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Abstract

Given n pairwise disjoint sets X1, . . . , Xn, we call the elements of S = X1× . . .×Xn strings.
A nonempty set of strings W ⊆ S is said to be well-connected if for every v ∈ W and for every
i (1 ≤ i ≤ n), there is another element v′ ∈ W which differs from v only in its ith coordinate.
We prove a conjecture of Yaokun Wu and Yanzhen Xiong by showing that every set of more
than

∏n
i=1 |Xi| −

∏n
i=1(|Xi| − 1) strings has a well-connected subset. This bound is tight.

1 Introduction

Let X1, . . . , Xn be pairwise disjoint sets with |Xi| = di > 1 for 1 ≤ i ≤ n. Let

S = X1 × . . .×Xn = {(x1, . . . , xn) : xi ∈ Xi for every i ∈ [n]}

be the set of strings x = (x1, . . . , xn), where xi is called the ith coordinate of x and [n] = {1, . . . , n}.
A subset W ⊆ S is called well-connected if for every x ∈ W and for every i ∈ [n], there is

another element x′ ∈ W which differs from x only in its ith coordinate. That is, x′j 6= xj if and
only if j = i.

The following statement was conjectured by Yaokun Wu and Yanzhen Xiong [4].

Theorem 1. Let T be a subset of S = X1 × . . .×Xn with |Xi| = di > 1 for every i ∈ [n]. If

|T | >
n∏

i=1

di −
n∏

i=1

(di − 1),

then T has a well-connected subset. This bound cannot be improved.

To see the tightness of the theorem, fix an element yi in each Xi and let X ′i = Xi \ {yi}. We
claim that the set of strings

T0 = (X1 × . . .×Xn) \ (X ′1 × . . .×X ′n) (1)
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does not have any nonempty well-connected subset. Suppose for contradiction that there is such
a subset W ⊆ T0, and let x = (x1, . . . , xn) be an element of W with the minimum number of
coordinates i for which xi = yi holds. Obviously, this minimum is positive, otherwise x 6∈ T0. Pick
an integer k with xk = yk. Using the assumption that W is well-connected, we obtain that there
exists x′ ∈W that differs from x only in its kth coordinate. However, then x′ would have one fewer
coordinates with xi = yi than x does, contradicting the minimality of x.

In the next section, we establish a result somewhat stronger than Theorem 1: we prove that
under the conditions of Theorem 1, T also has a subset W such that for every x ∈W and i ∈ [1, n],
the number of elements x′ ∈ W which differ from x only in its ith coordinate is odd (see Theorem
6). In Section 3, we present a self-contained argument which proves this stronger statement.

Shortly after learning about our proof of the conjecture of Wu and Xiong, another proof was
found by Chengyang Qian.

2 Exact sequence of maps

In this section, we introduce the necessary definitions and terminology, and we apply a basic
topological property of simplicial complexes to establish Theorem 1.

For every k (0 ≤ k ≤ n), let

Sk = {A ⊆ X1 ∪ . . . ∪Xn : |A| = k and |A ∩Xi| ≤ 1 for every i}.

Clearly, we have |Sn| = |S| =
∏n

i=1 |Xi|. With a slight abuse of notation, we identify Sn with S.
Assign to each A ∈ Sk a different symbol vA, and define Vk as the family of all formal sums of

these symbols with coefficients 0 or 1. Then

Vk = {
∑
A∈Sk

λAvA : λA = 0 or 1}

can be regarded as a vector space over GF(2) whose dimension satisfies

dim Vk = |Sk| =
∑

1≤j1<j2<...<jk≤n
dj1dj2 · . . . · djk . (2)

We use the standard definition of the boundary operations ∂k.

Definition 2. Let ∂0 : V0 → 0. For every k ∈ [1, n] and every A ∈ Sk, let

∂k(vA) =
∑
B⊂A
|B|=k−1

vB.

Extend this map to a homomorphism ∂k : Vk → Vk−1 by setting

∂k(
∑
A∈Sk

λAvA) =
∑
A∈Sk

λA∂k(vA),
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where the sum is taken over GF(2).

Let ker(∂k) ⊆ Vk and im(∂k) ⊆ Vk−1 denote the kernel and the image of ∂k, respectively.
Our proof is based on the following lemma.

