycle in G, and let G′ be the graph obtained from G after
doubling C. The doubled cycle is denoted by C ′ ⊂ G′. Let G0 ⊇ C denote a maximal subgraph of
G, which is turned into a two-connected subgraph of G′ after performing Conway’s doubling on C.
Let G1 stand for the graph obtained from G by the removal of all edges in G0.
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It is easy to see that G1 is bipartite, and each of its connected components shares exactly one
vertex with G0. Indeed, if a connected component G2 ⊆ G1 were not bipartite, then, by Lemma 3,
G2 would share at least one vertex with C, which belongs to an odd cycle of G2. By the maximal
choice of G0, after doubling C, the component G2 must turn into a subgraph G′

2 ⊂ G′, which shares
precisely one vertex with the doubled cycle C ′. Thus, G2 must also share precisely one vertex with
C, which implies that G′

2 ⊆ G′ has an odd cycle. This contradicts Lemma 5(i), according to which
G′ is a bipartite graph.

Therefore, G1 is the union of all blocks of G, which are not entirely contained in G0. Since each
connected component G2 of G1 is bipartite, the number of edges of G2 can be bounded from above
by (3), just like in Case (A).

In order to bound the number of edges of G, we proceed by adding the connected components
of G1 to G0, one by one. As at the end of the discussion of Case (3), the fact that the last terms
in (3), which do not depend on n, are smaller than −2, we can complete the proof by induction on
the number of connected components of G1.

4 A better upper bound

As was pointed out in the Introduction, if we manage to prove that for any l′, −3 ≤ l′ ≤ −1,
the dumbbell DB(6, 6, l′) is not thrackleable, then Theorem 1 yields that the maximum number of
edges that a thrackle on n vertices can have is at most 617

425n < 1.452n. This estimate is already
better than the currently best known upper bound 3

2n due to Cairns and Nikolayevsky [3].
In order to secure this improvement, we have to exclude the subgraphs DB(6, 6,−1), DB(6, 6,−2),

and DB(6, 6,−3). The fact that DB(6, 6,−3) cannot be drawn as a thrackle was proved in [12]
(Theorem 5.1). Here we present an algorithm that can be used for checking whether a “reasonably”
small graph G can be drawn as a thrackle. We applied our algorithm to verify that DB(6, 6,−1)
and DB(6, 6,−2) are indeed not thrackleable. In addition, we show that DB(6, 6, 0) cannot be
drawn as thrackle, which leads to the improved bound in Theorem 2.

Figure 5: 4-cycle around a vertex v of G′, which was a crossing point in G

Let G = (V, E) be a thrackle. Direct the edges of G arbitrarily. For any e ∈ E, let Ee ⊆ E
denote the set of all edges of G that do not share a vertex with e, and let m(e) = |Ee|. Let
πe = (πe(1), πe(2), . . . , πe(m(e)) stand for the m(e)-tuple (permutation) of all edges belonging to
Ee, listed in the order of their crossings along e.

Construct a planar graph G′ from G, by introducing a new vertex at each crossing between
a pair of edges of G, and replacing each edge by its pieces. In order to avoid that G′ has an
embedding in which two paths corresponding to a crossing pair of edges of G do not properly cross,
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we introduce a new vertex in the interior of every edge of G′, whose both endpoints are former
crossings. For each former crossing point v, we add a cycle of length four to G′, connecting its
neighbors in their cyclic order around v, as illustrated in Figure 5. In the figure, the thicker lines
and points represent edges and vertices or crossings of G, while the thinner lines and points depict
the four-cycles added at the second stage.

Obviously, G′ is completely determined by the directed abstract underlying graph of G and by
the set of permutations Π(G) := {πe ∈ E

m(e)
e |e ∈ E}. Thus, a graph G = (V, E) can be drawn as a

thrackle if and only if there exists a set Π of |E| permutations of Ee, e ∈ E, such that the abstract
graph G′ corresponding to the pair (G, Π) is planar. In other words, to decide whether a given
abstract graph G = (V, E) can be drawn as a thrackle, it is enough to consider all possible sets of
permutations Π of Ee, e ∈ E, and to check if the corresponding graph G′ = G′(G, Π) is planar for
at least one of them. The first deterministic linear time algorithm for testing planarity was found
by Hopcroft and Tarjan [11]. However, in our implementation we used an improved algorithm for
planarity testing by Fraysseix et al. [7], in particular, its implementation in the library P.I.G.A.L.E.
[8]. We leave the pseudocode of our routine for the abstract.

