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ABSTRACT

A collection of simple closed Jordan curves in the plane is
called a family of pseudo-circles if any two of its members
intersect at most twice. A closed curve composed of two sub-
arcs of distinct pseudo-circles is said to be an empty lens if it
does not intersect any other member of the family. We estab-
lish a linear upper bound on the number of empty lenses in
an arrangement of n pseudo-circles with the property that
any two curves intersect precisely twice. Enhancing this
bound in several ways, and combining it with the technique
of Tamaki and Tokuyama [16], we show that any collection
of n pseudo-circles can be cut into O(n®/?(logn)°© ("))
arcs so that any two intersect at most once, provided that
the given pseudo-circles are z-monotone and admit an al-
gebraic representation by three real parameters; here a(n)
is the inverse Ackermann function, and s is a constant that
depends on the algebraic degree of the representation of the
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pseudo-circles (s = 2 for circles and parabolas). For arbi-
trary collections of pseudo-circles, any two of which intersect
twice, the number of necessary cuts reduces to O(n4/ 3). As
applications, we obtain improved bounds for the number
of point-curve incidences, the complexity of a single level,
and the complexity of many faces in arrangements of circles,
pairwise intersecting pseudo-circles, parabolas, and families
of homothetic copies of a fixed convex curve. We also obtain
a variant of the Gallai-Sylvester theorem for arrangements of
pairwise intersecting pseudo-circles, and a new lower bound
for the number of distinct distances among n points in the
plane under any simply-defined norm or convex distance
function.

1. INTRODUCTION

The arrangement of a finite collection C of geometric
curves in R?) denoted as .A(C), is the planar subdivision
induced by C, whose vertices are the intersection points of
the curves of C, whose edges are the maximal connected
portions of curves in C not containing a vertex, and whose
faces are maximal connected portions of R* \ | JC. Because
of numerous applications and the rich geometric structure
that they possess, arrangements of curves, especially of lines
and segments, have been widely studied [2].

A family of unbounded Jordan curves (resp., arcs) is called
a family of pseudo-lines (resp., pseudo-segments) if every
pair of curves intersect in at most one point and they cross
at that point. A collection C of closed Jordan curves is
called a family of pseudo-circles if every pair of them cross
at most twice. If the curves of C are graphs of continu-
ous functions everywhere defined on the set of real num-
bers, such that every two cross at most twice, we call them
pseudo-parabolas.t Although many combinatorial results on
arrangements of lines and segments extend to pseudo-lines
and pseudo-segments, as they rely on the fact that any two
curves intersect in at most one point, they rarely extend to
arrangements of curves in which a pair intersect in more than
one point. In the last few years, progress has been made on
analyzing arrangements of circles, pseudo-circles, or pseudo-
parabolas by “cutting” the curves into subarcs so that the
resulting set is a family of pseudo-segments and by applying
results on pseudo-segments to the new arrangement; see [1,
5, 6, 7, 14, 16]. This paper continues this line of study—it
improves a number of previous results on arrangements of

!For simplicity, we assume that every tangency counts as
two crossings, i.e., if two pseudo-circles or pseudo-parabolas
are tangent at some point, but they do not properly cross
there, they do not have any other point in common.



pseudo-circles, and extends a few of the recent results on
arrangements of circles (e.g., those presented in [5, 6, 14])
to arrangements of pseudo-circles.

Let C be a finite set of pseudo-circles in the plane. Let ¢
and ¢’ be two pseudo-circles in C, intersecting at two points
u,v. A lens X\ formed by ¢ and ¢’ is the union of two arcs,
one of ¢ and one of ¢, both delimited by u and v. If A
is a face of A(C), we call A an empty lens; A is called a
lens-face if it is contained in the interiors of both ¢ and
¢, and a lune-face if it is contained in the interior of one
of them and in the exterior of the other. See Figure 1.
(We ignore the case where A lies in the exteriors of both
pseudo-circles, because there can be only one such face in
A(C).) Let pu(C) denote the number of empty lensesin C. A
family of lenses formed by the curves in C is called pairwise
nonoverlapping if the arcs forming any two of them do not
overlap. Let v(C) denote the maximum size of a family of
nonoverlapping lenses in C. We define the cutting number
of C, denoted by x(C), as the minimum number of arcs into
which the curves of C have to be cut so that any pair of
resulting arcs intersect at most once (i.e., these arcs form
a collection of pseudo-segments). In this paper, we obtain
improved bounds on p(C), v(C), and x(C) for several special
classes of pseudo-circles, and apply them to obtain bounds
on various substructures of A(C).

lne—face
lune-face
~

(i) (i)

Figure 1: (i) A pseudo-circle v supporting one lens-
face and two lune-faces. (ii) A family of (shaded)
nonoverlapping lenses.

Previous results. Tamaki and Tokuyama [16] proved that
v(C) = O(n®?) for a family C of n pseudo-parabolas or
pseudo-circles, and exhibited a lower bound of Q(n?/?). In
fact, their construction gives a lower bound on the number
of empty lenses in an arrangement of circles or parabolas.
Subsequently, improved bounds on u(C) and v(C) have been
obtained for arrangements of circles. Alon et al. [5] and
Pinchasi [14] proved that p(C) = O(n) for a set of n pairwise
intersecting circles. If C' is an arbitrary collection of circles,
then v(C) = O(n®/?*¢), for any e > 0, as shown by Aronov
and Sharir [6]. No better bound is known for the number of
empty lenses in a family of circles. However, we have u(C) =
O(n*/?) for a set of n unit circles, though no superlinear
lower bound is known for this special case.

The analysis in [16] shows that the cutting number x(C)
is proportional to v(C) for collections of pseudo-parabolas
or of pseudo-circles. Therefore one has x(C) = O(n®/?)
for pseudo-parabolas and pseudo-circles [16], and x(C) =
O(n®**%) for circles. Using this bound on x(C), Aronov

and Sharir [6] proved that the maximum number of inci-
dences between a set C' of n circles and a set P of m points
is O(m?3n?/3 4 m&/11+3ep9/11=¢ Ly 4 p), for any ¢ > 0.
Recently, following a similar but more involved argument,
Agarwal et al. [1] proved a similar bound on the complex-
ity of m distinct faces in an arrangement of n circles in the
plane. An interesting consequence of the results in [5, 14] is
the following generalization of the Sylvester-Gallai theorem:
In an arrangement of pairwise intersecting circles, there al-
ways exists a vertex incident to at most three circles, pro-
vided that the number of circles is sufficiently large. For
pairwise intersecting unit circles, the property holds when
the number of circles is at least 5 [5, 14].

