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tWe survey re
ent progress related to the following general problem in 
ombinatorialgeometry: What is the maximum number of in
iden
es between m points and n mem-bers taken from a �xed family of 
urves or surfa
es in d-spa
e? Results of this kindhave found numerous appli
ations to geometri
 problems related to the distribution ofdistan
es among points, to questions in additive number theory, in analysis, and in
omputational geometry.1 Introdu
tionThe problem and its relatives. Let P be a set of m distin
t points, and let L be a setof n distin
t lines in the plane. Let I(P;L) denote the number of in
iden
es between thepoints of P and the lines of L, i.e.,I(P;L) = jf(p; `) j p 2 P; ` 2 L; p 2 `gj:How large 
an I(P;L) be? More pre
isely, determine or estimate maxjP j=m;jLj=n I(P;L).This simplest formulation of the in
iden
e problem, due to Erd}os and �rst settled bySzemer�edi and Trotter, has been the starting point of extensive resear
h that has pi
ked up
onsiderable momentum during the past two de
ades. It is the purpose of this survey toreview the results obtained so far, des
ribe the main te
hniques used in the analysis of thisproblem, and dis
uss many variations and extensions.The problem 
an be generalized in many natural dire
tions. One 
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A related problem involves the same kind of input|a set P of m points and a set C ofn 
urves, but now we assume that no point of P lies on any 
urve of C. Let A(C) denotethe arrangement of the 
urves of C, i.e., the de
omposition of the plane into 
onne
tedopen 
ells of dimensions 0; 1; and 2 indu
ed by drawing the elements of C. These 
ells are
alled verti
es, edges, and fa
es of the arrangement, respe
tively. The total number of these
ells is said to be the 
ombinatorial 
omplexity of the arrangement. See [23, 48℄ for details
on
erning arrangements. The 
ombinatorial 
omplexity of a single fa
e is de�ned as thenumber of lower dimensional 
ells (i.e., verti
es and edges) belonging to its boundary. Thepoints of P then mark 
ertain fa
es in the arrangement A(C) of the 
urves, and the goalis to establish an upper bound on K(P;C), the 
ombined 
ombinatorial 
omplexity of themarked fa
es. This problem is often referred to in the literature as theMany-Fa
es Problem.One 
an extend the above questions to d-dimensional spa
es, for d > 2. Here we
an either 
ontinue to 
onsider in
iden
es between points and 
urves, or in
iden
es betweenpoints and surfa
es of any larger dimension k; 1 < k < d. In the spe
ial 
ase when k = d�1;we may also wish to study the natural generalization of the `many-fa
es problem' des
ribedin the previous paragraph: to estimate the total 
ombinatorial 
omplexity of m marked(d-dimensional) 
ells in the arrangement of n given surfa
es.All of the above problems have many algorithmi
 variants. Perhaps the simplest questionof this type is Hop
roft's problem: Given m points and n lines in the plane, how fast 
anone determine whether there exists any point that lies on any line? One 
an 
onsider moregeneral problems, like 
ounting the number of in
iden
es or reporting all of them, doingthe same for a 
olle
tion of 
urves rather than lines, 
omputing m marked fa
es in anarrangement of n 
urves, and so on.It turned out that two ex
itingmetri
 problems (involving interpoint distan
es) proposedby Erd}os in 1946 are strongly related to problems involving in
iden
es.1. Repeated Distan
es Problem: Given a set P of n points in the plane, what is themaximum number of pairs that are at distan
e exa
tly 1 from ea
h other? To seethe 
onne
tion, let C be the set of unit 
ir
les 
entered at the points of P . Thentwo points p; q 2 P are at distan
e 1 apart if and only if the 
ir
le 
entered at ppasses through q and vi
e versa. Hen
e, I(P;C) is twi
e the number of unit distan
esdetermined by P .2. Distin
t Distan
es Problem: Given a set P of n points in the plane, at least how manydistin
t distan
es must there always exist between its point pairs? Later we will showthe 
onne
tion between this problem and the problem of in
iden
es between P andan appropriate set of 
ir
les of di�erent radii.Some other appli
ations of the in
iden
e problem and the many-fa
es problem will bereviewed at the end of this paper. They in
lude the analysis of the maximum numberof isos
eles triangles, or triangles with a �xed area or perimeter, whose verti
es belongto a planar point set; estimating the maximum number of mutually 
ongruent simpli
esdetermined by a point set in higher dimensions; et
.Histori
al perspe
tive and overview. The �rst derivation of the tight upper boundI(P;L) = O(m2=3n2=3 +m+ n)2



was given by Szemer�edi and Trotter in their 1983 seminal paper [54℄. They proved Erd}os'
onje
ture, who found the mat
hing lower bound (whi
h was redis
overed many years laterby Edelsbrunner andWelzl [27℄). A slightly di�erent lower bound 
onstru
tion was exhibitedby Elekes [28℄ (see Se
tion 2).The original proof of Szemer�edi and Trotter is rather involved, and yields a ratherastronomi
al 
onstant of proportionality hidden in the O-notation. A 
onsiderably simplerproof was found by Clarkson et al. [21℄ in 1990, using extremal graph theory 
ombined witha geometri
 partitioning te
hnique based on random sampling (see Se
tion 3). Their paper
ontains many extensions and generalizations of the Szemer�edi-Trotter theorem. Manyfurther extensions 
an be found in subsequent papers by Edelsbrunner et al. [24, 25℄, byAgarwal and Aronov [1℄, by Aronov et al. [11℄, and by Pa
h and Sharir [43℄.The next breakthrough o

urred in 1997. In a surprising paper, Sz�ekely [53℄ gave anembarrassingly short proof of the upper bound on I(P;L) using a simple lower boundof Ajtai et al. [8℄ and of Leighton [36℄ on the 
rossing number of a graph G, i.e., theminimum number of edge 
rossings in the best drawing of G in the plane, where the edgesare represented by Jordan ar
s. In the literature this result is often referred to as the`Crossing Lemma.' Sz�ekely's method 
an easily be extended to several other variants of theproblem, but appears to be less general than the previous te
hnique of Clarkson et al. [21℄.Sz�ekely's paper has triggered an intensive re-examination of the problem. In parti
ular,several attempts were made to improve the existing upper bound on the number of in
i-den
es between m points and n 
ir
les of arbitrary radii in the plane [44℄. This was thesimplest instan
e where Sz�ekely's proof te
hnique failed. By 
ombining Sz�ekely's methodwith a seemingly unrelated te
hnique of Tamaki and Tokuyama [55℄ for 
utting 
ir
les into`pseudo-segments', Aronov and Sharir [14℄ managed to obtain an improved bound for thisvariant of the problem. Their work has then been followed by Agarwal et al. [2℄, who stud-ied the 
omplexity of many fa
es in arrangements of 
ir
les and pseudo-segments, and byAgarwal et al. [5℄, who extended this result to arrangements of pseudo-
ir
les (see Se
tion5). Aronov et al. [12℄ generalized the problem to higher dimensions, while Sharir and Welzl[49℄ studied in
iden
es between points and lines in three dimensions (see Se
tion 6).The related problems involving distan
es in a point set have also witnessed 
onsiderableprogress re
ently. As for the Repeated Distan
es Problem in the plane, the best knownupper bound on the number of times the same distan
e 
an o