It was shown in [12] (Lemma 5.2) that in every drawing of a directed cycle C6 as a thrackle,
either every oriented path e1e2e3e4 is drawn in such a way that πe1 = (e4, e3) and πe4 = (e1, e2), or
every oriented path e1e2e3e4 is drawn in such a way that πe1 = (e3, e4) and πe4 = (e2, e1). Using this
observation (which is not crucial, but saves computational time), we ran a backtracking algorithm to
rule out the existence of a set of permutations Π, for which G′(DB(6, 6, 0),Π), G′(DB(6, 6,−1), Π),
or G′(DB(6, 6,−2), Π) is planar. Our algorithm attempts to construct larger and larger parts of a
potentially good set Π, and at each step it verifies if the corresponding graph still has a chance to
be extended to a planar graph. In the case of DB(6, 6, 0), to speed up the computation, we exploit
Lemma 2.2 from [12].

Summarizing, we have the following

Lemma 6. None of the dumbbells DB(6, 6, l′), −3 ≤ l′ ≤ 0 can be drawn as a thrackle.

According to Lemma 6, Theorem 1 can be applied with c = 6, l = 0, and Theorem 2 follows.
For any ε > 0, our Theorem 1 and the above observations provide a deterministic algorithm

with bounded running time to prove that all thrackles with n vertices have at most (1 + ε)n edges
or to exhibit a counterexample to Conway’s conjecture.

In what follows, we estimate the dependence of the running time of our algorithm on ε. The
analysis uses the standard random access machine model. In particular, we assume that all basic
arithmetic operations can be carried out in constant time.

Theorem 7. For any ε > 0, there is a deterministic algorithm with running time eO((1/ε2) ln(1/ε))

to prove that all thrackles with n vertices have at most (1+ε)n edges or to exhibit a counterexample
to Conway’s conjecture.

Proof. First we estimate how long it takes for a given c and l, satisfying the assumptions in Theorem
1, to check whether there exists a dumbbell DB(c′, c′′, l′) with c′ and c′′ even, 6 ≤ c′ ≤ c′′ ≤ c, and
with −c′/2 ≤ l′ ≤ l, which can be drawn as a thrackle. Clearly, there are

c∑

c′=6
c′ is even

( c′
2 + l + 1)(c− c′ + 2)

2
=

1
8
lc2 +

1
48

c3 − 3
4
lc + l +

1
4
c2 − 25

12
c + 3 ≤ κ(lc2 + c3)
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dumbbells to check, for some κ > 0. In order to decide, whether a fixed dumbbell with m edges
can be drawn as a thrackle, we construct at most (m − 2)!m graphs, each with at most O(m2)
edges, and we test each of them for planarity. Thus, the total running time of our algorithm is
O((lc2 + c3)(2c + l − 2)!2c+l(2c + l)2). Approximating the factorials by Stirling’s formula, we can
conclude that the running time is O((2c + l)(2c+l)2+ 1

2
(2c+l)+5e−(2c+l)).

Given ε > 0, it can be shown by routine calculations that for l ≥ κl
ε , for some κl, we can choose

any c such that

c ≥ κl2

ε(l2 + 12l + 35)− (2l + 14)

for some κ > 0, so that the constant τ(c, l) introduced in Theorem 1 is at most 1+ ε. Thus, setting
c := κc

ε for some κc, Theorem 1 gives the required bound, i.e., at most (1 + ε)n. Plugging κc
ε and

κl
ε as c and l, respectively, in O((2c + l)(2c+l)2+ 1

2
(2c+l)+5e−(2c+l)), the theorem follows.

