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Given a class of graphs G, we say that G has a universal element Gy € G if any
other graph G € G is isomorphic to a (not necessarily induced) subgraph of Gj.

In a recent paper (Komjdth-Pach,1989) we have extended this definition, as fol-
lows. Let ¢(G), the complexity of a class of graphs G, be defined as the least cardinality
of a subset Gy C G with the property that any element of G is isomorphic to a subgraph
of some Gy € Gy. Obviously, G has a universal element if and only if ¢(G) = 1.

In all interesting examples G is closed under containment, i.e., G € G implies that
G' € G for any G' C . This condition is satisfied e.g. for all classes of graphs which
can be obtained in the following way. Given a cardinal x and a family H of so-called
forbidden subgraphs, let G.(H) be defined as the class of all graphs with at most x
vertices containing no subgraph isomorphic to any element of H.

Let Gy denote the class of all countable graphs containing no k vertex-disjoint
cycles. That is, using the above notation, G, = G,(Hy), where H stands for the
family of all (finite) graphs consisting of &k vertex-disjoint cycles. In particular, G,
is the class of all countable forests. Since G, has continuum many elements, its
complexity is at most 2.

Theorem 1. Let1 < k < w, and let Gy be the class of all countable graphs
containing no k vertez-disjoint cycles. Then ¢(Gr) = w.

Proof. First we show that ¢(Gy) < w.

Let G be a fixed countable graph without k& vertex-disjoint cycles. Fix a finite
subset K C V(@) with the property that any cycle of G contains at least one element
of K. (Note that the vertex set of any maximal system of cycles in G obviously
satisfies this condition. Moreover, by a result of Erdos and Pésa, K can always be
chosen so as to have fewer than cklogk elements.) We will refer to K, as the kernel

of G. The vertices of GG outside the kernel are called external. The external vertices



induce a forest in G, and they can be classified according to which elements of K
they are connected to. We color two external points with the same color, if and only
if their sets of neighbors in K are the same. Thus, we obtain a coloring function
¢: (V(G) — K) — T, where T is the set of colors and |I'| = 2!/,

Let P = {P, P,,...,Py,} be a set of at most |K| vertex-disjoint paths in G-K,
and let v; and v} denote the endpoints of P,. (We do not exclude the possibility that
v; = v, i.e., P; consists of a single vertex.) The type of P; (with respect to K) is
defined by the colors of its endpoints:

)= [ [P)] if v =],
type(F;) = { [6(vi), D(v7)] if v; # v; 5

Type(P) = [type(F;): 1 <i<m].

(We write [-] instead of {-} to indicate that some of the elements may be repeated, i.e.,
they form a multiset.) Furthermore, let 7(G) be defined as the set of all Type(P),
where P is a system of at most |K| vertex-disjoint paths in G-K. Clearly, 7(G) is
closed under containment, i.e., T € G(G) implies that every submultiset 7" C T also
belongs to 7 (G).

For each member T € T(G), fix a system P’ of vertex-disjoint paths with
Type(PT) =T. Put

L= J V(P").
TeT(Q)

Evidently, L is a finite set and L N K = (). Since G-K is a forest, there are only
finitely many external vertices lying on some path connecting two elements of L. Let
L denote the set obtained from L by adding all of these vertices.

Now G — (K U L) falls into countably many connected components (trees) G;
(i=1,2,...). Every G; has at most one point adjacent to some element of L. If such
a point exists, then it is called the root of G;. By the definition of L, the root of G;
has only one neighbor in L.

Next we describe a procedure that will enable us to add new vertices to GG, without
creating k vertex-disjoint cycles.

Let G, be a fixed component of G — (K U L), and pick a color v € T' which

occurs among the vertices of G; at least twice. Thus, one can find two distinct points



u1,us € V(G1) which are adjacent to the same elements of K. Let G’ denote the
graph obtained from G by adding a new vertex u of color v and connecting it to any

point w € V(G;). That is,

V(G") =V(G)u{u},
E(G) =EG)U{uv:ve K ,uv € E(G)} U{uw} .

Obviously, any cycle of G' passes through at least one element of K. In other words,
K is also a kernel of G', hence it can be used to define T (G’).

Lemma 1. 7(G') = T(G).

We have to prove only that 7(G') C T(G). Assume, in order to obtain a contra-
diction, that there is a system P = {P;: 1 < i < m} of at most |K| vertex-disjoint
paths in G’ — K such that

T = Type(P) = [type(P;): 1 <i<m] e T(G") - T(G) .

Suppose, without loss of generality, that P is a minimal system satisfying this condi-
tion, i.e.,

T; = [type(P): 1 <i<m,i#jl € T(Q)

for every j (1 <j <m).