New results. In this paper we first obtain improved bounds
on u(C) and v(C) for various special classes of pseudo-
circles, and then apply these bounds to several problems
involving arrangements of such pseudo-circles. Let C be a
collection of n pseudo-parabolas such that any two have at
least one point in common. We show that the number of
tangencies in C is at most 2n — 4 (for n > 3). In fact, we
prove the stronger result that the tangency graph for such
a collection C is bipartite and planar. Using this result, we
prove that u(C) = O(n) for a set C of n pairwise intersecting
pseudo-circles. Next, we show that v(C) = O(n*/?) for col-
lections C of pairwise intersecting pseudo-parabolas. Then,
in Section 3, we study a somewhat artificial extension of
the analysis of lenses to certain kinds of bichromatic lenses
(where C is the disjoint union of two subsets A, B, and we
only consider lenses formed by a curve in A and a curve in
B). This extension is needed as a crucial component for the
analysis of arbitrary arrangements of pseudo-circles. In the
general case, we can no longer just assume the pseudo-circle
property, and we need to make some additional assumptions
on the geometric shape of the given curves. Specifically, we
assume that they are all z-monotone, and that they admit a
3-parameter algebraic representation (a notion defined more
precisely in Section 4). Then v(C) = O(n*/?(log n)° (=" (")),
where a(n) is the inverse Ackermann function and s is a con-
stant depending on the algebraic parametrization (s = 2 for
circles and for parabolas of the form y = az? + bz +¢). This
bound gives a slightly improved bound on v(C), compared
to the bound proved in [6], for a family of circles.

In Section 5, we present several applications of the above
results. The results imply that x(C) = O(n*/?) for a family
of n pairwise intersecting pseudo-circles. If C is a family
of n x-monotone pseudo-circles with 3-parameter algebraic
representation, then x(C) = O(n®?(logn)°©® (™)) where
s is as above. The better bounds on the cutting number
lead to improved bounds on the complexity of levels, on
the number of incidences between points and pseudo-circles,
and on the complexity of many faces, in arrangements of sev-
eral classes of pseudo-circles, including the cases of circles,
parabolas, pairwise-intersecting pseudo-circles, and homo-
thetic copies of a fixed convex curve. Our results also yield
a new lower bound for the number of distinct distances in
the plane under norms or convex distance functions other
than the Euclidean norm. Finally, we obtain a generaliza-
tion of the Sylvester-Gallai-type results of [5] to the case of
pairwise-intersecting pseudo-circles. The exact bounds and
detailed results are stated in Section 5.

We close the introduction by mentioning recent work by
Chan [7], in which nontrivial and improved bounds for x(C)
are obtained for families C of graphs of polynomials of any



constant maximum degree. Interestingly, although his anal-
ysis is based on cutting pseudo-parabolic arcs into pseudo-
segments, it does not (and probably cannot) exploit the new
bounds obtained in this paper. In the full version of the
paper, we also present applications of his bounds for obtain-
ing improved bounds on the number of incidences between
points and graphs of polynomials of a fixed degree.

2. THE CASE OF PAIRWISE INTERSECT-
ING PSEUDO-CIRCLES

2.1 Tangencies in arrangements of pairwise
intersecting pseudo-parabolas

Before going into the analysis of the general case of pair-
wise intersecting pseudo-circles, which requires several topo-
logical transformations and reductions of a more technical
nature, we begin with a more specialized result, which is
interesting in its own right, and which constitutes the main
tool in the derivation of all the other results of this paper.

Let I" be a set of n pairwise intersecting pseudo-parabolas,
i.e., graphs of totally defined continuous functions, each pair
of which intersect, either in exactly two crossing points or
in exactly one point of tangency. Assume also that no three
of these curves have a point in common. Let T denote the
set of all pairs of tangent curves in I". We regard T as the
edge set of a ‘tangency graph’ G = (I, T).

THEOREM 2.1. The tangency graph G = (I',T), as de-
fined above, is a bipartite planar graph. Consequently, |T| <
2n — 4, for n > 3.

Proof: We first show that G is bipartite. A pseudo-parabola
in I is called lower (resp., upper) if it forms a tangency with
another curve that lies above (resp., below) it. We observe
that a curve v € I' cannot be both upper and lower, or else
the two other curves forming the respective tangencies with
v would have to be disjoint. Hence, G is bipartite.

The drawing rule. Let £ be some fixed vertical line that
lies to the left of all the vertices of A(I'"). We draw G in
the plane as follows. Each v € T is represented by the
point v* = vy N £. Each edge (y1,72) € G is drawn as a y-
monotone curve that connects the points ~{, 5. This path
has to navigate to the left or to the right of each of the
intermediate vertices §* between 7 and 5 along £.

The rule for drawing an edge (77,75) is: Assume that vy
lies below 75 along £. Let W (~v1,v2) denote the left wedge
formed by <1 and 72, consisting of all points that lie above 7,
and below 72 and to the left of the tangency between them.
Let 6 € T' be a curve so that " lies on £ between 7 and ~3.
The curve § has to exit W (~vy1,y2). If its first exit point (i.e.,
its leftmost intersection with W (+y1,~2)) lies on 1 then we
draw (77,75) to pass to the right of §*. Otherwise we draw
it to pass to the left of 6*. Except for these requirements,
the edge (7i,73) can be drawn in an arbitrary y-monotone
manner. See Figure 2 for an illustration.

LEMMA 2.2. Suppose that the following conditions hold
for each quadruple v1,%2,73,7v4 of pseudo-parabolas in T,
listed in the order of their intersections with the line £:

(a) If (v1,74) and (y2,73) are edges of G then the drawing
of (71,7v1) does not pass to the left of v3 and to the right of
v3, nor does it pass to the right of v5 and to the left of ;.
(b) If (y1,7v3) and (y2,7v4) are edges of G then, if the drawing

Figure 2: Illustrating the drawing rule.

of (7i,73) passes to the left (resp., to the right) of v5 then
the drawing of (3, v1) passes to the right (resp., to the left)
of v3-

Then G is planar.