ur among n points is O(n4=3),whi
h was obtained nearly 20 years ago by Spen
er et al. [52℄. This is far from the bestknown lower bound of Erd}os, whi
h is slightly super-linear (see [42℄). The best known upperbound for the 3-dimensional 
ase, due to Clarkson et al. [21℄, is roughly O(n3=2), while the
orresponding lower bound of Erd}os is 
(n4=3 log log n) (see [41℄). Several variants of theproblem have been studied in [30℄.More progress has been made on the 
ompanion problem of Distin
t Distan
es. In theplanar 
ase, L. Moser [40℄, Chung [17℄, and Chung et al. [20℄ proved that the number ofdistin
t distan
es determined by n points in the plane is at least 
(n2=3), 
(n5=7). andn4=5 divided by a polylogarithmi
 fa
tor, respe
tively. Sz�ekely [53℄ managed to get rid ofthe polylogarithmi
 fa
tor, while Solymosi and T�oth [50℄ improved this bound to 
(n6=7).This was a real breakthrough. Their analysis was subsequently re�ned by Tardos [56℄ andthen by Katz and Tardos [35℄, who obtained the 
urrent re
ord of 
(n(48�14e)=(55�16e)�"),for any " > 0, whi
h is 
(n0:8641). This is getting 
lose to the best known upper bound3
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Figure 1: Elekes' 
onstru
tion.of O(n=plog n), due to Erd}os [29℄, but there is still a 
onsiderable gap (see Se
tion 7). Inthree dimensions, a re
ent result of Aronov et al. [13℄ yields a lower bound of 
(n77=141�"),for any " > 0, whi
h is 
(n0:546). This is still far from the best known upper bound ofO(n2=3). A better lower bound in a spe
ial 
ase has re
ently been given by Solymosi andVu [51℄.For other surveys on related subje
ts, 
onsult [16℄, Chapter 4 of [38℄, [41℄, and [42℄.2 Lower BoundsWe des
ribe a simple 
onstru
tion due to Elekes [28℄ of a set P of m points and a set L ofn lines, so that I(P;L) = 
(m2=3n2=3 +m + n). We �x two integer parameters �; �. Wetake P to be the set of all latti
e points in f1; 2; : : : ; �g�f1; 2; : : : ; 2��g. The set L 
onsistsof all lines of the form y = ax + b, where a is an integer in the range 1; : : : ; �, and b is aninteger in the range 1; : : : ; ��. Clearly, ea
h line in L passes through exa
tly � points of P .See Figure 1.We have m = jP j = 2�2�, n = jLj = ��2, andI(P;L) = �jLj = �2�2 = 
(m2=3n2=3):Given any sizes m;n so that n1=2 � m � n2, we 
an �nd �; � that give rise to sets P;Lwhose sizes are within a 
onstant fa
tor of m and n, respe
tively. If m lies outside thisrange then m2=3n2=3 is dominated by m+ n, and then it is trivial to 
onstru
t sets P;L ofrespe
tive sizes m;n so that I(P;L) = 
(m+ n). We have thus shown thatI(P;L) = 
(m2=3n2=3 +m+ n):We note that this 
onstru
tion is easy to generalize to in
iden
es involving other 
urves.For example, we 
an take P to be the grid f1; 2; : : : ; �g�f1; 2; : : : ; 3�2�g, and de�ne C to be4



the set of all parabolas of the form y = ax2 + bx+ 
, where a 2 f1; : : : ; �g, b 2 f1; : : : ; ��g,
 2 f1; : : : ; �2�g. Now we have m = jP j = 3�3�, n = jCj = �3�3, andI(P;C) = �jCj = �4�3 = 
(m1=2n5=6):Note that in the 
onstru
tion we have m = O(n). When m is larger, we use the pre
eding
onstru
tion for points and lines, whi
h 
an be easily transformed into a 
onstru
tion forpoints and parabolas, to obtain the overall lower bound for points and parabolas:I(P;C) = � 
(m2=3n2=3 +m); if m � n
(m1=2n5=6 + n); if m � n.These 
onstru
tions 
an be generalized to in
iden
es involving graphs of polynomials ofhigher degrees.From in
iden
es to many fa
es. Let P be a set of m points and L a set of n lines inthe plane, and put I = I(P;L). Fix a suÆ
iently small parameter " > 0, and repla
e ea
hline ` 2 L by two lines `+; `�, obtained by translating ` parallel to itself by distan
e " inthe two possible dire
tions. We obtain a new 
olle
tion L0 of 2n lines. If " is suÆ
ientlysmall then ea
h point p 2 P that is in
ident to k � 2 lines of L be
omes a point that lies ina small fa
e of A(L0) that has 2k edges; note also that the 
ir
le of radius " 
entered at pis tangent to all these edges. Moreover, these fa
es are distin
t for di�erent points p, when" is suÆ
iently small.We have thus shown that K(P;L0) � 2I(P;L) � 2m (where the last term a

ounts forpoints that lie on just one line of L). In parti
ular, in view of the pre
eding 
onstru
tion,we have, for jP j = m, jLj = n,K(P;L) = 
(m2=3n2=3 +m+ n):An interesting 
onsequen
e of this 
onstru
tion is as follows. Take m = n and sets P;Lthat satisfy I(P;L) = �(n4=3). Let C be the 
olle
tion of the 2n lines of L0 and of the n
ir
les of radius " 
entered at the points of P . By applying an inversion, we 
an turn allthe 
urves in C into 
ir
les. We thus obtain a set C 0 of 3n 
ir
les with �(n4=3) tangentpairs. If we repla
e ea
h of the 
ir
les 
entered at the points of P by 
ir
les with a slightlylarger radius, we obtain a 
olle
tion of 3n 
ir
les with �(n4=3) empty lenses, namely fa
esof degree 2 in their arrangement. Empty lenses play an important role in the analysis ofin
iden
es between points and 
ir
les; see Se
tion 5.Lower bounds for in
iden
es with unit 
ir
les. As noted, this problem is equivalentto the problem of Repeated Distan
es. Erd}os [29℄ has shown that, for the verti
es of ann1=2 � n1=2 grid, there exists a distan
e that o

urs 
(n1+
= log log n) times, for an appro-priate absolute 
onstant 
 > 0. The details of this analysis, based on number-theoreti

onsiderations, 
an be found in the monographs [38℄ and [42℄.Lower bounds for in
iden
es with arbitrary 
ir
les. As we will see later, we are stillfar from a sharp bound on the number of in
iden
es between points and 
ir
les, espe
iallywhen the number of points is small relative to the number of 
ir
les.5



