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Filip Morić János Pach
Ecole Polytechnique Fédérale de Lausanne
{filip.moric,janos.pach}@epfl.ch ∗

Abstract

Given a set P of n points in Rd, let d1 > d2 > . . . denote all distinct inter-point distances
generated by point pairs in P . It was shown by Schur, Martini, Perles, and Kupitz that there is
at most one d-dimensional regular simplex of edge length d1 whose every vertex belongs to P .
We extend this result by showing that for any k the number of d-dimensional regular simplices of
edge length dk generated by the points of P is bounded from above by a constant that depends
only on d and k.

1 Introduction

The investigation of various properties of graphs of distances generated by a finite set of points
in Euclidean space was initiated by Erdős in 1946, and it has become a classical topic in discrete
and computational geometry, with applications in combinatorial number theory, the theory of
geometric algorithms, pattern recognition, etc. Among the problems that have drawn a lot of
attention for decades are: Erdős’s problem on unit distances [4, 18], Erdős’s problem on distinct
distances [4, 10], Borsuk’s conjecture on the chromatic number of diameter graphs [2, 13], the
Hadwiger-Nelson coloring problem [11]. Consult [3] for many other problems of this kind.

In the present paper, we concentrate on graphs of large distances. Given a set P of n points in
Rd, consider all

(
n
2

)
distances between pairs of points in P . The same distance may occur several

times. Throughout this paper, we will use the convention that the sequence of distinct distances in
decreasing order will be denoted by d1 > d2 > . . . . In other words, dk is the k-th largest distance
generated by P . For a fixed k, we can study the graph of k-th largest distances generated by P .
The vertex set of this graph is P , and two vertices are connected by an edge if and only if their
distance is dk. The most frequently studied and perhaps most interesting case is k = 1, when we
have a graph of diameters. One of the basic results concerning graphs of diameters was obtained
by Hopf and Pannwitz in 1934 [8]: the maximum number of diameters among n points in the plane
is n. Later a similar result was conjectured by Vázsonyi and proved by Grünbaum [9], Heppes [12],
and Straszewicz [19]: the maximum number of diameters generated by n points in R3 is 2n − 2.
In higher dimensions, the analogous problem turned out to have a different flavor: Lenz found
some simple constructions with a quadratic number of diameters. For more exact bounds, see Avis,
Erdős and Pach [1], Erdős and Pach [7], and Swanepoel [20].

∗The authors gratefully acknowledge support from the Hungarian Science Foundation EuroGIGA Grant OTKA
NN 102029, from the Swiss National Science Foundation Grant 200021-125287/1, and from the NSF Grant CCF-08-
30272.
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For larger values of k, Vesztergombi showed that the second largest distance d2 can occur at
most 3

2n times among n points in the plane [22, 23], and at most 4
3n times if the points are in convex

position [23]. She also observed that the number of k-th largest distances in the plane is always
smaller than 2kn. For small values of k, this was improved in [15]. While the majority of the results
on graphs of large distances provide upper bounds on the number of edges, some other properties
have also been explored. For example, Erdős, Lovász, and Vesztergombi [5, 6] obtained some results
concerning the chromatic number of the graph generated by the top-k largest distances, i.e, the
graph in which two points are connected if and only if their distance is at least dk.

In [17], instead of counting the number of edges, Schur, Perles, Martini, and Kupitz initiated the
investigation of the number of cliques in a graph of diameters. This paper is the starting point of
our investigations. A k-clique, that is, a complete subgraph of k vertices in the graph of diameters
of P corresponds to a regular (k − 1)-dimensional simplex (or, in short, (k − 1)-simplex) of side
length d1 generated by P .

Theorem A (Schur et al.). Any finite subset P ⊂ Rd contains the vertices of at most one regular
d-simplex of edge length d1.

The aim of this paper is to show that this beautiful statement marks the tip of an iceberg: for
any k, the number of d-simplices of edge length dk generated by P can be bounded from above by
a constant depending only on d and k.