Proof: See Figure 3 for the configurations allowed and disal-
lowed by conditions (a) and (b). We show that the drawings
of each pair of edges of G cross an even number of times.
This, combined with Hanani-Tutte’s theorem [17] (see also
[9, 12]), implies that G is planar. Clearly, it suffices to check
this for pairs of edges for which the y-projections of their
drawings have a nonempty intersection. In this case, the
projections are either nested, as in case (a) of the condition
in the lemma, or partially overlapping, as in case (b).

SITRY:

allowed forbidden

Figure 3: The allowed and forbidden configurations
in conditions (a) and (b).

Consider first a pair of edges e = (y1,74) and ' = (72,73),
with nested projections, as in case (a). Regard the drawing
of e as the graph of a continuous partial function z = e(y),
defined over the interval [y{, 4], and similarly for e’. Part
(a) of the condition implies that either e is to the left of e’
at both v3 and ~3, or e is to the right of ¢’ at both these
points. Since e and e’ correspond to graphs of functions
that are defined and continuous over [v3, 3], it follows that
e and ¢ intersect in an even number of points.

Consider next a pair of edges e = (y1,73) and e’ = (y2,74),
with partially overlapping projections, as in case (b). Here,
too, part (b) of the condition implies that either e is to the
left of ¢’ at both 5 and 73, or e is to the right of e’ at both
these points. This implies, as above, that e and e’ intersect
in an even number of points. O

We next show that the conditions in Lemma 2.2 do indeed
hold for our drawing of G. The argument is that, in any
forbidden pattern of lemma 2.2, two of the curves 1, ... ,7va
must be disjoint, which contradicts our assumption.



LEMMA 2.3. Let 7y1,72,73,74 be four pseudo-parabolas in
T', whose intercepts with £ appear in this increasing order,
and suppose that (y1,7v4) and (v2,7y3) are tangent pairs. Then
it s impossible that the first exit points of v2 and 3 from
the wedge W (~y1,v4) are at opposite sides of the wedge.

Proof: Suppose to the contrary that such a configuration
exists. Then, except for the respective points of tangency,
v3 always lies above <2, and 4 always lies above 1. This
implies that if the first exit point of 2 from W (vy1,74) lies
on <4, then the first exit point of 3 also has to lie on 74,
contrary to assumption. Hence, the first exit point of 7> lies
on v; and the first exit point of 3 lies on 4. See Figure 4.
Let v14 denote the point of tangency of 1 and v4. We
distinguish between two cases:

(a) 2 passes below vi4 and 3 passes above via: See Fig-
ure 4(i). In this case, the second intersection point of 1 and
~v2 must lie to the right of v14, for otherwise 2 could not have
passed below v14. Similarly, the second intersection point of
v3 and -4 also lies to the right of v14. This also implies that
2 and -4 do not intersect to the left of v14, and that v, and
3 also do not intersect to the left of vi4. Let uis (resp., u24)
denote the leftmost intersection point of y1 and 73 (resp., of
~2 and 74), both lying to the right of v14. Suppose, without
loss of generality, that ui3 lies to the left of u24. In this case,
the second intersection of v; and 2 must lie to the right of
u13. Indeed, otherwise v2 would become “trapped” inside
the wedge W (y1,73) because 2 cannot cross 7s and it has
already crossed 71 at two points. The second intersection of
3 and 4 occurs to the left of u13. Now, 2 and 4 cannot
intersect to the left of wi3: 72 does not intersect 4 to the
left of its first exit wiz from W(y1,v4). To the right of w1
and to the left of w13, y2 remains below ;, which lies below
v4. Finally, to the right of ui3, 2 lies below ~y3, which lies
below «4. This implies that 2 cannot intersect 4 at all, a
contradiction, which shows that case (a) is impossible.

Y4 4
¥3 73
v14 v14
Y2 13 ~o
w12
71 71

(i) (i)

Figure 4: Edges of G with nested projections: (i) 7
passes below v14 and v3 passes above vi4; (ii) both 7
and ~3 pass on the same side of vi4.

(b) Both 7> and 73 pass on the same side of vi4: Without
loss of generality, assume that they pass above vi4. See
Figure 4(ii). Then 7, must cross ; again and then cross
~4, both within OW (vy1,74). In this case, 3 cannot cross
~v1 to the left of vi4, because to do so it must first cross
v4 again, and then it would get ‘trapped’ inside the wedge
W (~y2,74). But then 1 and -3 cannot intersect at all: We
have argued that they cannot intersect to the left of vi4. To
the right of this point, 3 lies above 2, which lies above ;.
This contradiction rules out case (b), and thus completes
the proof of the lemma. O

LEMMA 2.4. Let v1,7y2,7s,7a be four curves in T', whose
intercepts with £ appear in this increasing order, and suppose
that (y1,7v3) and (y2,v4) are tangent pairs. Then it is impos-
sible that the first exit point of v2 from the wedge W (y1,73)
and the first exit point of v3 from the wedge W (~y2,v4) both
lie on the bottom sides of the respective wedges, or both lie
on the top sides.

PROOF. Suppose to the contrary that such a configura-
tion exists. By symmetry, we may assume, without loss of
generality, that both exit points lie on the bottom sides.
That is, the exit point ui2 of 2 from W (y1,73) lies on y1
and the exit point u23 of v3 from W (vy2,v4) lies on 2. See
Figure 5. By definition, 72 and s do not intersect to the
left of ui2. So, w23 occurs to the right of w12 and, in fact,
also to the right of the second intersection point of v; and
~2. Again, by assumption, 3 and 4 do not intersect to the
left of us3. Hence ;1 and 74 also do not intersect to the left
of u23, because 71 lies below 3. But then ; and <4 cannot
intersect at all, because to the right of uss, 4 lies above 72,
which lies above 1. This contradiction completes the proof
of the lemma. [

Y4

73

71

Figure 5: Edges of G with partially overlapping pro-
jections.

Lemmas 2.3 and 2.4 show that the conditions in Lemma 2.2
hold, so G is planar and bipartite and thus has at most 2n—4
edges, for n > 3. This completes the proof of Theorem 2.1.
O

2.2 Empty lenses in arrangements of pairwise
intersecting pseudo-circles

We next extend Theorem 2.1 to families C of n pseudo-
circles, any two of which intersect each other in two points.
The extension is rather technical, and aims to reduce this
case to the case of pseudo-parabolas. Here is a sketch of the
process; some of the details are left out due to lack of space.

We refer to the interiors of the pseudo-circles in C as
pseudo-disks. Using planarity, we first show that, among
any five pseudo-disks bounded by the elements of C, there
are at least three that have a point in common: A configura-
tion that violates this property leads to an impossible plane
drawing of K.