5 Concluding remarks

We say that two cycles C1 and C2 of a graph are at distance l ≥ 0, if the length of a shortest path
joining a vertex of C1 to a vertex of C2 is l. The following Turán-type questions were motivated
by the proof of Theorem 1.
(1) Given two integers c1, c2, with 3 ≤ c1 ≤ c2, what is the maximum number of edges that a planar
graph on n vertices can have, if its girth is at least c1, and no two cycles of length at most c2 share
an edge?
(2) Given three integers c1, c2, and l, with 3 ≤ c1 ≤ c2 and l ≥ 0, what is the maximum number of
edges that a planar graph on n vertices can have, if its girth is at least c1, and any two of its cycles
of length at most c2 are at distance larger than l ?

The inequalities (3) provide nontrivial upper bounds for restricted versions of the above problem
for bipartite graphs.

We have the following general result.

Theorem 8. Let c1, c2, and l denote three non-negative natural numbers with 3 ≤ c1 ≤ c2. Let G
be a planar graph with n vertices and girth at least c1.

(i) If no two cycles of length at most c2 share an edge, then |E(G)| ≤ c1c2+c1
c1c2−c2−1n.

(ii) If no two cycles of length at most c2 are at distance at most l, then
|E(G)| ≤ c1c2+2bl/2cc2+2bl/2c+c2+1

2bl/2cc2−2bl/2c+c1c2−c1
n.

Proof. (Outline.) Without loss of generality, we can assume in both cases that G is connected, it
has no vertex of degree one, and it is not a cycle. To establish part (i), consider an embedding of
G in the plane. Let m = |E(G)|, and let f and fc2 stand for the number of faces of G and for the
number of faces of length at most c2. We follow the idea of the proof of Case (A), Theorem 1, with
fc2 ≤ 1

c1
m instead of fc ≤ 1

6m, and with the inequality

2m ≥ c1fc2 + (c2 + 1)(f − fc2)

replacing (1). Analogously, in the proof of part (ii), we use fc2 ≤ 1
2bl/2c+c1

n instead of the inequality
fc ≤ 1

2r+6n

10



It is possible that the constant factor in the part (i) of Theorem 8 is tight for all values of c1

and c2. It is certainly tight for all values of the form c1 = ml and c2 = m(l + 1)− 1, where m and
l are natural numbers, as is shown by the following result, proof of which is omitted.

Theorem 9. For any positive integers n0, m ≥ 1, and l ≥ 3, one can construct a plane graph
G = (V, E) on at least n0 vertices with girth ml such that all of its inner faces are of size ml or
m(l + 1), its outer face is of size 2ml, and each edge of G not on its outer face belongs to exactly
one cycle of size ml, which is a face of G. The second smallest length of a cycle in G is m(l + 1).

Figure 6: The key part of the construction from the proof of Theorem 9 for l = 5, and m = 1
.

Figure 7: The key part of the construction from the proof of Theorem 9 for l = 4, and m = 1
.

Proof. Intuitively, one can think of a graph G meeting the requirements of the theorem as a
“generalized chessboard” with white and black fields (faces) of size ml and m(l + 1), respectively.

11



Observe that it is enough to provide a construction for m = 1. Indeed, given a construction G
for some l = l′, n0 = n′0, and m = 1, for any m′ > 1, one can subdivide each edge of G into m′

pieces to obtain a valid construction for l := l′, n0 := n′0, and m := m′.
Here we consider only the case when l is odd; the other case can be treated analogously. We

construct G recursively, starting from a plane graph G0, that is a cycle of length l, as depicted in
Figure 6. Let fi denote the outer face of Gi, i = 0, 1, 2, . . . (for i > 1, the outer faces fi are not
completely depicted in the figure). Our construction satisfies the condition that each edge of G lies
exactly on one outerface fi for some i.