Lemma 3. The sequence of homomorphisms Vn
∂n−→ Vn−1

∂n−1−−−→ . . .
∂1−→ V0

∂0−→ 0 is an exact
sequence, i.e., im(∂k) = ker(∂k−1) holds for every k.

Proof. First, we show that im(∂k) ⊆ ker(∂k−1) for every k ∈ [1, n]. The statement is obviously
true for k = 1. If k ≥ 2, then for every A ∈ Sk, we have

∂k−1∂kvA =
∑
B⊂A
|B|=k−1

∑
C⊂B
|C|=k−2

vC =
∑
C⊂A
|C|=k−2

2vC = 0.

Thus, ∂k−1∂k(v) = 0 for every v ∈ Vk, as claimed.

On the other hand, ∪ni=0Vi can be regarded as an (n− 1)-dimensional triangulated topological
space which is the join of discrete topological spaces (sets), X1, . . . , Xn, each of size at least 2 and,
hence, −1-connected. Proposition 4.4.3 in [3] (see also [1]) states that if X is a-connected and Y is
b-connected, then their join is (a+ b+ 2)-connected. By repeated application of this statement, we
obtain that ∪ni=0Vi, as a topological space, is (n− 2)-connected. This means that, up to dimension
n− 2 (that is, up to Vn−1) their homotopy groups are trivial. This implies that the corresponding
homology groups (the quotient groups ker(∂k−1)/im(∂k)) are also trivial. 2

Corollary 4. For every k ∈ [1, n], we have dim ker(∂k) =
∑k

i=0(−1)k−idim Vi.

Proof. By induction on k. According to the Rank Nullity Theorem [2], we have

dim Vi = dim ker(∂i) + dim im(∂i), (3)

for every i ∈ [1, n]. Since dim im(∂1) = dim V0 = 1, the corollary is true for k = 1.
Assume we have already verified it for some k < n. To show that it is also true for k+1, we use

that dim im(∂k+1) = dim ker(∂k), by Lemma 3. Plugging this into (3) with i = k + 1, we obtain

dim Vk+1 = dim ker(∂k+1) + dim ker(∂k).

Hence, using the induction hypothesis, we have

dim ker(∂k+1) = dim Vk+1 − dim ker(∂k)

= dim Vk+1 −
k∑

i=0

(−1)k−idim Vi =
k+1∑
i=0

(−1)k+1−idim Vi,

as required. 2

By (2), we know the value of dim Vi for every i. Therefore, Corollary 4 enables us to compute
dim ker(∂n) and, hence, dim Vn − dim ker(∂n).
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Corollary 5. We have

dim Vn − dim ker(∂n) =
n∏

i=1

di −
n∏

i=1

(di − 1).

Proof. From Corollary 4, we get

dim Vn − dim ker(∂n) =
n−1∑
i=0

(−1)n−1−idim Vi.

Using (2) and the fact that dim V0 = 1, this is further equal to

n−1∑
i=1

(−1)n−1−i
∑

1≤j1<j2<...<ji≤n
dj1dj2 · · · dji + (−1)n−1 =

n∏
i=1

di −
n∏

i=1

(di − 1). 2

Now we are in a position to establish the following statement, which is somewhat stronger than
Theorem 1.

Theorem 6. Let T be a subset of S = X1 × . . .×Xn with |Xi| = di > 1 for every i ∈ [n]. If

|T | >
n∏

i=1

di −
n∏

i=1

(di − 1),

then there is a subset W ⊆ T with the property that for every x ∈ W and i ∈ [1, n], the number
of elements x′ ∈ W which differ from x only in their ith coordinate is odd. This bound cannot be
improved.

Proof. The tightness of the bound follows from the tightness of Theorem 1 shown at the end of
the Introduction.

Let T be a system of strings of length n satisfying the conditions of the theorem. Using the
notation introduced at the beginning of this section, let

V (T ) = {
∑
A∈T

λAvA : λA = 0 or 1}.

Then V (T ) can be regarded as a linear subspace of Vn with dim V (T ) = |T |. Comparing the size
of T with the value of dim Vn−dim ker(∂n) given by Corollary 5, we obtain that there is a nonzero
vector v =

∑
A∈T λAvA that belongs to V (T )∩ ker(∂n). Let W = {A ∈ T : λA = 1}. Then we have

0 = ∂n(v) =
∑
A∈W

∂n(vA) =
∑
A∈W

∑
B⊂A
|B|=n−1

vB =
∑

B⊂[1,n]
|B|=n−1

|{A ∈W : A ⊇ B}|vB.

