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Abstract

It is proved that, for any € > 0 and n > ng(e), every set of n points in
the plane has at most st e triples that induce isosceles triangles. (Here e
denotes the base of the natural logarithm, so the exponent is roughly 2.136.)
This easily implies the best currently known lower bound, nﬁf_ﬁl_é, for the
smallest number of distinct distances determined by n points in the plane, due
to Solymosi—C. Téth and Tardos.

1 Introduction

In 1946, Erdds [5] raised some notoriously difficult questions about the distribution
of distances determined by finite point sets. In particular, he asked what is the
smallest number of distinct distances determined by 7 points in the plane. Denoting
this number by g(n), he conjectured that g(n) > cn/v/logn. The best currently
known lower bound follows by a combination of the results of Solymosi—C. T6th [12]
and G. Tardos [18]: for every £ > 0 there exists a constant ¢, > 0 such that

g(n) > c. (n=17). e

Here and later in this note, e stands for the base of the natural logarithm.

In a series of papers, Erdés and Purdy [6], [7] initiated the investigation of the
distribution of triangles (more generally, simplices) in finite point sets. Pach and
Sharir [10] pointed out that it readily follows from a result of Szemerédi and Trotter
[16], [17] that the maximum number of triples in a set of n points in the plane that
induce isosceles triangles is O(n7/3).
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The aim of this paper is to improve this bound.

Theorem 1. For any € > 0, the number of isosceles triangles spanned by three
points of an n-element point set in the plane is

0. (n151:—:13—|—5) — O(n2137).

The above two problems are intimately related. Indeed, if a point set P deter-
mines at most g distinct distances, then around each point p € P the remaining n—1
points lie on g concentric circles. If the numbers of points sitting on these circles
are ni,ng, . ..,ng, then there are precisely Y27, (%) > g(("_Ql)/ 9) isosceles triangles
whose two equal sides meet at p. Thus, the total number of isosceles triangles is
at least % + O(n?). Therefore, any upper bound on the number of isosceles trian-
gles yields a lower bound on g(n). In particular, Theorem 1 immediately implies
inequality (1). In this sense, our Theorem 1 can be regarded as a strengthening of
(1).

Theorem 1, in turn, follows from a general upper bound for the number of
incidences between a set of points and a set of circles.

Theorem 2. Let P be a set of n distinct points and let C be a set of £ distinct circles
in the plane. Let QQ denote the set of centers of the circles in C and let |Q| = m.

Then, for any 0 < a < 1/e, the number I of incidences between the points in P
and the circles of C' is

2 2 4 14a 5—a 124-4a 3450 15—3a 8+2a  242a 10—2a
Oa (n + ! + n3fs +n7Tm 7 {7 + n21+3a 1, 2143 {21+3a + n Tita  Ta+a f 1i+a )

Figure 1 and Table 1 give the best known upper bounds on the number of
incidences between n points an £ circles around m centers in the plane. Figure
1 defines regions according to the different settings of the parameters n, m, and
£, and Table 1 gives the best known bounds for each of these regions. We have
0 < a<1l/eand e > 0 in Table 1 and the constans multiplyer in the O notation
depends on the choice of « or €. As is illustrated by Figure 1, each term of the
expression in Theorem 1 provides the best known bound in some nonempty region
of the parameters. For all but the first term, our bound is new in the corresponding
region or at least in some part of it. In two further regions, the trivial bound nm or
the estimate n8/11+3¢¢9/11=¢ found by Aronov and Sharir [2] are the best currently
known bounds for the number of incidences.

It is worth ponting out a simple consequence of Theorem 2, which is a general-
ization of the main result (Theorem 1) in [13].



Corollary 3. Let P be a set of n distinct points and C be a set of £ distinct circles
in the plane.

If among the centers of the circles in C there are at most n distinct points, then
for any 0 < a < 1/e the number of incidences between the points in P and the
circles in C is

543a 5—a
Oa (n T+a £7+a)

Proof: Substituting m = n in Theorem 2, the fifth term becomes the required
bound. Tt dominates the other five terms, whenever ¢ < n(®~®/G-2)  For ¢ >
n(9=®)/(5=a) the trivial bound nm = n? is better than the one in Corollary 3. O

The proof of Theorem 2 is based on the same ideas as [12] and [13]. In particular,
all our bounds crucially depend on the following lemma from [13], which is a slight
generalization of a result of Tardos [18].

Given a real matrix A, let S(A) denote the set of all reals that can be written
as the sum of two distinct entries from the same row of A.