For any i ≥ 0, we obtain G2i+1 from G2i, by attaching faces of size l + 1 along f2i in the way
indicated in Figure 6 (the labels of the paths in the Figure indicate the length). Analogously, for
any i ≥ 1, the graph G2i can be obtained from G2i−1, by attaching to the sides of f2i−1 faces of size
l, in the way indicated in the figure. Observe that Figure 6 can be easily modified to work for any
odd value of l, and it is not hard to obtain similar construction for even values either (see Figure
7). The key feature of the construction is that the length of the outer face f1 is the same as the
length of the outer face f5 (both are drawn with thicker lines in the figure). Thus, we can repeat
the pattern consisting of the outer faces f1, . . . , f5 until the number of vertices in G is at least n0,
and then finish with a graph G4i+2, for some i. Notice, that during this process we never create
multiple edges, and that each edge lies on the outer face of exactly one Gi.

In what follows, we show that the girth of G is l and that no two cycles of length l share an
edge, which concludes the proof. To this end we show that a smallest cycle C in G is a face cycle
of length l. In order to see that one can proceed by distinguishing, whether there are vertices of
C belonging to the outer face f4i+1, and vertices belonging to the outer face f4i+5, for some i, or
there are not such vertices. If that is the case, the length of C is bigger than l. Indeed, a shortest
path between f4i+1 and f4i+5 is of length l− 1. Now, we can proceed by checking a small subgraph
of G.

If we slightly relax the conditions in Theorem 8 by forbidding only dumbbells determined by
face cycles, we obtain some tight bounds. For instance, it is not hard to prove the following.

Theorem 10. Let c1 and c2 be two nonnegative integers with 3 ≤ c1 ≤ c2. Let G be a plane graph
on n vertices, which has no face shorter than c1 and no two faces of length at most c2 that share
an edge. Then we have

|E(G)| ≤ c1c2 + c1

c1c2 − c2 − 1
n,

and the inequality does not remain true with any smaller constant.

Proof. The proof of the upper bounds is the same as the proof of Theorem 8. In order to show the
tightness we construct a plane graph G whose inner faces have size c1 or c2 + 1, and whose outer
face has size bounded from above by a function depending only on c2. Moreover, no two faces in
G of size c1 share an edge and each edge belongs to exactly one face of size c1. Clearly, G contains
as many edges as the stated upper bound up to an additive constant depending only on c1 and c2.

Again, we construct G in an inductive way as in the proof of Theorem 9 starting from a plane
graph G0, that is a face cycle of length c1. Let fi denote the outer face of Gi, i ∈ N. We construct
G2i+1 from G2i, i ∈ N, by attaching faces of size c2 + 1 along f2i. Analogously, we construct G2i

from G2i−1, i > 0, by attaching faces of size c1 along f2i−1. We have quite freedom in the way, how
we attach the new faces. However, we require that faces attached during a single step are edge-wise
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pairwise disjoint, and that each edge lies on the outer face in exactly one Gi for some i ∈ N. We
also want to avoid creating multiple edges.

Clearly, we can keep increasing the number of vertices of Gi without introducing multiple edges
with i tending to infinity. Moreover, whenever |fi| is bigger than 2(c2 + 1), we can also decrease in
Gi+2 the size of the outer face fi+2 with respect to fi, so that |fi+2| is still of size at least (c2 + 1).
To this end one can proceed in many ways, out of which we choose the following one.

If i is odd (if i is even and c1 > 3 we can proceed in the same fashion) and |fi| > 2(c2 + 1),
let l′ = b|fi|/(c2 + 1)c. Let v0, . . . v|fi|−1 denote the vertices on fi indexed in correspondence with
their clockwise order around fi. We divide fi into l′ − 1 paths Pj = vj(c2+1) . . . v(j+1)(c2+1), for
j = 0 . . . l′ − 3, and Pl′−2 = v(l′−2)(c2+1) . . . v0. Then along each Pj , for j = 0 . . . l′ − 3, we attach
two faces of size l whose intersections with fi are the paths of length b(c2 + 1)/2c and d(c2 + 1)/2e,
respectively. Notice that the length lp of Pl′−2 is at least 2(c2 +1) and at most 3(c2 +1)− 1. Thus,
we can either attach three faces of size c2 + 1 along Pl′−2, if lp = 2(c2 + 1), or four faces of size
(c2 + 1) otherwise. Note that we can be forced to create multiple edges if c2 + 1 < 7. However,
since c2 + 1 ≥ 4, it can happen only when we attach a face along Pl′−2. Observe that whenever we
have an edge vpvr not lying on fi, such that vp and vr belongs to fi, vp+1vr+1 6∈ E(Gi) (indices are
taken modulo |fi|). Using that observation it is a simple case analysis to show that by shifting the
labels vi-s on the outer face by one position clockwise or counter clockwise, we can avoid creating
a multiple edge.