Theorem 1. For any k ≥ 1 and d ≥ 2, there exists a constant c(d, k) satisfying the following
condition. Any finite set P of points in Rd can generate at most c(d, k) regular d-simplices of edge
length dk.

In Section 3, we give a construction with d(k − 1) + 1 regular simplices of edge length dk. The
proof of Theorem 1 presented in Section 2 uses extremal graph theory and provides an enormously
huge bound for the constant c(d, k), which can be surely improved a lot.

The main result in [17] is the following.

Theorem B (Schur et al.). Any set of n points in R3 can generate at most n equilateral triangles
of side length d1.

Again, we show an analogous result for the k-th largest equilateral triangles. The proof of this
statement is given in Section 4.

Theorem 2. For any k ≥ 1, there exists a constant ck = kO(k) such that the number of equilateral
triangles of side length dk generated by any set of n points in R3 is at most ckn .

Theorem B can be regarded as a 3-dimensional generalization of the Hopf-Pannwitz result
mentioned above, according to which any set of n points in the plane has at most n diameters. It
was conjectured by Z. Schur (see [17]) that this result can be extended to all dimensions d.

Conjecture 1 (Schur). The number of d-cliques in a graph of diameters on n points in Rd is at
most n.

The fact that this bound can be attained can be shown by a simple construction; see [17].
In Section 5, we present the following theorem about the number of k-th largest distances in

R3, generalizing the analogous observation of Vesztergombi in the plane.

Theorem 3. For every k ≥ 1, there is a constant ck such that the following holds: the number of
k-th largest distances generated by any set of n points in R3 is at most ckn.

Finding good bounds for ck, at least for small values of k ≥ 2, is a challenging open problem.
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2 Proof of Theorem 1

First, we collect several auxiliary results needed for the proof. The following result was proved in
[16].

Lemma 2.1. There exists a constant c > 0 such that for any set of n distinct points p1, . . . , pn ∈ Rd

and for any ε > 0, the number of triples i < j < k for which ∠pipjpk > π − ε, is at least
bn3/2(c/ε)d−1c.

By a spherical cone in a linear subspace L ⊂ Rd we understand a cone generated by a ball, i.e.,
a set C of the form C = {tx : t ≥ 0, x ∈ B}, where B = B(a, r) is a full-dimensional ball in L,
that does not contain the origin (i.e., the dimension of B is the same as the dimension of L). In
the sequel, unless indicated otherwise, we will use the term cone to refer to a spherical cone. The
translate of a (spherical) cone C by a vector v we call a cone with apex v (see Figure 1(a)). The
angle of a (spherical) cone C is defined as 2 arcsin r

‖a‖ . When the subspace L is not specified (as in
the next lemma), we assume L = Rd.

To prove the next fact we use the well-known Kővári-Sós-Turán theorem: every bipartite graph
that has m vertices in one part, n vertices in the other part, and at least (r−1)1/s(n−s+1)m1−1/s+
(s− 1)m edges contains a subgraph isomorphic to Kr,s. In fact, we need only the following simple
consequence of the theorem: for any c1 > 0, there is c2 > 0 such that any graph on n vertices with
at least c1n2 edges contains Kc2 logn,c2 logn as a subgraph.

(a)

x

b1

ai

a1

(b)

Figure 1: (a) Cone generated by a ball; (b) Proof of Lemma 2.2

Lemma 2.2. For any d ≥ 2, n ≥ 1 and ε > 0, there exists c = c(d, ε, n) > 0 such that for any set
T of c points in Rd, one can find a point x ∈ T and a cone C with apex x and angle ε such that
both C and its opposite cone contain at least n points of T .

