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2. Is it true that the minimum number of di�erent dire
tions assumed by the
onne
ting lines of n � 6 non-
oplanar points in 3-spa
e is 2n � 3 if n is evenand 2n� 2 if n is odd?Twelve years later, the �rst question was answered in the aÆrmative by Ungar[18℄. His proof is a real gem, a brilliant appli
ation of the method of allowable se-quen
es invented by Goodman and Polla
k [9℄, [10℄. Moreover, it solves the problemin an elegant 
ombinatorial setting, for \pseudolines", as was suggested independentlyby Goodman and Polla
k and by Cordovil [6℄. For even n, Ungar's theorem gener-alizes Erd}os's above mentioned result. However, in 
ontrast to Erd}os's result, herethere is an overwhelming diversity of extremal 
on�gurations, for whi
h equality isattained. Four in�nite families and more than one hundred sporadi
 
on�gurationswere 
atalogued by Jamison and Hill [14℄ (see also [13℄ for an ex
ellent survey).Progress on the se
ond question of S
ott has been mu
h slower. As Jamison [13℄noti
ed, unless we impose some further restri
tion on the point set, for odd n, thenumber of dire
tions determined by n points in 3-spa
e 
an be as small as 2n � 5.Indeed, equality is attained, e.g., for the n-element set obtained from the vertexset of a regular (n � 3)-gon Pn�3 (or from any other 
entrally symmetri
 extremal
on�guration for the planar problem) by adding its 
enter 
 and two other pointswhose midpoint is 
 and whose 
onne
ting line is orthogonal to the plane of Pn�3.Blokhuis and Seress [3℄ introdu
ed a natural 
ondition ex
luding the above 
on-�gurations: they assumed that no three points are 
ollinear. Under this assumption,they proved that every non-
oplanar set of n points in 3-spa
e determines at least1:75n� 2 di�erent dire
tions.The aim of the present paper is to answer S
ott's se
ond question in the aÆrma-tive, using the same assumption as Blokhuis and Seress.Theorem 1.1. Every set of n � 6 points in R3 , not all of whi
h are on a plane andno three are on a line, determine at least n + 2dn=2e � 3 di�erent dire
tions. Thisbound is sharp.Removing the 
enter 
 from the 
on�guration des
ribed above that determines2n� 5 dire
tions, we obtain a set of even size n0 = n� 1 with 2n0 � 3 dire
tions andno three 
ollinear points (see Figure 1(a)). If the number of points is even, then this
onstru
tion provides the only known in�nite family for whi
h Theorem 1.1 is sharp.In addition, there are four known sporadi
 extremal 
on�gurations, ea
h of whi
h isa subset of the 14-element set depi
ted in Figure 1(b).A

ording to a beautiful result of Motzkin [15℄, Rabin, and Chakerian [5℄ (seealso [1℄), any set of n non-
ollinear points in the plane, 
olored with two 
olors redand green, determines a mono
hromati
 line. Motzkin and Gr�unbaum [11℄ initiatedthe investigation of biased 
olorings, i.e., 
olorings without mono
hromati
 red lines.Their motivation was to justify the intuitive feeling that if there are many red pointsin su
h a 
oloring and not all of them are 
ollinear, then the number of green pointsmust also be rather large. Denoting the sets of red and green points by R and G,2
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Figure 1: Two examples of sets with an even number n of points, not all on a planeand no three 
oplanar, that determine 2n� 3 di�erent dire
tions.respe
tively, it is a 
hallenging unsolved question to de
ide whether the \surplus"jRj� jGj of the 
oloring 
an be arbitrarily large. We do not know any example wherethis quantity ex
eeds 6 [12℄.The problem of biased 
olorings was redis
overed by Erd}os and Purdy [8℄, whoformulated it as follows: What is the smallest number m(n) of points ne
essary torepresent (i.e., stab) all lines spanned by n non-
ollinear points in the plane, if thegenerating points 
annot be used. An 
(n) lower bound follows from the \weak Dira