We then apply a topological variant of Helly’s theorem
[10], due to Molnér [13], which asserts that any finite family
of at least three simply connected regions in the plane has
a nonempty simply connected intersection, provided that
any two of its members have a connected intersection and
any three have a nonempty intersection. Consequently, the



intersection of any subfamily of pseudo-disks bounded by
elements of C' is either empty or simply connected and hence
contractible.

For any p > q > d+1, a finite collection F' of open regions
in d-space is said to have the (p, q)-property if among any p
members of F' there are q that have a point in common. Alon
et al. [3] have recently extended a celebrated result of Alon
and Kleitman [4], by showing that there exists a constant
k = k(p, q,d) such that, if F' satisfies the (p, ¢)-property and
the intersection of every subfamily of F is either empty or
contractible, then there are k points so that every member
of F' contains at least one of them. Such a set is often called
a k-element transversal or piercing set.

All this implies that there is an absolute constant &k such
that any family of pseudo-disks bounded by pairwise inter-
secting pseudo-circles can be pierced by at most k points.

Fix a set O = {01,02,..., 0k} piercing the family of all
pseudo-disks bounded by the elements of C. Let C; consist
of all elements of C that contain o;, for i =1,2,... , k.

It suffices to derive an upper bound on the number of
empty lenses formed by pairs of pseudo-circles belonging to
the same class C;, and on the number of empty lenses formed
by pairs of pseudo-circles belonging to two fixed classes C;,
C;. Using an inversion with respect to the piercing point of
one of the two classes, one can show that the second task
can be reduced to the first one (details omitted here), so we
focus our attention on lenses formed within a fixed class Cj;.

Consider now a fixed class C;. We next show that, by
deforming the plane without changing the combinatorial
structure of the arrangement of C;, we can transform the
elements of C; into sets that are star-shaped with respect
to o0;. This is accomplished using a topological sweeping
argument, akin to that due to Hershberger and Snoeyink
[11]. Specifically, we show that the union of any subset of
pseudo-disks bounded by the pseudo-circles in C; is simply
connected. This allows us to draw a curve 7 that starts at
o0; and extends to infinity, crossing each ¢ € C; exactly once;
see Figure 6(i). We then sweep 7 around o;. This is based on
the following crucial property, whose proof is omitted here:
There always exist two consecutive edges of A(C;) crossed
by 7 which have a common endpoint w counterclockwise to
7 (such as the edges ey, e2 in Figure 6(i)). This allows us to
advance T past w, and to continue the sweep in this manner
until we perform a complete revolution about o;. We then
simulate the sweep by replacing 7 by a straight ray r em-
anating from o;. Each step of sweeping 7 past a vertex of
A(C;) is simulated by a swap of the modified pseudo-circles
at an appropriate position of r. We omit further details due
to lack of space; an illustration of the process is depicted in
Figure 6.

We then regard each pseudo-circle in C; as a graph of a
function in polar coordinates; the collection of these graphs
(with an appropriate ‘stretching’ of the f-axis to the full
line) is the desired collection of pairwise-intersecting pseudo-
parabolas. We still need to go through a few technical steps:
First, we dispose of cases where all the pseudo-parabolas
pass through the same pair of points (they form a so-called
pencil), or where two empty lenses share an arc. Then we de-
form the arrangement slightly, so as to ensure that no three
pseudo-parabolas have a common point, without destroy-
ing any empty lens. Finally, we shrink each empty lens to
a point of tangency between the respective curves, thereby
reducing the setup to that assumed in Theorem 2.1. Apply-

) (i)

Figure 6: Converting C into a star-shaped family
by a counterclockwise topological sweep: (i) original
curves, (ii) transformed curves.

ing all these steps, and handling in this manner all pairs of
subfamilies pierced by two respective points of O, we obtain
the main technical result of the paper:

THEOREM 2.5. The number of empty lenses in an ar-
rangement of n pairwise intersecting pseudo-circles is O(n).

2.3 Pairwise nonoverlapping lenses

Let C be a family of n pairwise-intersecting pseudo-parabolas
or pseudo-circles, and let L be a family of pairwise nonover-
lapping lenses in A(C). In this subsection, we obtain the
following bound for the size of L.

THEOREM 2.6. Let C be a family of n pairwise-intersecting
pseudo-parabolas or pseudo-circles. Then the mazimum size
of a family of pairwise nonoverlapping lenses in A(C) is
o(n*’?).

Proof: We only consider the case of pseudo-parabolas; the
other case can be reduced to this case, using the analy-
sis given in the preceding subsections. The proof proceeds
through the following sequence of lemmas.

LEMMA 2.7. Let C and L be as above, and assume further
that the lenses in L have pairwise disjoint interiors. Then
|L| = O(n).

Proof: For each lens A € L, let o denote the number of
edges of A(C) that lie in the interior of A (i.e., the region
bounded by A), and set oz = ), 0». We prove the lemma
by induction on the value of or. If oz = 0, i.e., all lenses
in L are empty, then the lemma follows from Theorem 2.5.
Suppose o1 > 1.

Let Ao be a lens in L with oy, > 1, and let Ko be the
interior of A\g. Let v, € C be the pseudo-parabolas forming
Mo, and let § C v and &' C +' be the two arcs forming Ao.
Let { € C be a curve that intersects Kp; clearly, { € C
cannot be fully contained in the interior of K. Therefore,
up to symmetry, there are two possible kinds of intersection
between ¢ and Ao:

(i) KNnéd|=2,and (NG =0.

(ii) ¢ intersects both § and &'. In this case, either ¢ inter-
sects each of 8,8’ at a single point, or intersects each
of them at two points.

Suppose Ko contains a curve ¢ € C of type (i). Let A1 be
the lens formed by ¢ and 4'. Let L' be the family obtained



from L by replacing Ao with A;. See Figure 7(a). The inte-
rior of A; is strictly contained in K and contains fewer edges
of A(C) than Ko, so o < or. The lemma now holds by the
induction hypothesis. We may thus assume that no curve
of type (i) crosses Ko, so all these curves are of type (ii). In
this case, we can shrink Ky to an empty lens between v and
v'. For example, we can replace §' by an arc that proceeds
parallel to § and outside Ko, and connects two points on '
close to the endpoints of &', except for a small region where
the new §' crosses § twice, forming a small empty lens; see
Figure 7(b). Since only curves of type (ii) cross Ko, it is easy
to check that C is still a collection of pairwise-intersecting
pseudo-parabolas. The lens A is replaced by the new lens
A1 formed between § and the modified §’. Since o, = 0,
we have reduced the size of o, and the claim follows by
the induction hypothesis. This completes the proof of the
lemma. O

& &

(i) (ii)

Figure 7: Replacing Ao by s ‘smaller’ lens: (a) The
case of a type (i) curve (. (b) Shrinking X\ to
an empty lens when it is crossed only by type (ii)
curves.