By taking sets P of m points and L of n lines with I(P;L) = �(m2=3n2=3+m+n), andby applying inversion to the plane, we obtain a set C of n 
ir
les and a set P 0 of m pointswith I(P 0; C) = �(m2=3n2=3 +m+ n). Hen
e the maximum number of in
iden
es betweenm points and n 
ir
les is 
(m2=3n2=3+m+n). However, we 
an slightly in
rease this lowerbound, as follows.Let P be the set of verti
es of the m1=2 �m1=2 integer latti
e. As shown by Erd}os [29℄,there are t = �(m=plogm) distin
t distan
es between pairs of points of P . Draw a setC of mt 
ir
les, 
entered at the points of P and having as radii the t possible inter-pointdistan
es. Clearly, the number of in
iden
es I(P;C) is exa
tly m(m� 1). If the bound onI(P;C) were O(m2=3n2=3 +m+ n), then we would havem(m� 1) = I(P;C) = O(m2=3(mt)2=3 +mt) = O(m2=((logm)1=3);a 
ontradi
tion. This shows that, under the most optimisti
 
onje
ture, the maximumvalue of I(P;C) should be larger than the 
orresponding bound for lines by at least somepolylogarithmi
 fa
tor.3 Upper Bounds for In
iden
es via the Partition Te
hniqueThe approa
h presented in this se
tion is due to Clarkson et al. [21℄. It predated Sz�ekely'smethod, but it seems to be more 
exible, and suitable for generalizations. It 
an also beused for the re�nement of some proofs based on Sz�ekely's method.We exemplify this te
hnique by establishing an upper bound for the number of point-linein
iden
es. Let P be a set of m points and L a set of n lines in the plane. First, we give aweaker bound on I(P;L), as follows. Consider the bipartite graph H � P �L whose edgesrepresent all in
ident pairs (p; `), for p 2 P , ` 2 L. Clearly, H does not 
ontain K2;2 as asubgraph. By the K}ovari-S�os-Tur�an Theorem in extremal graph theory (see [42℄), we haveI(P;L) = O(mn1=2 + n): (1)To improve this bound, we partition the plane into subregions, apply this bound withinea
h subregion separately, and sum up the bounds. We �x a parameter r; 1 � r � n, whosevalue will be determined shortly, and 
onstru
t a so-
alled (1=r)-
utting of the arrangementA(L) of the lines of L. This is a de
omposition of the plane into O(r2) verti
al trapezoidswith pairwise disjoint interiors, su
h that ea
h trapezoid is 
rossed by at most n=r lines ofL. The existen
e of su
h a 
utting has been established by Chazelle and Friedman [18℄,following earlier and somewhat weaker results of Clarkson and Shor [22℄. See [38℄ and [48℄for more details.For ea
h 
ell � of the 
utting, let P� denote the set of points of P that lie in the interiorof � , and let L� denote the set of lines that 
ross � . Put m� = jP� j and n� = jL� j � n=r.Using (1), we haveI(P� ; L� ) = O(m�n1=2� + n� ) = O�m� �nr �1=2 + nr� :Summing this over all O(r2) 
ells � , we obtain a total ofX� I(P� ; L� ) = O�m�nr �1=2 + nr�6



in
iden
es. This does not quite 
omplete the 
ount, be
ause we also need to 
onsider pointsthat lie on the boundary of the 
ells of the 
utting. A point p that lies in the relativeinterior of an edge e of the 
utting lies on the boundary of at most two 
ells, and any linethat passes through p, with the possible ex
eption of the single line that 
ontains e, 
rossesboth 
ells. Hen
e, we may simply assign p to one of these 
ells, and its in
iden
es (ex
eptfor at most one) will be 
ounted within the subproblem asso
iated with that 
ell. Considerthen a point p whi
h is a vertex of the 
utting, and let ` be a line in
ident to p. Then` either 
rosses or bounds some adja
ent 
ell � . Sin
e a line 
an 
ross the boundary of a
ell in at most two points, we 
an 
harge the in
iden
e (p; `) to the pair (`; �), use the fa
tthat no 
ell is 
rossed by more than n=r lines, and 
on
lude that the number of in
iden
esinvolving verti
es of the 
utting is at most O(nr).We have thus shown that I(P;L) = O�m�nr �1=2 + nr� :Choose r = m2=3=n1=3. This 
hoi
e makes sense provided that 1 � r � n. If r < 1, thenm < n1=2 and (1) implies that I(P;L) = O(n). Similarly, if r > n then m > n2 and (1)implies that I(P;L) = O(m). If r lies in the desired range, we get I(P;L) = O(m2=3n2=3).Putting all these bounds together, we obtain the boundI(P;L) = O(m2=3n2=3 +m+ n);as required.Remark. An equivalent statement is that, for a set P of m points in the plane, and forany integer k � m, the number of lines that 
ontain at least k points of P is at mostO�m2k3 + mk � :Dis
ussion. The 
utting-based method is quite powerful, and 
an be extended in variousways. The 
rux of the te
hnique is to derive somehow a weaker (but easier) bound on thenumber of in
iden
es, 
onstru
t a (1=r)-
utting of the set of 
urves, obtain the 
orrespondingde
omposition of the problem into O(r2) subproblems, apply the weaker bound within ea
hsubproblem, and sum up the bounds to obtain the overall bound. The work by Clarkson etal. [21℄ 
ontains many su
h extensions.Let us demonstrate this method to obtain an upper bound for the number of in
iden
esbetween a set P of m points and a set C of n arbitrary 
ir
les in the plane. Here theforbidden subgraph property is that the in
iden
e graph H � P �C does not 
ontain K3;2as a subgraph, and thus (see [42℄)I(P;C) = O(mn2=3 + n):We 
onstru
t a (1=r)-
utting for C, apply this weak bound within ea
h 
ell � of the 
utting,and handle in
iden
es that o

ur on the 
ell boundaries exa
tly as above, to obtainI(P;C) =X� I(P� ; C� ) = O�m�nr �2=3 + nr� :7