onje
ture" proved by Szemer�edi and Trotter [17℄ and Be
k [2℄, a

ording to whi
hthere is a point that lies on 
(n) di�erent 
onne
ting lines. Ea
h of these 
onne
tinglines has to be represented by a di�erent point.In Se
tion 2, we redu
e Theorem 1.1 to a statement (Theorem 2.2) showing thatunder some further restri
tions the surplus is indeed bounded. More pre
isely, if thereis no 
onne
ting line whose leftmost and rightmost points are both red, then we havejGj � 2bjRj=2
, so in parti
ular jRj � jGj � 1.Another way of rephrasing Ungar's theorem is that from all 
losed segments whoseendpoints belong to a non-
ollinear set of n points in the plane, one 
an always sele
tat least 2bn=2
 su
h that no two of them are parallel. Unless we expli
itly state itotherwise, every segment used in this paper is assumed to be 
losed. Our proof ofTheorem 2.2 is based on a far-rea
hing generalization of Ungar's result. To formulatethis statement, we need to relax the 
ondition of two segments being parallel.3



avoiding non-avoiding
non-avoidingnon-avoiding

Figure 2: Avoiding and non-avoiding segments.De�nition 1.2. Two segments belonging to distin
t lines are 
alled avoiding if oneof the following two 
onditions is satis�ed (see Figure 2):(i) they are parallel, or(ii) the interse
tion of their supporting lines does not belong to any of the segments.An alternative de�nition is that two segments are avoiding if and only if they aredisjoint and their 
onvex hull is a quadrilateral.The main result of this paper, whi
h implies Theorem 1.1 and Theorem 2.2 (statedin the next se
tion), is the following strengthening of Ungar's theorem, whi
h is ofindependent interest.Theorem 1.3. From all 
losed segments determined by a set of n non-
ollinear pointsin the plane, one 
an always sele
t at least 2bn=2
 pairwise non-avoiding ones, lyingon distin
t lines.Theorem 1.3 is established in Se
tions 3 and 4.This paper leaves open the problem of extending Theorem 1.1 to the general 
ase,where the given point set may 
ontain triples of 
ollinear points.2 Redu
tion of Theorem 1.1 to a Planar ProblemLet P be a set of n points in R3 su
h that not all of them lie in a 
ommon plane andno three of them are 
ollinear. Let p0 be an extreme point of P , i.e., a vertex of the
onvex hull of P . Consider a supporting plane to P at p0, and translate it into a new4
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p0Figure 3: Proving the existen
e of a green point on `, in extreme position.position � so that P lies in the slab bounded by these two planes. Proje
t from p0 allpoints of P nfp0g onto �. We obtain a set R of n�1 distin
t points in �, not all on aline, and we will refer to the elements of R as red points. Ea
h red point 
orrespondsto a dire
tion determined by p0 and some other point of P .For ea
h pair of elements p; p0 2 P n fp0g, take a line parallel to pp0 that passesthrough p0. Color with green the interse
tion point of this line with �, unless it hasalready been 
olored red. The set of all green points is denoted by G. By de�nition,we have R \G = ;.We need the following simple property of the sets R and G, whi
h implies thatalong every line passing through at least two red points either the leftmost or therightmost point belonging to R [G is green.Lemma 2.1. Every line 
onne
ting two red points r; r0 2 R passes through at leastone green point g 2 G that does not belong to the (
losed) segment rr0.Proof: Let ` be a line in � passing through at least two red points r; r0 2 R. Assumewithout loss of generality that r and r0 are the leftmost and rightmost red pointsalong `. Let p and p0 denote those elements of P whose proje
tions to � are r andr0, respe
tively. Observe that in the plane indu
ed by p0 and `, the dire
tion of pp0does not belong to the 
onvex 
one en
losed by the rays p0p and p0p0, so the linethrough p0 parallel to pp0 will 
ross ` in a green point g meeting the requirements.See Figure 3. 2To establish Theorem 1.1, it is suÆ
ient to verify the following result.Theorem 2.2. Let R be a set of n red points in the plane, not all 
ollinear, and letG be a set of m green points su
h that R\G = ; and every line ` 
onne
ting at leasttwo red points in R passes through a green point g 2 G that does not belong to anysegment rr0, for r; r0 2 R \ `.Then we have m � 2bn=2
.Indeed, to prove Theorem 1.1 it is enough to noti
e that in our setting we have5