A pair (X, X') of lenses in L is said to be crossing if an arc
of )\ intersects an arc of \'. (Note that a pair of lenses may
be nonoverlapping and yet crossing.) A pair (A, \') of lenses
in L is said to be nested if both arcs of X’ are fully contained
in the interior of A\. Let X (resp., Y) be the number of
crossing (resp., nested) pairs of lenses in L.

LEMMA 28. Let C, L, X and Y be as above. Then
IL| =0(n+X +7Y). (1)

Proof: If L contains a pair of crossing or nested lenses,
remove one of them from L. This decreases |L| by 1 and
X +Y by at least 1, so if (1) holds for the new L, it also
holds for the original set. Repeat this step until L has no
pair of crossing or nested lenses. Every pair of lenses in (the
new) L must have disjoint interiors. The lemma is then an
immediate consequence of Lemma 2.7. O

We next derive upper bounds for X and Y. The first
bound is easy:

LEMMA 2.9. X = O(n?).

Proof: We charge each crossing pair of lenses (\,\') in L
to an intersection point of some arc bounding A and some
arc bounding )\'. Since the lenses of L are pairwise nonover-
lapping, it easily follows that such an intersection point can
be charged at most O(1) times (it is charged at most once if
the crossing occurs at a point in the relative interior of arcs
of both lenses), and this implies the lemma. O

We next derive an upper bound for Y, with the following
twist:

LEMMA 2.10. Let k < n be some threshold integer param-
eter, and suppose that each lens of L is crossed by at most
k curves of C. Then'Y = O(k|L|).

Proof: Fix alens X' € L. Let A € L be a lens that contains
X in its interior, i.e., (A, \’) is a nested pair. Pick any point
gon X (e.g., its left vertex), and draw an upward vertical ray
p from g; p must cross the upper boundary of A. It cannot
cross more than k other curves before hitting A because any
such curve has to cross A. Because of the nonoverlap of the
lenses of L, the crossing point p N A uniquely identifies A
(unless it is a vertex of A, in which case there is a constant
number of possible lenses A\). This implies that at most O(k)
lenses in L can contain X', thereby implying that the number
of nested pairs of lenses in L is O(k|L|). O

We are now ready to complete the proof of Theorem 2.6.
Let L be a family of pairwise nonoverlapping lenses in A(C).
Let k be any fixed threshold parameter, which will be de-
termined later. First, remove from L all lenses which are
intersected by at least k curves of C. Any such lens con-
tains points of intersection of at least & pairs of curves of C.
Since these lenses are pairwise nonoverlapping, and there
are n(n—1) intersection points, the number of such ‘heavily
intersected’ lenses is at most O(n?/k). So, we may assume
that each remaining lens in L is crossed by at most k curves
of C.

Draw a random sample R of curves from C, where each
curve is chosen independently with probability p, to be de-
termined shortly. The expected number of curves in R is np,
and the expected size |L'| of the subset L' of lenses of L that
materialize in R is |L|p® (where L refers to the set after re-
moval, within A(C), of the ‘heavily intersected’ lenses). The
expected number Y’ of nested pairs (A, ') in L' is Yp* (any
such pair must be counted in Y for the whole arrangement,
and its probability of materializing in R is p*). Similarly, the
expected number X’ of crossing pairs (\, ') in L' is Xp*.
By Lemmas 2.8 (applied to A(R)), 2.9, and 2.10, we have

|L|p® < c(np + n’p* + k|L|p*),

for an appropriate constant ¢. That is, we have
2 n 2 2
|L|(1 — ckp”) §c<—+n D )
p

Choose p = 1/(2ck)*/?, to obtain |L| = O(nk*'? + n?/k).
Adding the bound on the number of heavy lenses, we con-
clude that the size of the whole L is

n?
|L| =0 (nk1/2 + —) .
k
By choosing k = n?/3, we obtain |L| = O(n*/3), thereby
completing the proof of the theorem. O

3. BICHROMATIC LENSES

In this section we consider the following bichromatic ex-
tensions of the problems involving empty lenses and pairwise
nonoverlapping lenses. These extensions are somewhat ar-
tificial, but they are required as a main technical tool in
the analysis of the general case, treated in the next section,
where not all pairs of the given pseudo-circles necessarily
intersect.



We begin the study by assuming that we have a collec-
tion C of n pseudo-parabolas, which is the disjoint union of
two subsets A, B, so that each pseudo-parabola of A inter-
sects every pseudo-parabola of B twice; a pair of pseudo-
parabolas within A (or B) may be disjoint. A lens formed
by a pseudo-parabola belonging to A and by one belonging
to B is called bichromatic.

THEOREM 3.1. Let C be a collection of n pseudo-parabolas,
so that C is the disjoint union of two subsets A, B, such that
each element of A intersects every element of B. Then the
number of bichromatic empty lenses in A(C) is O(n).

Proof: It suffices to estimate the number of empty bichro-
matic lenses formed by some a € A and by some b € B, so
that a lies above b within the lens. The complementary set
of empty bichromatic lenses is analyzed in a fully symmetric
manner.

We apply the following pruning process to the curves of
C. Let a,a’ be two disjoint curves in A, so that a’ lies fully
below a. Then no empty bichromatic lens of the kind un-
der consideration can be formed between a and any pseudo-
parabola b € B, because then a’' and b would have to be
disjoint; see Figure 8(i). Hence, we may remove a from A
without affecting the number of empty bichromatic lenses
under consideration. A fully symmetric process (depicted in
Figure 8(ii)) prunes away curves from B.

We keep applying this pruning process untill all pairs of
remaining curves in A U B intersect each other. By Theo-
rem 2.1, the number of empty lenses in A(A U B) is O(n).
As discussed above, this completes the proof of the theorem.
O

(i) (i)

Figure 8: Discarding one of the nested pseudo-
parabolas: (i) a is discarded, (ii) ¥’ is discarded.