Proof. We will show that c(d, ε, n) = 2c1n is a good choice, for large enough c1. Suppose we have
a set T of N = 2c1n points in Rd. From Lemma 2.1 it follows that there are fN3 angles generated
by these points of size at least π− ε

4 , for some f = f(d, ε) > 0. Hence, there is a point x ∈ T which
is the apex of fN2 angles of size at least π− ε

4 . Define a graph G with vertex set T −{x} in which
two points q, r ∈ T − {x} are connected by an edge if and only if ∠qxr > π − ε

4 . Since this graph
on N − 1 vertices has at least fN2 edges, by the above observation we conclude that G contains a
subgraph isomorphic to Kn,n, provided we choose large enough c1. In other words, there are points
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a1, . . . , an, b1, . . . , bn ∈ T such that ∠aixbj > π − ε
4 for any i, j ∈ {1, . . . , n} (Figure 1(b)). Now we

have that for any i ∈ {1, . . . , n}

∠aixa1 + 2
(
π − ε

4

)
< ∠aixa1 + ∠a1xb1 + ∠b1xai ≤ 2π ,

and, therefore, ∠aipa1 <
ε
2 (here we used a small lemma, which is not difficult to show: for any

four points a, b, c, x ∈ Rd we have ∠axb+ ∠bxc+ ∠cxa ≤ 2π). Finally, we can take for C the cone
with apex x, axis xa1 and angle ε.

We introduce a notion that we need in order to formulate the next fact. In a linear subspace
L ⊂ Rd, consider a cone C, whose apex is the origin. Define the set

S(C) = {x ∈ L : there exists v ∈ C such that x · v = 0} .
We call S(C) the co-cone of C (Figure 2(a)). Note that the angle of any cone that lies in S(C)
cannot exceed the angle of C.

C

S(C)

(a)

L

C

S(C)

(b)

Figure 2: (a) The co-cone S(C) of a cone C in R3; (b) Lemma 2.3: the projection of the simplex cannot fit
in S(C)

Lemma 2.3. For every d ≥ 2, there exists ε(d) > 0 with the following property. Let C be a cone
whose apex is the origin, whose angle is at most ε, and which lies in a linear subspace L ⊂ Rd.
Then the orthogonal projection to L of any regular d-simplex whose one vertex is the origin, cannot
fit into S(C).

Proof. The situation is illustrated in Figure 2(b). Denote by rd(a) the radius of the inscribed sphere
of a regular d-simplex of edge length a and by sd(a) the distance between its vertex and the center
of the inscribed sphere. By similarity, the ratio rd(a) : sd(a) depends only on d (and not on a). We
claim that the statement holds with ε = arcsin rd(a)

sd(a) . Suppose the contrary, i.e., that the projection
to L of a d-simplex S′ having the origin as its vertex is contained in S(C), while cone C has angle
at most ε. Let a be the edge length of S′. The projection of the inscribed ball of S′ is a ball B of
the same radius rd(a) that lies in S(C). Denote its center by p. Since ‖p‖ ≤ sd(a), the angle of the
cone generated by B is

2 arcsin
rd(a)
‖p‖ ≥ 2 arcsin

rd(a)
sd(a)

= 2ε ,

which is a contradiction.
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Now we move on with the proof of Theorem 1. Recall that we are given a finite set P of points
in Rd and we want to upper-bound the number of regular d-simplices of edge length dk generated
by P . We can assume that every point in P is a vertex of at least one simplex, since otherwise we
can delete non-interesting vertices.

x1

x′
1

x
pi

C

S(C)

aff(S)

(a)

p0

p1

p2

p3

(b)

Figure 3: (a) Proof of Lemma 2.4; (b) a construction with many large simplices

Lemma 2.4. For any d ≥ 2, k ≥ 1, d′ ≤ d− 1, there exists c′(d, d′, k) such that the total number of
points of P that can lie on a d′-sphere in Rd is at most c′.