If i is even, c1 = 3, and we proceed as above, we can create many multiple edges, but at most
one along each Pj , 0 ≤ j ≤ l′− 3. However, using the above observation we can see that one of two
ways, how we can attach two faces of length 3 along such Pj , does not create a multiple edge. Since
in the beginning we required, that we do not have to be able to decrease the number of edges on
the outer face at any single step, but after two steps, it is enough to show that we can attach the
faces along Pl′−2 so that we have |fi+1| ≤ |fi|. We again proceed by a simple case analysis using
the same observation as above.

Notice, that each part of fi+1 that was attached along Pj , for j = 0 . . . l′ − 3, has the same
length as Pj , and that the part of fi+1 that was attached along Pl′−2 has the length strictly smaller
than Pl′−2, if i is odd. Clearly, we can keep the length of fi+1 always at least c2 + 1. Thus, for any
n0 we can achieve that some Gz has at least n0 vertices and the length of its outer face is at most
2(c2 + 1) and at least c2 + 1.
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Appendix

A Backtracking algorithm

For sake of completeness in this section we describe a backtracking algorithm checking, whether a
given dumbbell G = (V,E) can be drawn as a thrackle. We orient the edges of G, so that we can
traverse them by a single walk, so called Euler’s walk, during which we visit each edge just once.
We use the notation from Section 4.

Let us start with a description of the routines used by our algorithm.
The routine UPDATE(πe, e′, pos) returns the updated permutation πe ∈ E′m′(e)

e , which corre-
sponds to adding one more crossing vertex to an already constructed part of (G′, Π′) corresponding
to a subgraph G′ = (V ′, E′) of G, where e ∈ E, e′ ∈ E′, m′(e) returns the number of crossings of e

already modeled by (G′, Π′), and Π′(G′) := {πe ∈ E′m′(e)
e |e ∈ E′}. UPDATE(π(e), e′, pos) returns

the permutation π′e whose length is by one longer than πe, such that

π′e(i) =





πe(i) if i < pos
e′ if i = pos
πe(i− 1) if i > pos

REVERSE UPDATE(πe, e′, pos) corresponds to the reverse operation of the operation UPDATE(πe,
e′, pos). PICK NEXT EDGE(G) returns a next edge in our Euler’s walk. In order to check, whether
G can be drawn as a thrackle the algorithm just calls the procedure BACKTRACKING(e) for an
edge e ∈ E. The algorithm returns true if G can be drawn as a thrackle, and it returns false if G
cannot be drawn as a thrackle. In our description of the algorithm we restrain from all optimization
details, which were mentioned in Section 4. The pseudocode of the backtracking routine follows.
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Algorithm 1: Thrackleabilty testing
BACKTRACKING (e ∈ E(G))1

begin2

if (G′, Π′) cannot be extended then3

return true4

if e = -1 then5

e = PICK NEXT EDGE(G)6

if e has crossed all edges in E′
e then7

BACKTRACKING(-1)8

else9

forall e′ ∈ E′
e which e has not already crossed do10

for pos = 1 to length(πe′) do11

πe′ = UPDATE(πe′ , e, pos)12

πe = UPDATE(πe, e′, LENGTH(πe)+1)13

if IS PLANAR((G′, Π′)) then14

if BACKTRACKING(e) then15

return true16

else17

REVERSE UPDATE(πe′ , e, pos)18

REVERSE UPDATE(πe, e′, LENGTH(πe))19

else20

REVERSE UPDATE(πe′ , e, pos)21

REVERSE UPDATE(πe, e′, LENGTH(πe))22

end23

end24

return false25

end26
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