THEOREM 3.2. Let C be a collection of n pseudo-parabolas,
so that C is the disjoint union of two subsets A, B, such that
each element of A intersects every element of B. Let L be
a family of pairwise nonoverlapping bichromatic lenses in
A(C). Then the size of L is O(n*/?).

Proof: The proof proceeds by adapting the analysis given
in Section 2.3. In fact, the only modification required in the
proof is that of lemma 2.7. The modified variant is:

LEMMA 3.3. Let C and L be as in the theorem, and as-
sume further that the lenses in L have pairwise disjoint in-
teriors. Then |L| = O(n).

Proof: Asin the proof of Theorem 3.1, it suffices to estimate
the number of lenses in L that are formed by some a € A and

by some b € B, so that a lies above b within the lens. Let
a,a’ be two disjoint curves in A, so that a’ lies fully below
a. We argue that a can be pruned away, as follows. Let
A € L be a lens formed by a and by some b € B. Let § C b
be the arc of b forming A. Clearly, b must also intersect
a', and the two points of intersection must lie on §, since
b\ ¢ lies fully above a and thus above a’. Replace A by
the lens X', formed between a’ and b. Since the lenses in L
have disjoint interiors, A’ is not a member of L, and, after
the replacement, L is still a family of bichromatic lenses
with pairwise disjoint interiors, of the same size. Hence,
by applying this replacement rule to each lens in L formed
along a, we may prune away a without affecting the size
of L. We keep applying this pruning rule, as well as the
symmetric rule for pruning away curves of B, until every
pair of remaining curves intersect each other twice. The
lemma now follows from Theorem 3.1. O

By plugging the modified lemma into the analysis in the
preceding section, Theorem 3.2 follows. O

3.1 The case of pseudo-circles

Let C be a collection of bounded closed z-monotone pseudo-
circles. For each ¢ € C, denote by Ac (resp., pc) the leftmost
(resp., rightmost) point of ¢. To simplify the analysis, we as-
sume that the 2n points A¢, pe, for ¢ € C are all well defined,
and that their x-coordinates are all distinct. The analysis
can be easily extended to handle degenerate cases as well.

Fix a curve ¢ € C. The points A, p. partition c into
two complementary z-monotone arcs ¢, ¢, so that ¢t lies
above c¢”. Extend c* (resp., ¢”) to an unbounded curve by
two downward-directed (resp., upward-directed) rays ema-
nating from A. and from p., so that the absolute values of
the slopes of all these rays is some fixed, sufficiently large
value, and so that the rays extend the curves ¢t,c¢” into
graphs of continuous totally-defined functions. See Figure 9
for an illustration. We have thus obtained a new collec-
tion C™ of 2n unbounded z-monotone curves. The following
lemma is easy to establish, by examining the few cases that
can arise:

LEMMA 3.4. C* is a collection of pseudo-parabolas.

Figure 9: Transforming an z-monotone pseudo-
circle into two graphs of totally defined continuous
functions.

Theorems 3.1 and 3.2 thus yield the following extensions:

THEOREM 3.5. Let A and B be two disjoint subsets of C*
with the property that each curve in A intersects every curve
in B. Then:



(1) The number of bichromatic empty lenses in A(AU B) is
O(n).

(i) The mazimum size of a family of pairwise nonoverlap-
ping bichromatic lenses in A(AU B) is O(n*/?).

4. THE GENERAL CASE

Here we consider the case where C is a collection of n
pseudo-circles, not every pair of which intersect. It follows
from the construction given in [16] that the number of empty
lenses in C' can be Q(n*/?). We conjecture that this is also
an upper bound for the number of empty lenses. We obtain a
weaker upper bound for the potential larger quantity v(C),
defined, as above, to be the maximal size of a family of
pairwise nonoverlapping lenses in C.

Tamaki and Tokuyama, [16] have shown that v(C) = O(n®/?).

Aronov and Sharir [6] have recently improved this bound to
O(n®**¢), for any € > 0, for the case of circles. Theorem 2.6
asserts that v(C) = O(n*/®) for the case of pairwise inter-
secting pseudo-circles or pseudo-parabolas. Unfortunately,
at the moment we can only obtain the improved bound of
[6] (in fact, as a consequence of Theorem 2.6, we will even be
able to slightly improve it further) in the following special
case.

We say that C has a 3-parameter algebraic representation,
if C is a finite subset of some infinite family C of z-monotone
curves, so that every curve in C can be represented by a
triple of real parameters (£,7,(), such that, for each curve
Yo € C, the locus of all curves in C whose top boundary is
tangent to the top boundary g of v is a 2-dimensional sur-
face patch which is a semialgebraic set of constant descrip-
tion complexity. Moreover, this surface partitions 3-space
into two subsets, one consisting of all points that represent
pseudo-circles of C whose top boundary intersects fy{]" , and
the other consisting of points representing curves whose top
boundaries are disjoint from 7. Fully analogous conditions
are assumed to hold for each of the three other combina-
tions of top vs. bottom boundaries. Moreover, for any point
g € R?, the locus of all curves of C that pass through q is a
2-dimensional semi-algebraic surface of constant description
complexity.

Three important classes of pseudo-circles that admit 3-
parameter algebraic representations are the class of circles,
the class of parabolas, given by equations of the form y =
az® 4+ bz + ¢, and the class of homothetic copies of any fixed
convex curve of constant description complexity.

Suppose then that C'is a collection of n z-monotone curves
that admit a 3-parameter algebraic representation, as above.
Let C* be the collection of the 2n extended top and bottom
boundaries of the curves of C. Let L be a family of pairwise
nonoverlapping lenses in C. Only O(n) of them can contain
the leftmost or rightmost point of any curve in C, so we may
assume that each arc of every lens in L is fully contained
in the top or bottom portion of the corresponding pseudo-
circle. Our plan of attack, similar to those employed in [5,
6], is to decompose the intersection graph G of C* (whose
edges represent all intersecting pairs of curves in C*) into
a union of complete bipartite graphs {A; x B;};. We then
estimate the number of lenses in L that are formed between
a curve in A; and a curve in B;, using Theorem 3.5(ii), and
add up these bounds to obtain an upper bound for v(C).

In more details, we proceed as follows. Without loss of
generality, it suffices to consider the task of decomposing

the portion of G corresponding to intersections between top
boundaries of pairs of curves in C. Put Ct = {¢* | c € C}.
For each v € C™, let py denote the point in 3-space that
represents 7 (or, rather, the curve of C that contains +),
and let 7, denote the tangency surface associated with 7,
representing tangencies of top boundaries of curves in C
with . Put C = {p, | ¥ € C*}, and let ¥ denote the set of
tangency surfaces {7, |y € CT}.