jRj = n� 1 and that the number of di�erent dire
tions determined by P is equal tojRj+ jGj � n� 1 + 2�n� 12 � = n+ 2 ln2m� 3:Thus, applying Theorem 2.2, Theorem 1.1 immediately follows.It is interesting to note that Theorem 2.2 also implies Ungar's above-mentionedtheorem. To see this, regard the elements of our given planar point set as red, andthe dire
tions determined by them as green points on the line at in�nity, and applyTheorem 2.2. (If we wish, we 
an perform a proje
tive transformation and avoid theuse of points at in�nity.)It remains to prove Theorem 2.2. However, as mentioned in the introdu
tion,this result 
an be easily dedu
ed from Theorem 1.3, whi
h is a further extension ofUngar's theorem:Proof of Theorem 2.2 (using Theorem 1.3): Applying Theorem 1.3 to the set R,we obtain 2bn=2
 segments with red endpoints that lie in distin
t lines and no pairof them are avoiding. By the 
ondition in Theorem 2.2, the 
ontinuation of ea
hof these segments passes through a green point. Assign su
h a green point to ea
hsegment. Observe that these points are all distin
t. Indeed, if we 
an assign the samegreen point to two di�erent segments, then they must be avoiding, by de�nition. This
ompletes the proof of Theorem 2.2 and hen
e of Theorem 1.1. 23 Jun
tions and Stations {Proof of Theorem 1.3The aim of this and the next se
tion is to establish an equivalent dual version ofTheorem 1.3. Fix an (x; y)-
oordinate system in the plane. We apply a standardduality transform that maps a point p = (p1; p2) to the line p� with equation y +p1x+p2 = 0. Vi
e versa, a non-verti
al line l with equation y+ l1x+ l2 = 0 is mappedto the point l� = (l1; l2). Consequently, any two parallel lines are mapped into pointshaving the same x-
oordinate. It is often 
onvenient to imagine that the dual pi
turelies in another, so-
alled dual, plane, di�erent from the original one, whi
h is referredto as the primal plane.The above mapping is in
iden
e and order preserving, in the sense that p liesabove, on, or below ` if and only `� lies above, on, or below p�, respe
tively. Thepoints of a segment e = ab in the primal plane are mapped to the set of all lines inthe 
losed double wedge e�, whi
h is bounded by a� and b� and does not 
ontain theverti
al dire
tion. All of these lines pass through the point q = a�\b�, whi
h is 
alledthe apex of the double wedge e�. All double wedges used in this paper are assumedto be 
losed, and they never 
ontain the verti
al dire
tion.De�nition 3.1. We 
all two double wedges avoiding if their api
es are distin
t andthe apex of neither of them is 
ontained in the other (see Figure 4).6



Figure 4: Two possible kinds of avoiding double wedges.It is easy to see that, a

ording to this de�nition, two non-
ollinear segments in theprimal plane are avoiding if and only if they are mapped to avoiding double wedges.Swit
hing to the dual plane, Theorem 1.3 
an now be reformulated as follows.Theorem 3.2. Let L be a set of n pairwise non-parallel lines in the plane, not allof whi
h pass through the same point. Then the set of all double wedges bounded bypairs of lines in L has at least 2bn=2
 pairwise non-avoiding elements with di�erentapi
es.Note that the de�nition of double wedges depends on the 
hoi
e of the 
oordinatesystem, so a priori Theorem 3.2 gives a separate statement in ea
h 
oordinate frame.However, ea
h of these statements is equivalent to Theorem 1.3, and that result doesnot depend on 
oordinates. Therefore, we are free to use whatever 
oordinate systemwe like. In the �nal part of the analysis (given in Se
tion 4), we will exploit thisproperty. But until then, no restri
tion on the 
oordinate system is imposed.Suppose that a set of 2bn=2
 double wedges meets the 
onditions in Theorem 3.2.Clearly, we 
an repla
e ea
h element of this set, bounded by a pair of lines `1; `2 2 L,by the maximal double wedge with the same apex, i.e., the double wedge bounded bythose lines through `1 \ `2 whi
h have the smallest and largest slopes. If every pair ofdouble wedges in the original set was non-avoiding, then this property remains validafter the repla
ement.It is suÆ
ient to prove Theorem 3.2 for the 
ase when n is even, be
ause for oddn the statement trivially follows.The proof is 
onstru
tive. Let A(L) denote the arrangement of L, 
onsisting ofall verti
es, edges, and fa
es of the planar map indu
ed by L. We will 
onstru
t a setof n verti
es of A(L) with distin
t x-
oordinates, and show that the maximal doublewedges whose api
es belong to this set are pairwise non-avoiding.We start by de�ning a sequen
e J of verti
es v1; v2; : : :, whi
h will be referred toas jun
tions. Let L� (resp., L+) denote the subset of L 
onsisting of the n=2 lineswith the smallest (resp., largest) slopes. If we wish to simplify the pi
ture, we 
anapply an aÆne transformation that keeps the verti
al dire
tion �xed and 
arries theelements of L� and L+ to lines of negative and positive slopes, respe
tively (when
e7