Proof. The proof is by induction on d′. For d′ = 0, the statement is trivially true with c′(d, 0, k) = 2
(since “0-sphere” is a set of two points). Now let d′ ≥ 1 and let S be a d′-sphere in Rd. By induction,
we assume that the statement is correct for all smaller values of d′. Let N = (k−1)·c′(d, d′−1, k)+1.
By Lemma 2.2, we choose a constant c(d′ + 1, ε,N), where ε = ε(d) is given by Lemma 2.3. We
claim that c′(d, d′, k) = c(d′+1, ε,N) will work. We prove this by contradiction. Suppose that there
are more than c(d′+ 1, ε,N) points of P on the sphere S. We can consider S as being embedded in
a (d′ + 1)-dimensional space (the affine hull of S). By the choice of c (Lemma 2.2), we can find a
point x ∈ P ∩S such that in a cone C with apex x and angle ε as well as in its opposite cone, there
are at least N points of P ∩ S (Figure 3(a)). Let xx1 . . . xd be a simplex with vertex x (and other
vertices in P ) and let x′1, . . . , x

′
d be the orthogonal projections of points x1, . . . , xd to the affine hull

of S. By the choice of ε (according to Lemma 2.3), at least one of the vertices x′1, . . . , x
′
d lies outside

the co-cone S(C). Without loss of generality assume that x′1 /∈ S(C) and, moreover,

(x′1 − x) · (v − x) > 0 for every v ∈ C ,

or, equivalently,
(x′1 − x) · (v − x) < 0 for every v ∈ 2x− C
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(note that C ′ = 2x−C is the cone opposite to C). Let p1, . . . , pN be some points of P ∩ S that lie
in the cone C ′. Since the angles ∠x′1xpi are all obtuse, we conclude that |x′1pi| > |x′1x| and by the
Pythagorean theorem

|x1pi| =
√
|x1x′1|2 + |x′1pi|2 >

√
|x1x′1|2 + |x′1x|2 = |x1x| = dk ,

for all i = 1, 2, . . . , N . The distance |x1pi| for every i can, thus, take one of the k − 1 values
d1, . . . , dk−1. However, for every j ∈ {1, . . . , k − 1} all points pi that satisfy |x1pi| = dj lie at
the intersection of S (which is a d′-sphere) with the (d − 1)-dimensional sphere with center x1

and radius dj , which is either empty or a (d′ − 1)-sphere. It follows that for every j there are
at most c′(d, d′ − 1, k) points pi satisfying |x1pi| = dj . This contradicts the assumption that
N > (k − 1) · c′(d, d′ − 1, k), which completes the proof of the lemma.

As an easy consequence we get the following fact.

Lemma 2.5. No more than (c′(d, d− 1, k))d simplices can share a vertex.

Proof. Indeed, all simplices that have p ∈ P as their vertex have the other d vertices on the sphere
with center p and radius dk. By Lemma 2.4, there are at most c′(d, d − 1, k) such vertices and at
most (c′(d, d− 1, k))d ways to choose d of them.

Now we are in a position to complete the proof of Theorem 1. Let s be a d-simplex with vertices
from P (if there is no such a simplex, we are done). Let r be the Reuleaux simplex of s, which is
defined as the intersection of d+1 balls with centers at the vertices of s and with radius dk. Observe
that any simplex s′ different from s has at least one vertex outside of r, by Theorem A. On the other
hand, any point p ∈ P that does not belong to r must lie on one of (d+ 1)(k − 1) spheres, each of
them having one of the vertices of s as its center, and the radius in {d1, . . . , dk−1}. Since any such
sphere contains at most c′(d, d− 1, k) points from P , there are at most (d+ 1)(k − 1)c′(d, d− 1, k)
points from P lying outside of r, while every simplex s′ 6= s has at least one vertex among these
points. Since no more than (c′(d, d− 1, k))d simplices can share a vertex, we have that the theorem
holds with c(d, k) = (d+ 1)(k − 1)(c′(d, d− 1, k))d+1 + 1. This completes the proof of Theorem 1.

Remark. Going through the proof, one can see that it produces an extremely fast-growing function
c(d, k): a tower exponential function with Ω(d) levels of the form Ω(k).