We fix a parameter r = n”, for some sufficiently small
constant fraction vy, and construct a (1/7)-cutting of the ar-
rangement A(X). This is a decomposition of 3-space into
cells, each having constant description complexity, so that
each cell is crossed by at most n/r surfaces of . The cutting
is constructed as in [8], using the vertical decomposition (as
defined, e.g., in [15]) of an arrangement of some r randomly
sampled surfaces of X. (More precisely, the technique of
[8] constructs first a ‘master arrangement’ A of r such sur-
faces, and then constructs additional arrangements of sam-
pled surfaces within each cell of the vertical decomposition
of A that is still crossed by more than n/r surfaces.) The de-
composition consists of O(r33(r)) cells of constant descrip-
tion complexity, where 3(r) = A;(r)/r for some constant g
depending on the algebraic degree (and other properties) of
the representation of the curves in C, and where A, (r) is the
maximum length of Davenport-Schinzel sequences of order
g composed of r symbols [15]. Thus B(r) is a very slowly
growing function of r. By cutting cells further as necessary,
we may also assume that each cell contains at most n/r>
points of C.

Each cell £ of the cutting induces two subproblems. One
involves the points in ¢ and the surfaces 7, that avoid the
cell, but are such that all points in the cell represent pseudo-
circles whose top boundaries intersect <y; this subproblem
yields right away a complete bipartite graph for the out-
put, consisting of the points in the cell and these avoiding
surfaces. The second subproblem involves the surfaces that
intersect £, and is handled recursively.

To simplify the recurrence, we apply one more recursive
round (for each cell ), in which the roles of points and
surfaces are interchanged. We sum over all resulting sub-
problems, and handle in an analogous fashion the otherthree
types of interaction between top and bottom boundaries.
Omitting further details, we obtain the recurrence

v(n) = 0(* B (1) -v () + Om*/*°87(r).
With an appropriate choice of r = n”, this solves to
v(n) = O(n**(log n) 87y = O(n*/* (log n) * " ™),
using the explicit bound B(n) = 20(*(m) for an appropri-

ate constant s [15]. We put

ks(n) = (logn)P@ ™),

Following the analysis of [16] (see also [6]), we then obtain:

THEOREM 4.1. Let C be a collection of n x-monotone
pseudo-circles that admit o 3-parameter algebraic represen-
tation. Then v(C),x(C) = O(n®%k;(n)), where s is a con-
stant that depends (in the manner outlined above) on the
algebraic representation of the curves in C.

The case of circles. We next apply Theorem 4.1 to the
case of circles, to obtain a slight improvement in the previous
bound of Aronov and Sharir [6]. We first show that the



constant s, for the case of circles, is 2 (details are routine,
2
and omitted here). Hence, putting x(n) = (logn)?© ™)

we then have the following improved bound.

COROLLARY 4.2. n arbitrary circles in the plane can be
cut into O(n®/?k(n)) subarcs, so that each pair of arcs in-
tersect at most once.

The case of parabolas. Theorem 4.1 can also be applied
to the case of vertical parabolas, given by equations of the
form y = ax® + bz + c. Omitting the routine details, due to
lack of space, we show that s = 2 here too, and obtain:

THEOREM 4.3. n parabolas can be cut into O(n®/?k(n))
arcs, so that each pair of these arcs intersect at most once.
In particular, the number of empty lenses in such a collection
of parabolas is O(n®/?k(n)).

The case of homothetic copies. Here one can show that
n homothetic copies of a fixed convex curve can be cut into
O(n*?k4(n)) pseudo-segment arcs, where s depends on the
shape of the fixed curve. The easy details are given in the
full version.

5. APPLICATIONS

The preceding results have numerous applications to prob-
lems involving incidences, many faces, and levels, which
extend (and also slightly improve) similar applications ob-
tained for the case of circles in [1, 5, 6].

5.1 Levels

Given a collection C' of curves, the level of a point p € R?
is defined to be the number of intersection points between
the relatively-open downward vertical ray emanating from p
and the curves of C. The k-th level of A(C) is the (closure
of the) locus of all points on the curves of C, whose level
is exactly k. The k-th level consists of portions of edges of
A(C), delimited either at vertices of A(C) or at points that
lie above an z-extremal point of some curve. The complexity
of a level is the number of edge portions that constitute the
level.

The main tool for establishing bounds on the complexity
of levels in arrangements of curves is an upper bound, given
by Chan [7, Theorem 2.1], on the complexity of a level in
an arrangement of eztendible pseudo-segments, which is a
collection of z-monotone bounded curves, each of which is
contained in some unbounded z-monotone curve, so that the
collection of these extensions is a family of pseudo-lines (in
particular, each pair of the original curves intersect at most
once).

Chan showed that the complexity of a level in an arrange-
ment of m extendible pseudo-segments with £ intersecting
pairs is O(m + m?/3¢/3). Chan also showed that a collec-
tion of m z-monotone pseudo-segments can be turned, by
further cutting the given pseudo-segments, into a collection
of O(mlogm) extendible pseudo-segments.

Thus, Theorem 4.1 leads to the following result (where
the extra logarithmic factor incurred in turning our pseudo-
segments into extendible pseudo-segments, as well as the
power 2/3 to which we raise the number of pseudo-segments,
are absorbed in the factor x(n)).

THEOREM 5.1. Let C be a set of n x-monotone pseudo-
circles that admit a 3-parameter algebraic representation.

Then the mazimum complezity of a level in A(C) is

O(n®3k4(n)) pseudo-segments, where s is a constant that
depends on the algebraic representation of the curves in C;
s = 2 for circles and vertical parabolas. If all pseudo-circles
in C are pairwise intersecting, then, with no further assump-
tion on these curves, the bound improves to O(nl‘l/9 logn).

The above theorem implies the following result in the area
of kinetic geometry (improving a previous bound of [16]).

COROLLARY 5.2. Let P be a set of n points in the plane,
each moving along some line with a fized velocity. For each
time t, let p(t) and q(t) be the pair of points of P whose
distance is the median distance at time t. The number of
times in which this median pair changes is O(n*%/*k(n)).
The same bound applies to any fized quantile.