With an appropriate 
hoi
e of r, this be
omesI(P;C) = O(m3=5n4=5 +m+ n):However, as we shall see later, in Se
tion 5, this bound 
an be 
onsiderably improved.The 
ase of a set C of n unit 
ir
les is handled similarly, observing that in this 
ase theinterse
tion graph H does not 
ontain K2;3. This yields the same upper bound I(P;C) =O(mn1=2 + n), as in (1). The analysis then 
ontinues exa
tly as in the 
ase of lines, andyields the bound I(P;C) = O(m2=3n2=3 +m+ n):We 
an apply this bound to the Repeated Distan
es Problem, re
alling that the numberof pairs of points in an n-element set of points in the plane that lie at distan
e exa
tly 1from ea
h other, is half the number of in
iden
es between the points and the unit 
ir
les
entered at them. Substituting m = n in the above bound, we thus obtain that the numberof repeated distan
es is at most O(n4=3). This bound is far from the best known lowerbound, mentioned in Se
tion 2, and no improvements has been obtained sin
e its originalderivation in [52℄ in 1984.As a matter of fa
t, this approa
h 
an be extended to any 
olle
tion C of 
urves thathave \d degrees of freedom", in the sense that any d points in the plane determine at mostt = O(1) 
urves from the family that pass through all of them, and any pair of 
urvesinterse
t in only O(1) points. The in
iden
e graph does not 
ontain Kd;t+1 as a subgraph,whi
h implies that I(P;C) = O(mn1�1=d + n):Combining this bound with a 
utting-based de
omposition yields the boundI(P;C) = O(md=(2d�1)n(2d�2)=(2d�1) +m+ n):Note that this bound extrapolates the previous bounds for the 
ases of lines (d = 2), unit
ir
les (d = 2), and arbitrary 
ir
les (d = 3). See [44℄ for a slight generalization of thisresult, using Sz�ekely's method, outlined in the following se
tion.4 In
iden
es via Crossing Numbers|Sz�ekely's MethodA graph G is said to be drawn in the plane if its verti
es are mapped to distin
t points in theplane, and ea
h of its edges is represented by a Jordan ar
 
onne
ting the 
orresponding pairof points. It is assumed that no edge passes through any vertex other than its endpoints,and that when two edges meet at a 
ommon interior point, they properly 
ross ea
h otherthere, i.e., ea
h 
urve passes from one side of the other 
urve to the other side. Su
h a pointis 
alled a 
rossing. In the literature, a graph drawn in the plane with the above propertiesis often 
alled a topologi
al graph. If, in addition, the edges are represented by straight-linesegments, then the drawing is said to be a geometri
 graph.As we have indi
ated before, Sz�ekely dis
overed that the analysis outlined in the previousse
tion 
an be substantially simpli�ed, applying the following so-
alled Crossing Lemma forgraphs drawn in the plane. 8



Figure 2: Sz�ekely's graph for points and lines in the plane.Lemma 4.1 (Leighton [36℄, Ajtai et al. [8℄) Let G be a simple graph drawn in the planewith V verti
es and E edges. If E > 4V then there are 
(E3=V 2) 
rossing pairs of edges.To establish the lemma, denote by 
r(G) the minimum number of 
rossing pairs ofedges in any `legal' drawing of G. Sin
e G 
ontains too many edges, it is not planar, andtherefore 
r(G) � 1. In fa
t, using Euler's formula, a simple 
ounting argument shows that
r(G) � E � 3V +6 > E � 3V . We next apply this inequality to a random sample G0 of G,whi
h is an indu
ed subgraph obtained by 
hoosing ea
h vertex of G independently withsome probability p. By applying expe
tations, we obtain E[
r(G0)℄ � E[E0℄�3E[V 0℄, whereE0; V 0 are the numbers of edges and verti
es in G0, respe
tively. This 
an be rewritten as
r(G)p4 � Ep2 � 3V p, and 
hoosing p = 4V=E 
ompletes the proof of Lemma 4.1.We remark that the 
onstant of proportionality in the asserted bound has been improvedby Pa
h and T�oth [46℄. They proved that 
r(G) � E3=(33:75V 2) whenever E � 7:5V . Infa
t, the slightly weaker inequality 
r(G) � E3=(33:75V 2) � 0:9V holds without any extraassumption. We also note that it is 
ru
ial that the graph G be simple (i.e., any two verti
esbe 
onne
ted by at most one edge), for otherwise no 
rossing 
an be guaranteed, regardlessof how large E is.Let P be a set of m points and L a set of n lines in the plane. We asso
iate withP and L the following plane drawing of a graph G. The verti
es of (this drawing of) Gare the points of P . For ea
h line ` 2 L, we 
onne
t ea
h pair of points of P \ ` thatare 
onse
utive along ` by an edge of G, drawn as the straight segment between thesepoints (whi
h is 
ontained in `). See Figure 2 for an illustration. Clearly, G is a simplegraph, and, assuming that ea
h line of L 
ontains at least one point of P , we have V = mand E = I(P;L) � n (the number of edges along a line is smaller by 1 than the numberof in
iden
es with that line). Hen
e, either E < 4V , and then I(P;L) < 4m + n, or
r(G) � E3=(
V 2) = (I(P;L) � n)3=(
m2). However, we have, trivially, 
r(G) � �n2�,implying that I(P;L) � (
=2)1=3m2=3n2=3 + n � 2:57m2=3n2=3 + n.Extensions: Many fa
es and unit 
ir
les. The simple idea behind Sz�ekely's proofis quite powerful, and 
an be applied to many variants of the problem, as long as the9



p
qFigure 3: Sz�ekely's graph for points and unit 
ir
les in the plane: The maximum edgemultipli
ity is two|see the edges 
onne
ting p and q.
orresponding graph G is simple, or, alternatively, has a bounded edge multipli
ity. Forexample, 
onsider the 
ase of in
iden
es between a set P of m points and a set C of nunit 
ir
les. Draw the graph G exa
tly as in the 
ase of lines, but only along 
ir
les that
ontain more than two points of P , to avoid loops and multiple edges along the same 
ir
le.We have V = m and E � I(P;C) � 2n. In this 
ase, G need not be simple, but themaximum edge multipli
ity is at most two; see Figure 3. Hen
e, by deleting at most halfof the edges of G we make it into a simple graph. Moreover, 
r(G) � n(n � 1), so we getI(P;C) = O(m2=3n2=3 +m+ n), again with a rather small 
onstant of proportionality.We 
an also apply this te
hnique to obtain an upper bound on the 
omplexity of manyfa
es in an arrangement of lines. Let P be a set of m points and L a set of n lines in theplane, so that no point lies on any line and ea
h point lies in a distin
t fa
e of A(L). Thegraph G is now 
onstru
ted in the following slightly di�erent manner. Its verti
es are thepoints of P . For ea
h ` 2 L, we 
onsider all fa
es of A(L) that are marked by points of P ,are bounded by ` and lie on a �xed side of `. For ea
h pair f1; f2 of su
h fa
es that are
onse
utive along ` (the portion of ` between �f1 and �f2 does not meet any other markedfa
e on the same side), we 
onne
t the 
orresponding marking points p1; p2 by an edge, anddraw it as a polygonal path p1q1q2p2, where q1 2 ` \ �f1 and q2 2 ` \ �f2. We a
tuallyshift the edge slightly away from ` so as to avoid its overlapping with edges drawn for fa
eson the other side of `. The points q1; q2 
an be 
hosen in su
h a way that a pair of edgesmeet ea
h other only at interse
tion points of pairs of lines of L. See Figure 4. Here wehave V = m, E � K(P;L) � 2n, and 
r(G) � 2n(n � 1) (ea
h pair of lines 
an give riseto at most four pairs of 
rossing edges, near the same interse
tion point). Again, G is notsimple, but the maximum edge multipli
ity is at most two, be
ause, if two fa
es f1; f2 are
onne
ted along a line `, then ` is a 
ommon external tangent to both fa
es. Sin
e f1 andf2 are disjoint 
onvex sets, they 
an have at most two external 
ommon tangents. Hen
e,arguing as above, we obtain K(P;L) = O(m2=3n2=3 +m + n). We remark that the sameupper bound 
an also be obtained via the partition te
hnique, as shown by Clarkson etal. [21℄. Moreover, in view of the dis
ussion in Se
tion 2, this bound is tight.10