Clearly, one of the paths P; (say, P;) must contain the new vertex u, otherwise
T = Type(P) € T(G). Moreover, u must be an endpoint of Py, because the degree
of uin G' — K is 1. Let v; and v denote the (not necessarily distinct) endpoints of
P;. Thus, we can assume that v = v;.

Let G} C G’ denote the tree obtained from G; by adding the vertex u and the
edge uw.

Observe that no path P; can be entirely contained in G’. To see this, recall that
there is a system PTi of vertex-disjoint paths in L with Type(P%i) = T;. So, if P;
were in G} for some j # 1, then P% U {P;} would form a system of vertex-disjoint
paths in G-K, whose type is T. If P, C G, then consider the uniquely determined
paths Pj; and P, C (G connecting v} to u; and ug, respectively. At least one of them

(say, P11) is of the same type as P;. Hence, P71 U{P;} is a system of vertex-disjoint



paths in G-K, whose type is T. In both cases we can conclude that T € T(G),
contradiction.

Thus, we can assume that v] is not in G'|. This implies that G; has a root r, and
P; must pass through r. Let Pj; denote the (unique) path connecting v} and u; in
G-K. Clearly, Py also passes through r and type(P;;) = type(Py). Notice that Py is
disjoint from any P; (2 < j < m), otherwise P; would lie entirely in G, contradicting
our previous observation. Hence, {Py1, Py, Ps, ..., P} is a system of vertex-disjoint
paths in G-K, whose type is T', which is again a contradiction. This completes the
proof of Lemma 1.

Lemma 2. G' has no k vertex-disjoint cycles.

Assume, for contradiction, that there is a system {C;: 1 < i < k} of k vertex-
disjoint cycles in G’. Since every cycle must visit K, the pieces of the C; lying outside
K form a system P’ of at most | K| vertex-disjoint pahts in G’-K. By Lemma 1, there
exists a system P of vertex-disjoint paths in G-K such that Type(P) = Type(P’).
For every cycle C;, replace each piece lying outside K by the corresponding path in P.
Thus, we obtain k vertex-disjoint cycles in GG, the desired contradiction establishing
Lemma 2.

By the repeated application of the above procedure, we can add countably many
new vertices to GG, to obtain a graph G* satisfying the conditions summarized in the
following statement.

Lemma 3. Let G be a countable graph without k vertex-disjoint cycles, and let
K,L C V(QG) be finite sets, as defined above.

Then there exists a countable graph G* with the following properties.

(i) G* contains G as an induced subgraph;

(ii) G* has no k vertez-disjoint cycles;

(iii) every cycle of G* meets K.

Furthermore, let ¢*: (V(G*) — K) — T be a coloring assigning the same color to
two vertices if and only if they are connected to the same elements of K. Let G}
(i=1,2,...) denote the connected components of G* — (K U L).

(iv) Each component G is connected to L by at most one edge;



(v) ify €T is any color assigned to at least two points of G, then every vertex
of G¥ has infinitely many neighbors of color v (i =1,2,...).

Let G; be the family of all countable graphs that can be obtained as G* for some
G C Gi. Obviously, G; C G and every element of G, can be embedded into some
element of G; as an induced subgraph. On the other hand, G; is clearly a countable

family of graphs. To see this, we have to note only that

(a) there are only countably many different graphs that can be obtained as the
restriction of some G* € G to the corresponding subset K U L (because K and

L are finite);

(b) there are only countably many different colored graphs (trees) that can be ob-
tained as G for some G* € G; (because G? is either finite or it is a tree whose
every vertex has degree w, and those points whose color does not appear any-

where else in G can be situated in this tree in countably many different ways);

(c) given K and L, there are only countably many different ways that a colored tree

G can be connected to these sets (because of Lemma 3 (iv)).

Hence, ¢(Gx) < w.

Next we show that ¢(Gg) > w. Let K, denote the complete graph on four vertices,
and let GGy be the graph obtained from the union of £ — 1 vertex-disjoint copies of
K, by adding a vertex connected to every other point. Let Gy be the family of all
subdivisions of Gy, i.e., the set of all graphs arising from Gy by replacing its edges
with independent paths. Clearly, Gy is a countable subfamily of Gx. On the other
hand, it is easy to check that, if G is a graph containing two subgraphs isomorphic to
distinct elements of Gy, then G & Gi. Thus, ¢(Gx) > |Go| = w, completing the proof.

The analogous result for countable graphs containing no k edge-disjoint cycles can
be established by a similar argument.

Theorem. Let1 < k < w, and let G}, be the class of all countable graphs containing

no k edge-disjoint cycles. Then c(G}) = w.



To see that ¢(G}) > w, we can repeat the above argument with the only difference
that now G has to be defined as the graph obtained from the union of £ — 1 vertex-
disjoint triangles by adding a vertex connected to every other point. The minor

modifications in the other part of the proof are left to the reader.
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