3 A construction

In this section, we describe a finite set of points in Rd that spans d(k − 1) + 1 regular d-simplices
of edge length dk. There is a huge gap between this lower bound and the upper bound in Theorem
1, but the construction shows that the maximum number of k-th largest simplices indeed grows
both with k and d. The construction is inspired by the corresponding construction for maximal
(d− 1)-simplices, given in [17].

Let p0, p1, . . . , pd be the vertices of a regular unit simplex S in Rd centered at the origin (Figure
3(b)). For i 6= j denote by cij the center of the (d− 2)-face of S complementary to the edge pipj ,
i.e.,

cij = − 1
d− 1

(pi + pj) .
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It is easy to check that

|picij | = |pjcij | =
√

d

2(d− 1)

and that the vectors pi − cij and pj − cij are orthogonal to pk − cij for all k 6= i, j. Denote by Cij
the circle centered at cij that passes through pi and pj . Then pk is equidistant from all points of
Cij for k 6= i, j.

Now for all j = 1, . . . , d put on circle C0j new points rji , s
j
i (i = 1, . . . , k − 1) with the following

order
pj , r

j
1, r

j
2, . . . , r

j
k−1, p0, s

j
1, s

j
2, . . . , s

j
k−1 ,

so that
|pjrj1| = |rj1rj2| = · · · = |rjk−2r

j
k−1| = |p0s

j
1| = |sj1sj2| = · · · = |sjk−2s

j
k−1| = ε ,

where ε > 0 is very small.
Thus, we have d+1+2(k−1)d points in total and we claim that the largest distances generated

by these points are

|pjp0| = 1 = dk, |pjsj1| = dk−1, . . . , |pjsjk−1| = d1 for all j = 1, . . . , d .

To verify this, it is enough to check that |simrjn| < 1 for all i 6= j and all m,n. Let s be the projection
of sim on aff(C0j). Then s lies in a small neighborhood of p0 and we have that |srin| < |spj |. By
the Pythagorean theorem we get

|simrjn| =
√
|sims|2 + |srjn|2 <

√
|sims|2 + |spj |2 = |simpj | = |p0pj | = 1 .

Finally, note that any two points rji and sji together with {p1, . . . , pd} \ {pj} span a regular unit
d-simplex, for all i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}, which gives d(k − 1) + 1 simplices in total
(we count also the initial simplex p0p1 . . . pd).

4 Proof of Theorem 2

We start with some lemmas. It is shown in [17] that any two triangles in a graph of diameters in
R3 must share a vertex. We extend this result to k-th largest triangles for k ≥ 2.

Lemma 4.1. There is a large enough constant c such that no matter how we choose at least kck

triangles in a graph of k-th largest distances in R3, there are always two triangles that share a
vertex.

Proof. We can assume that k ≥ 2. Suppose to the contrary we have m ≥ kck triangles no two of
which share a vertex, for a large constant c. Let a1b1c1 be one of these triangles. Then each of
the remaining m − 1 triangles has a vertex on one of the 3(k − 1) spheres with centers a1, b1, c1
and radii d1, . . . , dk−1 (here we used the result from [17] mentioned above). Hence, we can find
at least m−1

3(k−1) triangles that have at least one vertex on one fixed sphere S1. Now pick one of
these triangles, say, a2b2c2. Again, each of the remaining m−1

3(k−1) − 1 triangles has a vertex on one
of the 3(k − 1) spheres with centers a2, b2, c2 and radii d1, . . . , dk−1, and, just like before, at least

m
32(k−1)2

− 1
32(k−1)2

− 1
3(k−1) triangles have at least one vertex on one fixed sphere S2. Note that all
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these triangles also have at least one vertex on S1, and S2 6= S1, since they have different centers.
Proceeding in this manner, after t steps (we’ll specify t shortly) we find at least

m

3t(k − 1)t
− 1

3t(k − 1)t
− · · · − 1

3(k − 1)

triangles that have at least one vertex on each of the t distinct spheres S1, . . . , St of radii from
{d1, . . . , dk−1}. We take t = 3 · 2(k − 1) + 1 and claim that

m

3t(k − 1)t
− 1

3t(k − 1)t
− · · · − 1

3(k − 1)
≤ 2
(

t

2(k − 1) + 1

)
. (1)