qp

Figure 4: Sz�ekely's graph for fa
e-marking points and lines in the plane. The maximumedge multipli
ity is two|see, e.g., the edges 
onne
ting p and q.However, Sz�ekely's te
hnique does not always apply. The simplest example where itfails is when we want to establish an upper bound on the number of in
iden
es betweenpoints and 
ir
les of arbitrary radii. If we follow the same approa
h as for equal 
ir
les, and
onstru
t a graph analogously, we may now 
reate edges with arbitrarily large multipli
ities,as is illustrated in Figure 5.Another 
ase where the te
hnique fails is when we wish to bound the total 
omplexityof many fa
es in an arrangement of line segments. If we try to 
onstru
t the graph in thesame way as we did for full lines, the fa
es may not be 
onvex any more, and we 
an 
reateedges of high multipli
ity; see Figure 6.5 Improvements by Cutting into Pseudo-segmentsConsider the 
ase of in
iden
es between points and 
ir
les of arbitrary radii. One way toover
ome the te
hni
al problem in applying Sz�ekely's te
hnique in this 
ase is to 
ut thegiven 
ir
les into subar
s so that any two of them interse
t at most on
e. We refer to su
ha 
olle
tion of subar
s as a 
olle
tion of pseudo-segments.The �rst step in this dire
tion has been taken by Tamaki and Tokuyama [55℄, who haveshown that any 
olle
tion C of n pseudo-
ir
les, namely, 
losed Jordan 
urves, ea
h pairof whi
h interse
t at most twi
e, 
an be 
ut into O(n5=3) subar
s that form a family ofpseudo-segments. The union of two ar
s that belong to distin
t pseudo-
ir
les and 
onne
tthe same pair of points is 
alled a lens. Let �(C) denote the minimum number of pointsthat 
an be removed from the 
urves of C, so that any two members of the resulting familyof subar
s have at most one point in 
ommon. Clearly, every lens must 
ontain at leastone of these 
utting points, so Tamaki and Tokuyama's problem asks in fa
t for an upperbound on the number of points needed to \stab" all lenses. Equivalently, this problem 
an11
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Figure 5: Sz�ekely's graph need not be simple for points and arbitrary 
ir
les in the plane.
p qr

Figure 6: Sz�ekely's graph need not be simple for marked fa
es and segments in the plane:An arbitrarily large number of segments bounds all three fa
es marked by the points p; q; r,so the edges (p; r) and (r; q) in Sz�ekely's graph have arbitrarily large multipli
ity.
12



Figure 7: The boundaries of the shaded regions are nonoverlapping lenses in an arrangementof pseudo-
ir
les.be reformulated, as follows.Consider a hypergraph H whose vertex set 
onsists of the edges of the arrangementA(C), i.e., the ar
s between two 
onse
utive 
rossings. Assign to ea
h lens a hyperedge
onsisting of all ar
s that belong to the lens. We are interested in �nding the transversalnumber (or the size of the smallest \hitting set") of H, i.e., the smallest number of verti
esof H that 
an be pi
ked with the property that every hyperedge 
ontains at least one ofthem. Based on Lov�asz' analysis [37℄ (see also [42℄) of the greedy algorithm for boundingthe transversal number from above (i.e., for 
onstru
ting a hitting set), this quantity isnot mu
h bigger than the size of the largest mat
hing in H, i.e., the maximum numberof pairwise disjoint hyperedges. This is the same as the largest number of pairwise non-overlapping lenses, that is, the largest number of lenses, no two of whi
h share a 
ommonedge of the arrangement A(C) (see Figure 7). Viewing su
h a family as a graph G, whoseedges 
onne
t pairs of 
urves that form a lens in the family, Tamaki and Tokuyama provedthat G does not 
ontain K3;3 as a subgraph, and this leads to the asserted bound on thenumber of 
uts.In order to establish an upper bound on the number of in
iden
es between a set of mpoints P and a set of n 
ir
les (or pseudo-
ir
les) C, let us 
onstru
t a modi�ed version G0of Sz�ekely's graph: its verti
es are the points of P , and its edges 
onne
t adja
ent pairs ofpoints along the new pseudo-segment ar
s. That is, we do not 
onne
t a pair of points thatare adja
ent along an original 
urve, if the ar
 that 
onne
ts them has been 
ut by somepoint of the hitting set. Moreover, as in the original analysis of Sz�ekely, we do not 
onne
tpoints along pseudo-
ir
les that are in
ident to only one or two points of P , to avoid loopsand trivial multipli
ities.Clearly, the graph G0 is simple, and the number E0 of its edges is at least I(P;C) ��(C)�2n. The 
rossing number of G0 is, as before, at most the number of 
rossings betweenthe original 
urves in C, whi
h is at most n(n � 1). Using the Crossing Lemma (Lemma4.1), we thus obtain I(P;C) = O(m2=3n2=3 + �(C) +m+ n):Hen
e, applying the Tamaki-Tokuyama bound on �(C), we 
an 
on
lude thatI(P;C) = O(m2=3n2=3 + n5=3 +m):13