5.2 Incidences and marked faces

Let C be a set of n curves in the plane, and let P be a
set of m points in the plane. Let I(C, P) denote the number
of incidences between P and C, i.e., the number of pairs
(e,p) € C x P such that p € ¢. Let K(C,P) denote the
sum of the complexities of the faces of A(C) that contain
at least one point of P; the complexity of a face f is the
number of edges on its boundary. The results in [1, 6] imply
the following

LEMMA 5.3. Let C be a set of n curves in the plane, and
let P be a set of m points in the plane. Then

I(C, P) = O(m**n*® + m + x(C)),

K(C, P) = O(m**n*® 4+ x(C)log® n).
Hence, Theorem 4.1 implies the following.

THEOREM 5.4. Let C be a set of n pairwise-intersecting
pseudo-circles, and P a set of m points in the plane. Then

I(C,P) = O(m**n*® + m + n*/?),

K(C,P) = 0(m**n*? 4+ n"?log’n).

If the pseudo-circles in C' are not pairwise intersecting but
are z-monotone and admit a 3-parameter algebraic represen-
tation, then we can obtain the following weaker bound by
plugging Theorem 4.1 into Lemma 5.3.

I(C,P) = O(m**n*"® + m + n*?k.(n)),
K(C,P) = O(m**n*® 4+ n® %k, (n)). 2)

However, we can obtain an improved bound on I(C, P) and
K (C, P) following the approach in [1, 6]. In that approach,
the circles are mapped to points in R®, and the points in
P to planes in R3, so that one halfspace bounded by the
plane corresponds to circles that contain the point. The
arrangement of these dual planes is partitioned, via a cut-
ting, into subcells, and one applies a weaker bound within
each subcell separately. We follow their approach verbatim.
That is, we map pseudo-circles in C into points in R, and
points in P into surfaces in R®. We then compute a cut-
ting of the resulting arrangement of surfaces, and apply the
bounds in (2) within each cell. Of course, if the pseudo-
circles in C are pairwise intersecting, then we use instead
the bounds from Theorem 5.4. The only difference is that



the size of a (1/r)-cutting is O(r3B1(r)), instead of O(r?),
where Bi(r) = 201 (") for an appropriate constant si.
Following this analysis, we obtain the following.

THEOREM 5.5. Let C' be a set of n x-monotone pseudo-
circles that admit a 3-parameter algebraic representation,
and let P be a set of m points in the plane. Then

(i) I(C,P) = O(m*3n/® +m 1 p® g (m,n) + m+n);
(ii) K(C,P) = 0(m?3n*34+m® 1 n® " g*(m,n)+nlogn),

where k * (m,n) = 20 (a1 (n?ns (n)/m™)) . ks(m®/n). In ad-
dition, if the pseudo-circles in C' are pairwise intersecting,
then

(Z) I(C, P) _ O(m2/3n2/3 +m1/2n5/6 _ZO(asl(n/m)) +m4+

(i) K(C,P) = O(m**n??4m!/2p?/6.90("1 (n/m)) 10g1/2 1y

nlogn).

Since circles and vertical parabolas can be linearized in
R? (i.e., mapped to planes in R?), we have s; = 0, and thus:

THEOREM 5.6. Let C be a set of n circles or wvertical
parabolas and let P be a set of m points in the plane. Then

(Z) I(C, P) — O(m2/3n2/3 +m6/11n9/11ﬁ(m3/n)+m+n).

(i) K(C,P) = 0(m?3n*34+m®1p® 1k (m®/n)+nlogn).

In addition, if the curves in C are pairwise intersecting, then
(i) I1(C, P) = O(m?/3n?/3 + m'/*n®® 4 m 4 n).
(i) K(C,P) = 0(m*3n*? 4+ m?n%%1og'/? n + nlogn).

5.3 Distinct distances under arbitrary norms

THEOREM 5.7. Let Q be a compact convex centrally sym-
metric semi-algebraic region in the plane, of constant de-
scription complexity, which we regard as the unit ball of a
norm ||-|lo. Then any set P of n distinct points in the plane
determines at least Q(n"/°/ks(n)) distinct | - ||q-distances,
where s is a constant that depends on Q. If Q is not cen-
trally symmetric, it defines a convez distance function, and
the same lower bound applies in this case too. In both cases,
this is also a lower bound on the number of distinct || - ||q-
distances that can be attained from a single point of P.

Proof: The proof proceeds by considering nt homothetic
copies of @, shifted to each point of P and scaled by the ¢
possible distinct || - ||o-distances. There are n? incidences
between these curves and the points of P. Using (5.5), the
bound follows easily. O

5.4 Gallai-Sylvester theorem

In our final application, similar to Theorem 4.1 in [5], the
following theorem is a consequence of Theorem 2.5.

THEOREM 5.8. Let C be a family of n pairwise intersect-
ing pseudo-circles in the plane. If n is sufficiently large and
C is not a pencil, then there exists an intersection point in-
cident to at most three pseudo-circles.

6. OPEN PROBLEMS

The paper leaves many open problems unanswered. We
mention a few of the more significant ones:
(i) Obtain tight (or improved) bounds for the number of
pairwise nonoverlapping lenses in an arrangement of n pair-
wise intersecting pseudo-circles. We conjecture that the up-
per bound of O(n4/3), given in Theorem 2.6, is not tight,
and that the correct bound is O(n) or near-linear.
(ii) Obtain tight (or improved) bounds for the number of
empty lenses in an arrangement of n arbitrary circles. There
is a gap between the lower bound Q(n*®) and the upper
bound of O(n®/2k(n)), given in Theorem 4.1 and Corol-
lary 4.2. Even improving the upper bound to O(n*/?) seems
a challenging open problem. A related problem is to obtain
an improved bound for the number of pairwise nonoverlap-
ping lenses in an arrangement of n arbitrary circles.
(iii) One annoying aspect of our analysis is the difference
between the analysis of pairwise intersecting pseudo-circles,
which is purely topological and requires no further assump-
tions concerning the shape of the pseudo-circles, and the
analysis of the general case, in which we require z-monotonicity
and 3-parameter algebraic representation. It would be in-
teresting and instructive to find a purely topological way of
tackling the general problem. For example, can one obtain a
bound close to O(n3/ %), or even any bound smaller than the
general bound O(n®/®) of [16] (which is purely topological),
for the number of empty lenses in an arbitrary arrangement
of pseudo-circles, without having to make any assumption
concerning their shape? Work in progress by Pinchasi pro-
vides an initial affirmative answer to this question.
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