Indeed, each triangle has one vertex on each of the t spheres, and, therefore, each triangle has a
vertex that lies in the intersection of at least 2(k − 1) + 1 spheres. However, any intersection of
2(k − 1) + 1 spheres consists of at most two points. Thus, each triangle has a vertex that lies in a
set of at most 2

(
t

2(k−1)+1

)
points. However, two different triangles never share a vertex, hence the

inequality (1). On the other hand, we have that

m

3t(k − 1)t
− 1

3t(k − 1)t
− · · · − 1

3(k − 1)
≥ kck/2 (2)

for large enough c. From (1) and (2) we have that

kck/2 ≤ 2
(

6k − 5
2k − 1

)
,

which does not hold for large enough c.

Next we count the number of k-th largest distances on a sphere in R3 under the condition that
the radius of the sphere is large enough compared to the distances.

Lemma 4.2. Among n points on a 2-sphere there can be at most 2kn pairs at distance dk, provided
that dk is the radius of the sphere as well as the k-th largest distance.

Proof. Denote the sphere by S. We consider the graph of k-th largest distances on the n given
points. If all the vertices have degree at most 4k, we are done, so we can assume that there is a
vertex v of degree at least 4k+ 1. Also, if there is a vertex of degree at most 2k, we are done, since
we can delete that vertex and proceed by induction. Therefore, we assume that all vertices have
degree at least 2k + 1.

Let u1, . . . , u4k+1 be neighbors of v. Then |vu1| = · · · = |vu4k+1| = dk (Figure 4). The points
u1, . . . , u4k+1 are cocyclic and lie on one hemisphere with point v (this follows from the fact that
the radius of S is dk). Let C be the circle that contains u1, . . . , u4k+1 and let p be its center. It is
an easy exercise to show that there exists i such that the diameter of C that contains ui divides the
rest of the points into two parts of 2k points. From the assumption we know that ui has a neighbor
w 6= v. Now we want to locate the projection w′ of point w to the plane of C. In the plane of C
consider the line ` that is perpendicular to uip and passes through p. We claim that w′ lies on the
same side of ` as point ui. This follows from the fact that w lies on the circle S(ui, dk) ∩ S, which
in turn lies on the same side of the plane determined by v and ` as point ui (here S(ui, dk) denotes
the sphere with center ui and radius dk). Without loss of generality let the points lying on one
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v

ui

u1
u2

u4u3

w′

p

`

w

Figure 4: Proof of Lemma 4.2

side of the diameter of C through ui be u1, . . . , u2k and let w′ lies on the other side of the diameter
(or, possibly, on the diameter). Then |w′uj | > |w′ui|, for all j = 1, . . . , 2k. By the Pythagorean
theorem it follows that |wuj | > |wui| = dk for all j, and, hence, |wuj | ∈ {d1, . . . , dk−1}. However,
each of the k − 1 possible values can be taken by |wuj | for at most two different j’s. This is a
contradiction.

Now the proof of Theorem 2 is not difficult.

Proof of Theorem 2. Consider the graph of k-th largest distances on the given set P . Take a
maximal set of triangles in which no two share a vertex. Denote by m the number of triangles in
this set and by M the total number of triangles. Then m = kO(k), by Lemma 4.1. Each of the
remaining M −m triangles shares a vertex with one of the m triangles. Thus, we can find at least
M−m

3m triangles that share a vertex v. The sphere with center v and radius dk contains at most n−1
points of P that generated at least M−m

3m distances dk. Now Lemma 4.2 gives us M−m
3m ≤ 2k(n− 1),

which implies M ≤ kO(k)n .

5 Proof of Theorem 3

Here we discuss a method based on an interesting graph-theoretic lemma, from which Theorem 3
follows immediately. We formulated the lemma recently with Alexey Glazyrin and the following
proof was given on MathOverflow by Timothy Gowers, Sergey Norin and Fedor Petrov [14].