Thus, for each B, the coefficient of vB is even. This means that the set of strings W ⊂ T meets
the requirements of the theorem. 2
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3 Direct proof of Theorem 6

In this section, we prove Theorem 6 directly, without using Lemma 5 and, hence, Corollary 5.
As in the Introduction, fix an element yi ∈ Xi and let X ′i = Xi \ {yi}, for every i ∈ [1, n].

Defining T0 as in (1), we have that |T0| =
∏n

i=1 di −
∏n

i=1(di − 1).
Suppose that |T | > |T0|. As in the first proof of Theorem 6, it is sufficient to show that there

exists a nonzero vector v =
∑

A∈T λAvA with suitable coefficients λA ∈ {0, 1} such that v ∈ ker(∂n),
i.e., we have ∂nv =

∑
A∈T λA(∂nvA) = 0. Thus, it is enough to establish the following statement.

Lemma 7. Let T be a subset of S = X1 × . . .×Xn with |Xi| > 1 for every i ∈ [1, n].
If |T | > |T0|, then the set of vectors {∂nvA : A ∈ T} is linearly dependent over GF(2).

Proof. First, we show that the set of vectors {∂nvA : A ∈ T0} is linearly independent. Suppose,
for a contradiction, that there is a nonempty subset W ⊂ T0 such that

∑
A∈W ∂nvA = 0. Pick an

element A = {x1, . . . , xn} of W for which the number of coordinates i with xi = yi is as small as
possible. By the definition of T0, there is at least one such coordinate xk = yk. In view of Definition
2, one of the terms of the formal sum ∂nvA is vB with B = A \ {yk}, and this term cannot be
canceled out by a term of ∂nvA′ for any other A′ ∈ W , because in this case A′ would have fewer
coordinates that are equal to some yi than A does. Hence,

∑
A∈W ∂nvA 6= 0, contradicting our

assumption.

Next, we prove that there exists no set of strings T ⊃ T0 with |T | > |T0| such that the set of
vectors {∂nvA : A ∈ T} is linearly independent.

To see this, consider any string C = {z1, . . . , zn} ∈ S \ T0. Since C 6∈ T0, we have zi 6= yi for
every i. Define T (C) as the set of all strings A = {x1, . . . , xn} ∈ S whose every coordinate xi is
either yi or zi. Then we have

∑
A∈T (C) ∂nvA = 0. As we have T (C) ⊆ T0 ∪ {C}, this means that

the set of vectors {∂nvA : A ∈ T0 ∪ {C}} is linearly dependent over GF(2).

Now we can prove the lemma in its full generality. Suppose that there is at least one set of
strings T with |T | > |T0| contradicting Lemma 7. Choose a counterexample T for which |T ∩ T0|
is as large as possible. According to the previous paragraph, T cannot fully contain T0. Pick a
string C ∈ T0 \ T . Then T ∪ {C} is no longer a counterexample, so there is a nonempty subset
W ⊂ T ∪ {C} such that

∑
A∈W ∂nvA = 0. (Obviously, C ∈ W .) We claim that the choice of W

is unique. In other words, there exists no other subset W ∗ ⊂ T ∪ {C} having the same property.
Indeed, otherwise we would have ∑

A∈W4W ∗

∂nvA = 0,

where W4W ∗ denotes the symmetric difference of W and W ∗. Since W4W ∗ ⊂ T , this would
contradict our assumption that {∂nvA : A ∈ T} is a set of linearly independent vectors over GF(2).

Obviously, W must have at least one element B that does not belong to T0. Define a new set of
strings T ∗ = (T \{B})∪{C}. We have |T ∗∩T0| > |T ∩T0| and, because of the maximality of |T ∩T0|,
we know that T ∗ is not a counterexample to the lemma, i.e., T ∗ is linearly dependent. Therefore,
there exists a nonempty subset W ∗ ⊆ T ∗ ⊂ T ∪ {C} such that

∑
A∈W ∗ ∂nvA = 0. The sets W and

W ∗ must be distinct, because C ∈ W , but C 6∈ W ∗. This would contradict the uniqueness of W ,
completing the proof of the lemma and, hence, of Theorem 6. 2
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