Lemma 4 [13]. For any 0 < a < 1/e, there ezxists an integer s > 1 with the
following property. For every N >k > 0 and for every N by s real matriz A which
does not have two equal entries in the same row and in which for all but at most
k —1 of the indices i = 1,...,N — 1, all entries of the i-th row are smaller than all
entries in the next row, we have

S| =2 (fama )

where M is the mazimum multiplicity of any entry in A.

It is not clear whether Lemma 4 holds for other values of «, larger than 1/e. I.
Ruzsa (personal communication) showed that it is certainly false for o > 1/2. If
Lemma 4 remains true for any o > 1/e, we obtain that the number of isosceles trian-
gles induced by triples of an n-element point set in the plane is Oa(n(ll_?’a)/ (5_0‘)).
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2 An important special case

The aim of this section is to establish the following important special case of Theorem
2, where C' consists of the same number, k, of concentric circles around each element

of Q.

Proposition 2.1. Let P be a set of n distinct points, let Q be a set of m distinct
points in the plane, and let C be a family of mk circles, consisting of k concentric
circles around each point in Q.

Then, for any 0 < a < 1/e, the number of incidences between the points in P
and the circles in C is

2 2. 2 4 6. 5-a 12440 184+2a  15-3a 8+2a 12 10—2a
O, (n +mk+n3m3k3 +n7m7k 7 4 n2i+3am2i+3e 21430 4 n1dta m Tata f 14ta ) .

Let I be the set of all pairs (p, q) such that p € P, ¢ € @, and P is incident to
one of the circles around g. We have to give an upper bound on |I|.

First, we outline the proof of Proposition 2.1.

We use three parameters, a,b, s > 2, to partition I as follows. The value of s
will solely depend on the choice of 0 < a < 1/e, so it will be regarded as a constant.
The values of a and b will depend on n, m, and k.

For any (p, q) € I, we consider the number of points in P on the line [,,; connect-
ing p and ¢, which are incident to a circle in C' around ¢q. We use the Szemerédi-
Trotter theorem (Lemma 2.3 below) to bound the number of pairs, for which this
is greater than our parameter a. By losing just a few more pairs from I, we parti-
tion the remaining pairs into s-tuples and bound their number. The elements of an
s-tuple will correspond to s distinct points of P, incident to the same circle in C.
If we can choose two of these points so that their perpendicular bisector contains
less than b elements of (), we connect them along the circle C. In this way, we
obtain a so-called topological graph, a graph I' drawn by (possibly crossing) con-
tinuous arcs. Then we apply Székely’s lemma on crossing numbers (Lemma 2.2)
to bound the number of edges of I' and thus the number of s-tuples satisfying this
condition. To bound the number of remaining s-tuples, we use Lemma 4 and again
the Szemerédi—Trotter theorem.

Next, we work out the details. Let

I'={(p,g) el : {p' €lyyNP|(p',q) €I} <a}.

For any ¢ € Q, let P, = {p € P | (p,q) € I'}, and identify a set D, of pairwise
disjoint circular arcs on the circles in C' around ¢ so that each arc contains precisely
s elements of P, and together they cover all but at most k(s — 1) points of P,.



We can assume without loss of generality that none of these arcs intersects a fixed
half-line [, emanating from q.

Call a line [ rich if [N Q| > b. We say that an arc in Dy is good, if it contains two
points p,p’ € P, such that the perpendicular bisector of pp' is not rich. Denote by
G the set of good arcs in UycgDy, and let B = UyegDy \ G be the set of all bad arcs.
Construct a topological graph I' on the vertex set P, by connecting a single pair of
points for each good arc 8 € G. If 8 € Dy, choose these two points p,p’ € SN P, so
that their perpendicular bisector is not rich and connect them along 3. The graph
I" is not necessarily simple, i.e., it may contain parallel edges connecting the same
pair of points. However, it is not hard to bound the multiplicity of these edges, as
follows. All edges between two vertices p and p’ are drawn along separate circles
in C, whose centers lie on the perpendicular bisector of pp’. If this line is not rich,
there are fewer than b such edges. If this line is rich, then by our construction p
and p' are not connected at all. Thus, the maximum edge-multiplicity, m(T'), of T
satisfies

m(T) < b.

Let ¢(T") denote the crossing number of T'. Since each crossing between two edges
of I occurs at an intersection point of two circles in C, we clearly have

¢(T) < 2('2') < m?k>.

On the other hand, the following useful generalization of a well known theorem
of Ajtai et al. [1] and Leighton [8], due to L. Székely [15], provides a lower bound
for crossing numbers.