Lemma 5.1. Given a graph G(V,E) whose edges are colored in two colors, red and blue. Suppose
there are constants c, c′ > 0 such that the following two conditions hold:

(1) for any S ⊆ V , there are at most c|S| red edges in G[S];
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(2) for any S ⊆ V , if G[S] contains no red edges, then it contains at most c′|S| blue edges (resp.,
triangles).

Then the total number of blue edges (resp., triangles) is at most c′ · 24c+1|V | (resp., c′ · 26c+2|V |) .

Proof. We will give a detailed proof just for the case of edges. The proof for triangles can be
obtained with minor changes, which we explain at the end.

First we show that we can label the vertices of G by v1, v2, . . . , vn such that vi+1 has at most
2c neighbors in {v1, . . . , vi} to which it is connected by a red edge, for all i = 1, . . . , n− 1. Indeed,
let vn be a vertex with the smallest red-degree in G (the red-degree is the number of red edges
incident to a vertex). Then degred(vn) ≤ 2c. We proceed by induction: supposing that the vertices
vn, vn−1, . . . , vk+1 are already chosen, we pick a vertex vk ∈ V \ {vn, vn−1, . . . , vk+1} that has the
smallest red-degree in G[V \ {vn, vn−1, . . . , vk+1}]. By the assumption, the red-degree of vk in the
restricted graph will not be larger than 2c, as required.

Now we define a random subset S of V recursively, as follows: if S ∩ {v1, . . . , vi} has already
been chosen, we put vi+1 in S with probability 1

2 if it is not joined by a red edge to any of the
vertices already in S, otherwise we do not put it in S. Thus, we obtain a random red-independent
set S of vertices (where by red-independent we mean that G[S] contains no red edges).

The next step is to give a lower bound for the probability that a fixed blue edge is chosen. Let
x and y be two vertices connected by a blue edge. Since both x and y have at most 2c vertices
preceding them, to which they are connected by a red edge, we have that Pr[x ∈ S & y ∈ S] is
at least the probability that none of their neighbors is chosen multiplied by the probability that x
and y are chosen, i.e.,

Pr[x ∈ S & y ∈ S] ≥ 1
24c+2

.

Note that we did not use that x and y are connected by a blue edge, we used just that xy is not a
red edge. Finally, for the expected number of blue edges in S we have

E[#blue edges in S] ≥ 1
24c+2

×#blue edges

on one hand, and

E[#blue edges in S] ≤ c′ E[|S|] ≤ c′ · |V |
2

on the other hand, since each vertex of G lies in S with probability at most 1
2 . By combining the

two inequalities, we get
#blue edges ≤ c′ · 24c+1|V |,

as claimed.
To get the bound for the number of blue triangles, we proceed in the same manner, except that

we use the estimate
Pr[x ∈ S & y ∈ S & z ∈ S] ≥ 1

26c+3
,

for any blue triangle xyz, and we consider the expected number of blue triangles in S, instead of
edges.

Now Theorem 3 follows with no difficulty.
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Proof of Theorem 3. Consider a graph on n points in R3, whose red and blue edges are, respectively,
diameters and second largest distances. Then the conditions of the edge version of Lemma 5.1 are
satisfied with c = c′ = 2 (since the maximum number of diameters is 2n − 2, see [21]). Hence,
we conclude that the number of second largest distances is at most 210n. Applying the lemma
repeatedly k − 1 times finishes the proof.

The constant ck we get is tower exponential in k, while we expect a polynomial dependence on
k. This might possibly be achieved by improving the dependence on c and c′ of the final constant
in Lemma 5.1. So far the above graph-theoretic approach is the only way how we can derive a
linear upper bound for k-th largest distance in R3. Note that the triangle version of Lemma 5.1
(with c = 2 and c′ = 1, by Theorem B) also provides an instant proof of Theorem 2, although with
a much weaker constant.
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