An interesting property of this bound is that it is tight when m � n3=2. In this 
ase,the bound be
omes I(P;C) = O(m2=3n2=3 +m), mat
hing the lower bound for in
iden
esbetween points and lines, whi
h also serves as a lower bound for the number of in
iden
esbetween points and 
ir
les or parabolas. However, for smaller values of m, the term O(n5=3)dominates, and the dependen
e on m disappears. This 
an be re
ti�ed by 
ombining thisbound with a 
utting-based problem de
omposition, similar to the one used in the pre
edingse
tion, and we shall do so shortly.Before pro
eeding, though, we note that Tamaki and Tokuyama's bound is not tight.The best known lower bound is 
(n4=3), whi
h follows from the lower bound 
onstru
tion forin
iden
es between points and lines. (That is, we have already seen that this 
onstru
tion
an be modi�ed so as to yield a 
olle
tion C of n 
ir
les with �(n4=3) empty lenses. Clearly,ea
h su
h lens requires a separate 
ut, so �(C) = 
(n4=3).) Re
ent work by Alon et al. [10℄,Aronov and Sharir [14℄, and Agarwal et al. [5℄ has led to improved bounds. Spe
i�
ally,it was shown in [5℄ that �(C) = O(n8=5), for families C of pseudo-parabolas (graphs of
ontinuous everywhere de�ned fun
tions, ea
h pair of whi
h interse
t at most twi
e), and,more generally, for families of x-monotone pseudo-
ir
les (
losed Jordan 
urves with thesame property, so that the two portions of their boundaries 
onne
ting their leftmost andrightmost points are graphs of two 
ontinuous fun
tions, de�ned on a 
ommon interval).In 
ertain spe
ial 
ases, in
luding the 
ases of 
ir
les and of verti
al parabolas (i.e.,parabolas of the form y = ax2 + bx+ 
), one 
an do better, and show that�(C) = O(n3=2�(n));where �(n) = (log n)O(�2(n));and where �(n) is the extremely slowly growing inverse A
kermann's fun
tion. This boundwas established in [5℄, and it improves a slightly weaker bound obtained by Aronov etal. [14℄. The te
hnique used for deriving this result is interesting in its own right, and raisesseveral deep open problems, whi
h we omit in this survey.With the aid of this improved bound on �(C), the modi�
ation of Sz�ekely's methodreviewed above yields, for a set C of n 
ir
les and a set P of m points,I(P;C) = O(m2=3n2=3 + n3=2�(n) +m):As already noted, this bound is tight when it is dominated by the �rst or last terms, whi
hhappens when m is roughly larger than n5=4. For smaller values of m, we de
ompose theproblem into subproblems, using the following so-
alled \dual" partitioning te
hnique. Wemap ea
h 
ir
le (x � a)2 + (y � b)2 = �2 in C to the \dual" point (a; b; �2 � a2 � b2) in3-spa
e, and map ea
h point (�; �) of P to the \dual" plane z = �2�x� 2�y + (�2 + �2).As is easily veri�ed, ea
h in
iden
e between a point of P and a 
ir
le of C is mapped toan in
iden
e between the dual plane and point. We now �x a parameter r, and 
onstru
ta (1=r)-
utting of the arrangement of the dual planes, whi
h partitions R3 into O(r3) 
ells(whi
h is a tight bound in the 
ase of planes), ea
h 
rossed by at most m=r dual planes and
ontaining at most n=r3 dual points (the latter property, whi
h is not an intrinsi
 propertyof the 
utting, 
an be enfor
ed by further partitioning 
ells that 
ontain more than n=r3points). We apply, for ea
h 
ell � of the 
utting, the pre
eding bound for the set P� ofpoints of P whose dual planes 
ross � , and for the set C� of 
ir
les whose dual points lie14



in � . (Some spe
ial handling of 
ir
les whose dual points lie on boundaries of 
ells of the
utting is needed, as in Se
tion 3, but we omit the treatment of this spe
ial 
ase.) Thisyields the boundI(P;C) = O(r3) � O��mr �2=3 � nr3�2=3 + � nr3�3=2 �� nr3�+ mr � =O m2=3n2=3r1=3 + n3=2r3=2 �� nr3�+mr2! :Assume that m lies between n1=3 and n5=4; it is not hard to handle the 
omplementary
ases. Choosing r = n5=11=m4=11 in the last bound, we obtainI(P;C) = O(m2=3n2=3 +m6=11n9=11�(m3=n) +m+ n):6 In
iden
es in Higher DimensionsIt is natural to extend the study of in
iden
es to instan
es involving points and 
urves orsurfa
es in higher dimensions. The 
ase of in
iden
es between points and (hyper)surfa
es(mainly hyperplanes) has been studied earlier. Edelsbrunner et al. [25℄ 
onsidered in
iden
esbetween points and planes in three dimensions. It is important to note that, withoutimposing some restri
tions either on the set P of points or on the set H of planes, one
an easily obtain jP j � jHj in
iden
es, simply by pla
ing all the points of P on a line, andmaking all the planes of H pass through that line. Some natural restri
tions are to requirethat no three points be 
ollinear, or that no three planes be 
ollinear, or that the pointsbe verti
es of the arrangement A(H), and so on. Di�erent assumptions lead to di�erentbounds. For example, Agarwal and Aronov [1℄ obtained an asymptoti
ally tight bound�(m2=3nd=3+nd�1) for the number of in
iden
es between m verti
es of the arrangement ofn hyperplanes in d dimensions (see also [25℄), as well as for the number of fa
ets boundingmdistin
t 
ells in su
h an arrangement. Edelsbrunner and Sharir [26℄ 
onsidered the problemof in
iden
es between points and hyperplanes in four dimensions, under the assumptionthat all points lie on the upper envelope of the hyperplanes. They obtained the boundO(m2=3n2=3 +m + n) for the number of su
h in
iden
es, and applied the result to obtainthe same upper bound on the number of bi
hromati
 minimal distan
e pairs between a setof m blue points and a set of n red points in three dimensions.The 
ase of in
iden
es between points and 
urves in higher dimensions has been studiedonly re
ently. There are only two papers that address this problem. One of them, by Sharirand Welzl [49℄, studies in
iden
es between points and lines in 3-spa
e. The other, by Aronovet al. [12℄, is 
on
erned with in
iden
es between points and 
ir
les in higher dimensions.Both works were motivated by problems asked by Elekes. We brie
y review these result inthe following two subse
tions.6.1 Points and lines in three dimensionsLet P be a set of m points and L a set of n lines in 3-spa
e. Without making some assump-tions on P and L, the problem is trivial, for the following reason. Proje
t P and L onto some15