L+
L� v2v1

Figure 5: Choosing the �rst jun
tion v1 in J . The dashed lines, two from L� and twofrom L+, are removed. The next jun
tion v2 is also shown.the 
hoi
e of notation). However, we will never use this property expli
itly (althoughthe �gures will re
e
t this 
onvention).The 
onstru
tion pro
eeds as follows.Step 1: Set i := 1 and L�1 := L�, L+1 := L+.Step 2: If L�i = L+i = ;, the 
onstru
tion of J terminates. Otherwise, as we willsee, neither set is empty. Let vi be the leftmost interse
tion point between a line inL�i and a line in L+i . Let d�i (and d+i ) denote the number of elements of L�i (andL+i , respe
tively) in
ident to vi, and put di = minfd�i ; d+i g. De�ne L�i+1 (and L+i+1) asthe set of lines obtained from L�i (resp., L+i ) by deleting from it the di elements thatare in
ident to vi and have the smallest (resp., largest) slopes among those in
identlines. (That is, if d�i = d+i , then all lines in
ident to vi are deleted; otherwise, if, say,d�i > d+i , we are left with d�i �d+i lines through vi that belong to L�i and separate thedeleted elements of L�i from the deleted elements of L+i . See Figure 5.) Set i := i+1,and repeat Step 2.Let J = hv1; v2; : : : ; vki denote the resulting sequen
e.It is easy to verify the following properties of this 
onstru
tion.Claim 3.3. (i) jL�i j = jL+i j, for ea
h i = 1; : : : ; k.(ii) For every 1 � i < j � k, the jun
tion vi lies in the left unbounded fa
e fj ofA(L�j [ L+j ) whi
h separates L�j and L+j at x = �1 (whose rightmost vertex is vj).vi lies in the interior of fj if d�i = d+i ; otherwise it may lie on the boundary of fj.(iii) Pki=1 di = n=2: 2Next, between any two 
onse
utive jun
tions vi and vi+1, for 1 � i < k, we spe
ifydi + di+1 � 1 further verti
es of A(L), 
alled stations.8



L�i `fi+1 vi+1viL+i
Figure 6: Colle
ting stations (shown highlighted) between vi and vi+1. The dashedlines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.The �gure depi
ts the sub
ase where a line ` that has been removed at vi+1 also passesthrough vi. In this 
ase the lines of L�i deleted at vi and the lines of L+i+1 deleted atvi+1 do not generate enough stations.Fix an index 1 � i < k, and 
onsider the verti
al slab between vi and vi+1. ByClaim 3.3 (ii), vi lies inside or on the boundary of the fa
e fi+1 of A(L�i+1 [ L+i+1),whose rightmost vertex is vi+1. See Figure 6. Hen
e, the segment e = vivi+1 is
ontained in the 
losure of fi+1. Now at least one of the following two 
onditions issatis�ed: (a) all the di lines removed from L+i and all the di+1 lines removed from L�i+1pass above e, or (b) all the di lines removed from L�i and all the di+1 lines removedfrom L+i+1 pass below e. (We 
aution the reader that this statement is not totallyobvious when e belongs to the boundary of fi+1.)Assume, by symmetry, that (a) holds. Denote the lines removed from L+i by`+1 ; : : : ; `+di, listed a