Lemma 2.2. [15]. Let I be a topological multigraph with vertez set V(I') and edge
set E(T), in which every pair of vertices is connected by at most m(T) edges.
If |[E(T")| > 5m(T)|V(T')|, then the crossing number of T' satisfies

o B
A= <m<r)|v<r>|2> '

Plugging the last two inequalities into Lemma 2.2, we conclude that the number
of good arcs satisfies

=O(nb+n§m%k§b%). (2)

Wl

G| = [B(T)] = O (|V(D)|m(T) + ¢5 (D)m 3 (T)[V/(T)]

Now we focus on the set B of bad arcs and estimate their number. Fix 0 < a <
1/e and s so that they satisfy the conditions in Lemma 4. Construct an N, by s



real matrix Ay, where Ny is the number of bad arcs in D, and each row corresponds
to a bad arc. Let the row of A, assigned to a bad arc 3 € BN D, consist of the
entries ci,...,c¢s, where BN P, = {p1,...,ps} and ¢; is the angle of the smallest
counter-clockwise rotation that takes the reference half-line /; to the half-line gp;.

If the rows corresponding to the bad arcs on a circle follow each other in the
natural order, the matrix A, meets the requirements of Lemma 4. By the definition
of I' and P,, we have that the maximum multiplicity of any entry in A, is M, < a.
All values in S(A,) are twice the angles of rich lines going through ¢, thus Lemma
4 implies that g is incident to Q4 (N,/(k'~“a®)) rich lines. Hence, the total number
of incidences between the points in @ and the rich lines is Q4 (| B|/(k' %a®).

On the other hand, the Szemerédi-Trotter theorem gives an upper bound on the
same quantity.

Lemma 2.3 [16],[17]. (i) The number of lines passing through at least b > 2
elements of a set of m points in the plane is O(m/b+ m?/b?).

(7i) The number of incidences between m points in the plane and all lines passing
through at least b > 2 of them is O(m + m?/b?).

(11i) The number of incidences between m points and £ lines in the plane is

O(m?3e23 + m +¢).

Comparing Lemma 2.3 (ii) with the above lower bound for the same quantity,
we obtain

|B| = O (mk'%a® + m?k'~2a®/b?) (3)

As each arc in Dy covers a constant number s of the points in P, and at most
(s — 1)k points are not covered, in view of the inequalities (2) and (3), we get

') = Y|P, < s|G| + s|B|+ (s — 1)mk
qeQ

= Oq (nb +mk + m?k'~%a® /b + k3minib7). (4)

The term mk!~*a® in the upper bound on |B| is dominated by mk, if we choose our
parameter a so that it satisfies 2 < a < k. (Such a choice is impossible if k¥ = 1, but
in that case the bound in Proposition 2.1 is significantly worse than the previously
known bounds, cf. [4], [10], [2].)

It remains to bound the number of pairs (p, q) € I\I'. Now we use the Szemerédi-
Trotter theorem separately for P and Q. By Lemma 2.3 (i), for any ¢ > 2, the
number of straight lines passilng through more than ¢ points of P is O(n/t+n2/t3).
By Lemma 2.3 (iii), the number of incidences between these lines and the m points
of Q is

O(m + n/t + n? /13 + n?B3m?3 11213 4 n*3m?3 /12).



Let I; denote the number of pairs (p,¢) € I such that t < |{p' € [,qNP : (p',q) €
I}| < 2t. Clearly, each incidence counted above is responsible for at most 2¢ pairs
in I, whence

|I;| = O(mt + n + n?/t* + n23m2/341/3 4 n4/3m2/3/t).
Using the fact that T\ I' = UZ-UZO(%(IC/G)J I,i,, we obtain
[I\NI'|=0 (mk + nlogk + n?/a® + n23m?B 3 4 n4/3m2/3/a) .

It is not hard to get rid of the logarithmic factor in the last formula. To see
this, notice that the n + n?/t? terms in the bounds on |I;| actually bound a value
proportional to the number of incidences between P and some lines going through
at least t points of P. By Lemma 2.3 (ii), the total number of such incidences for
any t > a is O(n +n?/a?). (Alternatively, one can get rid of the extra logarithmic
factor by using the result of [2], which provides better bounds for I in all cases where
nlogn would be the leading term.) Thus, we have

I\T'| = O (n+mk +n?/a® + n?Pm?3k1/% 4 nt3m?/3 fa) (5)

Putting (4) and (5) together, we get

ni/3m2/3 m2kl—eqe
a b2 ° (6)

2
1] = O, (nb + mk + n?3m2B3E23p1 3 4 % + +

Notice that the above bound holds all K > a > 2 and b > 2. To minimize this
expression, set

. 10 —6 —54+a 16 —4 —154-3a
a = min (k’ max (2, n l4+a m, 14+ k 144+ ’n21+3a m 21+3a k 2143 )) ,

-2 4 1-3a 3a
b:max(2,n7m7k 7 a7).