generi
 plane. In
iden
es between points of P and lines of L are bije
tively mapped to in
i-den
es between the proje
ted points and lines, so we have I(P;L) = O(m2=3n2=3 +m+ n).Moreover, this bound is tight, as is shown by the planar lower bound 
onstru
tion. (As amatter of fa
t, this redu
tion holds in any dimension d � 3.)There are several ways in whi
h the problem 
an be made interesting. First, supposethat the points of P are joints in the arrangement A(L), namely, ea
h point is in
ident to atleast three non-
oplanar lines of L. In this 
ase, one has I(P;L) = O(n5=3) [49℄. Note thatthis bound is independent of m. In fa
t, it is known that the number of joints is at mostO(n23=14 log31=14 n), whi
h is O(n1:643) [47℄ (the best lower bound, based on lines forming a
ube grid, is only 
(n3=2)).For general point sets P , one 
an use a new measure of in
iden
es, whi
h aims to ignorein
iden
es between a point and many in
ident 
oplanar lines. Spe
i�
ally, we de�ne theplane 
over �L(p) of a point p to be the minimum number of planes that pass through p sothat their union 
ontains all lines of L in
ident to p, and de�ne I
(P;L) =Pp2P �L(p). Itis shown in [49℄ that I
(P;L) = O(m4=7n5=7 +m+ n);whi
h is smaller than the planar bound of Szemer�edi and Trotter.Another way in whi
h we 
an make the problem \truly 3-dimensional" is to require thatall lines in L be equally in
lined, meaning that ea
h of them forms a �xed angle (say, 45Æ)with the z-dire
tion. In this 
ase, every point of P that is in
ident to at least three lines ofL is a joint, but this spe
ial 
ase admits better upper bounds. Spe
i�
ally, we haveI(P;L) = O(minnm3=4n1=2�(m);m4=7n5=7o+m+ n):The best known lower bound is I(P;L) = 
(m2=3n1=2):Let us brie
y sket
h the proof of the upper bound. For ea
h p 2 P let Cp denote the(double) 
one whose apex is p, whose symmetry axis is the verti
al line through p, andwhose opening angle is 45Æ. Fix some generi
 horizontal plane �0, and map ea
h p 2 Pto the 
ir
le Cp \ �0. Ea
h line ` 2 L is mapped to the point ` \ �0, 
oupled with theproje
tion `� of ` onto �0. Note that an in
iden
e between a point p 2 P and a line ` 2 Lis mapped to the 
on�guration in whi
h the 
ir
le dual to p is in
ident to the point dualto ` and the proje
tion of ` passes through the 
enter of the 
ir
le; see Figure 8. Hen
e, ifa line ` is in
ident to several points p1; : : : ; pk 2 P , then the dual 
ir
les p�1; : : : ; p�k are alltangent to ea
h other at the 
ommon point `\ �0. Viewing these tangen
ies as a 
olle
tionof degenerate lenses, we 
an bound the overall number of these tangen
ies, whi
h is equalto I(P;L), by O(n3=2�(n)). By a slightly more 
areful analysis, again based on 
utting, one
an obtain the bound stated above.6.2 Points and 
ir
les in three and higher dimensionsLet C be a set of n 
ir
les and P a set ofm points in 3-spa
e. Unlike in the 
ase of lines, thereis no obvious redu
tion of the problem to a planar one, be
ause the proje
tion of C ontosome generi
 plane yields a 
olle
tion of ellipses, rather than 
ir
les, whi
h 
an 
ross ea
h16



p
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Figure 8: Transforming in
iden
es between points and equally in
lined lines to tangen
iesbetween 
ir
les in the plane.other at four points per pair. However, using a more re�ned analysis, Aronov et al. [12℄ haveobtained the same asymptoti
 bound of I(P;C) = O(m2=3n2=3+m6=11n9=11�(m3=n)+m+n)for I(P;C). The same bound applies in any dimension d � 3.7 Appli
ationsThe problem of bounding the number of in
iden
es between various geometri
 obje
ts iselegant and fas
inating, and it has been mostly studied for its own sake. However, it is
losely related to a variety of questions in 
ombinatorial and 
omputational geometry. Inthis se
tion, we brie
y review some of these 
onne
tions and appli
ations.7.1 Algorithmi
 issuesThere are two types of algorithmi
 problems related to in
iden
es. The �rst group in
ludesproblems where we wish to a
tually determine the number of in
iden
es between 
ertainobje
ts, e.g., between given sets of points and 
urves, or we wish to 
ompute (des
ribe) a
olle
tion of marked fa
es in an arrangement of 
urves or surfa
es. The se
ond group 
on-tains 
ompletely di�erent questions whose solution requires tools and te
hniques developedfor the analysis of in
iden
e problems.In the simplest problem of the �rst kind, known as Hop
roft's problem, we are givena set P of m points and a set L of n lines in the plane, and we ask whether there existsat least one in
iden
e between P and L. The best running time known for this problem isO(m2=3n2=3 �2O(log�(m+n))) [39℄ (see [33℄ for a mat
hing lower bound). Similar running timebounds hold for the problems of 
ounting or reporting all the in
iden
es in I(P;L). Thesolutions are based on 
onstru
ting 
uttings of an appropriate size and thereby obtaininga de
omposition of the problem into subproblems, ea
h of whi
h 
an be solved by a morebrute-for
e approa
h. In other words, the solution 
an be viewed as an implementation ofthe 
utting-based analysis of the 
ombinatorial bound for I(P;L), as presented in Se
tion 3.The 
ase of in
iden
es between a set P ofm points and a set C of n 
ir
les in the plane ismore interesting, be
ause the analysis that leads to the 
urrent best upper bound on I(P;C)17