ording to in
reasing slopes, and those removed from L�i+1 by`�1 ; : : : ; `�di+1, listed a

ording to de
reasing slopes. De�ne the set of stations Si in theverti
al slab between vi and vi+1 as the 
olle
tion of all interse
tion points of `+di withthe lines `�1 ; : : : ; `�di+1 , and all interse
tion points of `�di+1 with the lines `+1 ; : : : ; `+di .Clearly, we have jSij = di + di+1 � 1 su
h points; see Figure 6.Finally, we 
onsider the portions of the plane to the left of v1 and to the right ofvk and 
olle
t there a set Sk of dk + d1 � 1 additional stations. A
tually, exploitingthe fa
t that we 
an (almost) freely sele
t the 
oordinate system used for the dualitytransform, we will be able to sele
t dk + d1 � 1 suitable stations, so that all of them,or all but one, lie to the left of v1. The proper 
hoi
e of the 
oordinate system as wellas the details of the 
onstru
tion of Sk are des
ribed in the next se
tion.Let Q = J [�[ki=1Si�. In view of Claim 3.3 (iii), the total number jQj of jun
tions

9



and stations equalsjQj = jJ j+ kXi=1 jSij= k + k�1Xi=1 (di + di+1 � 1) + (dk + d1 � 1)= 2 kXi=1 di = n:To 
omplete the proof of Theorem 3.2 (and hen
e of Theorem 1.3), we need toverifyClaim 3.4. Asso
iate with ea
h element q 2 Q the maximal double wedge W (q) (not
ontaining the verti
al line through q), whi
h is bounded by a pair of lines passingthrough q. Then the resulting set of n double wedges has no two avoiding elements.We 
lose this se
tion by verifying the last 
laim for the set of wedges fW (q)jq 2Q n Skg. The extension to the general 
ase is postponed to the last se
tion, where Skis de�ned.Let u; v 2 Q n Sk with u lying to the left of v. We distinguish three 
ases:Case A: Both u and v are jun
tions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 L�j andby a line `0 2 L+j . By Claim 3.3(ii), vi lies between these two lines, and thus belongsto W (v).Case B: u is a jun
tion and v is a station not in Sk.Put u = vi and let Sj be the set of stations that 
ontains v, where i � j. ThenW (v) is bounded by two lines `; `0, where either ` 2 L�j and `0 2 L+j+1, or ` 2 L�j+1and `0 2 L+j . By 
onstru
tion, we have in both 
ases ` 2 L�j and `0 2 L+j , and theanalysis is 
ompleted as in Case A.Case C: u is a station not in Sk and v is a jun
tion or a station not in Sk.Let Si be the set of stations 
ontaining u. The arguments in Case A and Case Bimply that vi 2 W (v). If v is also a station in Si or v = vi+1 then it is easy to verify,by 
onstru
tion, that W (u) and W (v) are non-avoiding (see Figure 6). Suppose thenthat v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge of W (v),and u is in
ident to a line � of positive slope that passes through vi and to a line �0 ofnegative slope that passes through vi+1. If u =2 W (v) then a boundary line of W (v)must separate u from vi and vi+1, in whi
h 
ase v 2 W (u); see Figure 7.
10



�0 �
vvi+1vi u

Figure 7: Illustrating Case C of the proof that W (u) and W (v) 
annot be avoiding.
r m0

m1y
R+ R�

Figure 8: The primal 
onstru
tion of R� and R+.4 Wrapping Up { The End of the ProofIn this se
tion, we de�ne the missing set of stations Sk, and extend the proof ofClaim 3.4 to handle also elements of Sk. We need an elementary geometri
 fa
t thatis easier to formulate in the primal setting.Lemma 4.1. Let R be a set of n non-
ollinear points in the plane, let n be even, andlet r be any vertex of the 
onvex hull of R. Then there exists a partition of R into twon=2-element subsets, R� and R+, whose 
onvex hulls are disjoint and whi
h have a
ommon inner tangent m0 passing through r.Proof: Rotate a dire
ted line ` 
ounter
lo
kwise about r, starting with all the pointsof R n frg lying to the left of `, until the 
losed halfplane to the right of ` 
ontainsfor the �rst time more than n=2 points. De�ne R� to be the set R0 of points in theopen halfplane to the right of `, plus the �rst n=2� jR0j points of ` \ R along `. m0
oin
ides with the �nal position of `. See Figure 8. 211