In case a = k, we have I = I' and Proposition 2.1 follows from (4). In all other
cases, the result is true by (6).

3 Proof of Theorem 2
Partition @) into the sets
Qo={q€Q : |{c € C :the center of c is q}| < £/m},

Qi={q€Q : 271¢/m < |{c € C : the center of ¢ is ¢}| < 24/m},



for 4 > 1. We also partition C into the sets
Ci; = {c € C : the center of ¢ is in Q;},

for i > 0. Let C! denote the sets obtained from C; by adding dummy circles to
bring the number of circles around each ¢ € Q; up to k; = [2°4/m|. Clearly, we
have m; := |Q;] < m/2""1, and the values ¢; := |C!| add up to O(¥).

Applying Proposition 2.1 to the system (P, Qq, Cj), we get that the number of
incidences between the points in P and the circles in C, does not exceed the bound
in Theorem 2. For the systems (P, Q;, C;), we obtain similar bounds, but their last
three terms are multiplied by some constant negative power of 2!. Notice that we
can assume ; = () for ¢ > logn, for a concentric family of circles has at most n
elements incident to at least one point in P. Hence, adding up the upper bounds
that follow from Proposition 2.1, we readily obtain a weaker version of the bound
in Theorem 2, in which the first three terms are multiplied by logn.

In the rest of this proof, we get rid of these unwanted logarithmic factors. In the
case of the first term, n, of the expression, this can be achieved by noticing that for
all settings of the parameters, when nlogn would be the leading term, the upper
bound

O(n+£+n2/3€2/3 +n6/11+36£9/11—e)

established by Aronov and Sharir [2] is better and gives O(n + n%/3¢2/3) incidences.

It is even easier to argue for the second term, as not only each m;k; = ¥; is
bounded by O(£), but we also have ), ¢; = O(¥).

We have to work most for the third term, n2/3m?/3ki2/3 = O(n?/3£2/3). In this
case, we have to look into the proof of Proposition 2.1. This can be the dominant
term for some i only if we choose the parameter b to be 2, and in this case the
term appears in our bound, because the number of edges of a certain topological
graph T'; is at most O(n + n?/ 3m?/ 3kz-2 / 3). Notice, however, that the union I" of all
topological graphs I';, for which the parameter b was set to be equal to 2, is still
a topological graph on n vertices, it still does not have any parallel edges, and its
crossing number is at most ¢2 (there are at most two crossing pairs for each pair of
circles in C). Thus, by Lemma 2.2, T has O(n + n?/3¢%/3) edges. Using this bound,
instead of bounding the number of edges in each of the graphs I'; separately, we can
replace the O(n?/3¢2/3 logn) term with O(n?/3¢2/3).

4 Proof of Theorem 1

The common endpoint of two equal sides of an isosceles triangle is called its apez.
(An equilateral triangle has three apices.) Consider an n-element point set P in the



plane, and let 7" be the set of ordered triples pgr that induce an isosceles triangle in
P, with apex g. Thus, |T| is equal to the number of isosceles triangles induced by
P, counted with multiplicities (equilateral triangles are counted six times, all other
isosceles triangles twice).

For any pgr € T, let ¢(pgr) denote the circle centered at ¢, which passes through
p and r. We classify the elements of T' according to the order of magnitude of

|c(pgr) N P|, and bound the sizes of the classes separately. Setting a threshold
t = n(l=a)/(5-0) et

T' ={pgr € T : |c(pgr) N P| < t},

T; = {pqr € T : 2t < |c(pgr) N P| < 2'7¢},

fori=0,1,...,|logn].
For any points p,q € P there are at most ¢ — 1 choices for r such that pgr € T".

Thus, we have
11-3a

IT'| < n’t=n"5a .

Let C; = {c(pgr) : pgr € T;}, for 0 < i < logn. Letting ¢; := |C;|, we have at
least 2°¢¢; incidences between the n points in P and the #; circles in C;. Moreover,
the center of each circle in C; is among the n points of P, so we can apply Corollary
3, which yields

+3a

. 5 S5-—a
20, = O, (n Tta eg+a) ,

for an arbitrary 0 < a < 1/e. Rearranging the terms, we get for every 7 that

5+3a
mn 2+2a
bi=04 | ——5= | -
(zzt) 2+2a

Using the fact that |T;| < (2¢71)2¢;, we obtain

5430 11-3a
n2+2a n 5-«a

|TZ| = Oq  3-8a | Oa 3-3a | -
(QZt) 2F2a 29 2a

Adding up these bounds, it follows that

LIOgnJ 11- 3«
T =T+ Y Il =0 (no=),
=0

as required.
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