is not easy to implement. In parti
ular, suppose that we have already 
ut the 
ir
les of C intoroughly O(n3=2) pseudo-segments (an interesting and non-trivial algorithmi
 task in itself),and we now wish to 
ompute the in
iden
es between these pseudo-segments and the pointsof P . Sz�ekely's te
hnique is non-algorithmi
, so instead we would like to apply the 
utting-based approa
h to these pseudo-segments and points. However, this approa
h, for the 
aseof lines, after de
omposing the problem into subproblems, pro
eeds by duality. Spe
i�
ally,it maps the points in a subproblem to dual lines, 
onstru
ts the arrangement of thesedual lines, and lo
ates in the arrangement the points dual to the lines in the subproblem.When dealing with the 
ase of pseudo-segments, there is no obvious in
iden
e-preservingduality that maps them to points and maps the points to pseudo-lines. Nevertheless, su
ha duality has been re
ently de�ned by Agarwal and Sharir [7℄ (re�ning an older and lesseÆ
ient duality given by Goodman [34℄), whi
h 
an be implemented eÆ
iently and thusyields an eÆ
ient algorithm for 
omputing I(P;C), whose running time is 
omparable withthe bound on I(P;C) given above. A similar approa
h 
an be used to 
ompute many fa
esin arrangements of pseudo-
ir
les; see [2℄ and [7℄.The 
utting-based approa
h has by now be
ome a standard tool in the design of eÆ
ientgeometri
 algorithms in a variety of appli
ations in range sear
hing, geometri
 optimization,ray shooting, and many others. It is beyond the s
ope of this survey to dis
uss theseappli
ations, and the reader is referred, e.g., to the survey of Agarwal and Eri
kson [3℄ andto the referen
es therein.7.2 Distin
t distan
esThe above te
hniques 
an be applied to obtain some nontrivial results 
on
erning Erd}os'Distin
t Distan
es problem [29℄ formulated in the Introdu
tion: what is the minimumnumber of distin
t distan
es determined by n points in the plane? As we have indi
atedafter presenting the proof of the Crossing Lemma (Lemma 4.1), Sz�ekely's idea 
an also beapplied in several situations where the underlying graph is not simple, i.e., two verti
es 
anbe 
onne
ted by more than one edge. However, for the method to work it is important tohave an upper bound for the multipli
ity of the edges. Sz�ekely [53℄ formulated the followingnatural generalization of Lemma 4.1.Lemma. Let G be a multigraph drawn in the plane with V verti
es, E edges, and withmaximal edge-multipli
ity M . Then there are 
� E3MV 2��O(M2V ) 
rossing pairs of edges.Sz�ekely applied this statement to the Distin
t Distan
es problem, and improved by apolylogarithmi
 fa
tor the best previously known lower bound of Chung et al. [20℄ on theminimum number of distin
t distan
es determined by n points in the plane. His new boundwas 
(n4=5). However, Solymosi and T�oth [50℄ have realized that, 
ombining Sz�ekely'smethod with the Szemer�edi-Trotter theorem for the number of in
iden
es between m pointsand n lines in the plane, this lower bound 
an be substantially improved. They managedto raise the bound to 
(n6=7). Later, Tardos and Katz have further improved this result,using the same general approa
h, but improving upon a key algebrai
 step of the analysis.In their latest paper [35℄, they 
ombined their methods to prove that the minimum numberof distin
t distan
es determined by n points in the plane is 
(n(48�14e)=(55�16e)�"), for any" > 0, whi
h is 
(n0:8641). This is the best known result so far. A 
lose inspe
tion of thegeneral Solymosi-T�oth approa
h shows that, without any additional geometri
 idea, it 
annever lead to a lower bound better than 
(n8=9).18



7.3 Equal-area, equal-perimeter, and iso
eles trianglesLet P be a set of n points in the plane. We wish to bound the number of triangles spannedby the points of P that have a given area, say 1. To do so, we note that if we �x two pointsa; b 2 P , any third point p 2 P for whi
h Area(�abp) = 1 lies on a �xed line `ab parallelto ab. Pairs (a; b) for whi
h the line `ab 
ontains fewer than n1=3 points of P generate atmost O(n7=3) unit area triangles. For the other pairs, we observe that the number of lines
ontaining more than n1=3 points of P is at most O(n2=(n1=3)3) = O(n), whi
h, as alreadymentioned, is an immediate 
onsequen
e of the Szemer�edi-Trotter theorem. The numberof in
iden
es between these lines and the points of P is at most O(n4=3). We next observethat any line ` 
an be equal to `ab for at most n pairs a; b, be
ause, given ` and a, there 
anbe at most two points b for whi
h ` = `ab. It follows that the lines 
ontaining more thann1=3 points of P 
an be asso
iated with at most O(n � n4=3) = O(n7=3) unit area triangles.Hen
e, overall, P determines at most O(n7=3) unit area triangles.Next, 
onsider the problem of estimating the number of unit perimeter triangles deter-mined by P . Here we note that if we �x a; b 2 P , with jabj < 1, any third point p 2 P forwhi
h Perimeter(�abp) = 1 lies on an ellipse whose fo
i are a and b and whose major axisis 1 � jabj. Clearly, any two distin
t pairs of points of P give rise to distin
t ellipses, andthe number of unit perimeter triangles determined by P is equal to one third of the numberof in
iden
es between these O(n2) ellipses and the points of P . The set of these ellipses hasfour degrees of freedom, in the sense of Pa
h and Sharir [44℄ (see also Se
tion 3), and hen
ethe number of in
iden
es between them and the points of P , and 
onsequently the numberof unit perimeter triangles determined by P , is at mostO(n4=7(n2)6=7) = O(n16=7):Finally, 
onsider the problem of estimating the number of isos
eles triangles determinedby P . Re
ently, Pa
h and Tardos [45℄ proved that the number of isos
eles triangles indu
edby triples of an n-element point set in the plane is O(n(11�3�)=(5��)) (where the 
onstantof proportionality depends on �), provided that 0 < � < 10�3e24�7e . In parti
ular, the numberof iso
eles triangles is O(n2:136). The proof pro
eeds through two steps, interesting in theirown right.(i) Let P be a set of n distin
t points and let C be a set of ` distin
t 
ir
les in the plane,withm � ` distin
t 
enters. Then, for any 0 < � < 1=e, the number I of in
iden
es betweenthe points in P and the 
ir
les of C isO �n+ `+ n 23 ` 23 + n 47m 1+�7 ` 5��7 + n 12+4�21+3�m 3+5�21+3� ` 15�3�21+3� + n 8+2�14+�m 2+2�14+� ` 10�2�14+� � ;where the 
onstant of proportionality depends on �.(ii) As a 
orollary, we obtain the following statement. Let P be a set of n distin
t pointsand let C be a set of ` distin
t 
ir
les in the plane su
h that they have at most n distin
t
enters. Then, for any 0 < � < 1=e, the number of in
iden
es between the points in P andthe 
ir
les in C is O �n 5+3�7+� ` 5��7+� + n� :In view of a re
ent result of Katz and Tardos [35℄, both statements extend to all 0 <� < 10�3e24�7e , whi
h easily implies the above bound on the number of isos
eles triangles.19



7.4 Congruent simpli
esBounding the number of in
iden
es between points and 
ir
les in higher dimensions 
anbe applied to the following interesting question asked by Erd}os and Purdy [31, 32℄ anddis
ussed by Agarwal and Sharir [6℄. Determine the largest number of simpli
es 
ongruentto a �xed simplex �, whi
h 
an be spanned by an n-element point set P � Rk?Here we 
onsider only the 
ase when P � R4 and � = ab
d is a 3-simplex. Fix threepoints p; q; r 2 P su
h that the triangle pqr is 
ongruent to the fa
e ab
 of �. Then anyfourth point v 2 P for whi
h pqrv is 
ongruent to � must lie on a 
ir
le whose plane isorthogonal to the triangle pqr, whose radius is equal to the height of � from d, and whose
enter is at the foot of that height. Hen
e, bounding the number of 
ongruent simpli
es 
anbe redu
ed to the problem of bounding the number of in
iden
es between 
ir
les and pointsin 4-spa
e. (The a
tual redu
tion is slightly more involved, be
ause the same 
ir
le 
anarise for more than one triangle pqr; see [6℄ for details.) Using the bound of [12℄, mentionedin Se
tion 6, one 
an dedu
e that the number of 
ongruent 3-simpli
es determined by npoints in 4-spa
e is O(n20=9+"), for any " > 0.Referen
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