Let m1 denote the other inner tangent of the 
onvex hulls of R� and R+. Now
hoose an orthogonal (x; y)-
oordinate system whose y-axis is a line stri
tly separatingR� and R+. Suppose without loss of generality that(a) R+ and R� are to the left and to the right of the y-axis, respe
tively,(b) r 2 R�, and(
) m0 is oriented from r away from the other 
onta
t point(s), and the positivey-dire
tion lies 
ounter
lo
kwise to it. See Figure 8.In the dual pi
ture, R� and R+ be
ome n=2-element sets of lines, L� and L+,having negative and positive slopes, respe
tively. Applying the 
onstru
tion des
ribedin the previous se
tion to L := L� [ L+, we obtain a sequen
e of jun
tions J =hv1; v2; : : : ; vki and sets of stations S1; : : : ; Sk�1.Sin
e m1 is the line with the largest slope 
onne
ting a point of R+ and a pointof R�, our duality implies that m�1, the dual of m1, is the leftmost interse
tion pointbetween a line of L+ and a line of L�. Hen
e, we have v1 = m�1. As our 
onstru
tionsweeps the dual plane from left to right, we 
olle
t jun
tions and stations whose duallines rotate 
lo
kwise from m1 onwards.Claim 4.2. At least one of the following two 
onditions will be satis�ed:(i) The last jun
tion, vk, is identi
al to m�0, the dual of m0.(ii) r�, the dual of r 2 R�, passes through vk and is the unique element of L�deleted during the pro
edure at vk (so that dk = 1).Proof: Suppose that during the pro
edure r� is deleted at a jun
tion vj, for somej � k. Clearly, v�j passes through r and at least one point t 2 R+.If in the primal plane v�j passes through another point r0 6= r of R�, then v�j = m0(otherwise it has to lie 
lo
kwise to m0 and then it 
annot meet any point of R+). Inthis 
ase, in the dual plane there 
annot be any interse
tion point between a line ofL� and a line of L+ to the right of vj, so that j = k. That is, we have v�k = m0, and(i) holds.If in the primal plane v�j does not pass through any element r0 2 R� other thanr, then we have dj = 1. If j = k, then 
ondition (ii) is satis�ed. Let us assume, by
ontradi
tion, that j < k and v�k 6= m0. Take any two lines `� 2 L� and `+ 2 L+in the dual plane that are deleted during the pro
edure at the last jun
tion vk. Byassumption and 
onstru
tion, we have `�� 6= r, and the slope of the segment `�+`�� � v�k
onne
ting their duals in the primal plane (i.e., the slope of v�k) is smaller than thatof the segment tr. We 
laim that the two segments `�+`�� � v�k and tr � v�j areavoiding. Indeed, `�+`�� must meet m0 to the left of r, or else r would not be anextreme point of R (see Figure 9). For a similar reason, `�� must lie above v�j . Thesefa
ts, together with the slope relationship between v�j and v�k, imply that the twosegments are avoiding. This, in turn, implies that the wedges W (vk) and W (vj) areavoiding, 
ontradi
ting Claim 3.4 (Case A). 212



R+ R�m0
r v�kv�j

t `��`�+
Figure 9: The segments tr and `�+`�� must be avoiding.The above argument is valid for any 
oordinate system whose y-axis stri
tly sep-arates the sets R� and R+. We spe
ify a 
oordinate system with this property asfollows.Choose the y-axis to be very 
lose to m0, so that, in the dual plane the slope ofevery line of L passing through m�0 has smaller absolute value than the slope of anyother line of L; that is, the x-
oordinates of the points ofm0\R have smaller absolutevalues than those of any other point of R. See Figures 10(a) and 11(a).Now we are in a position to de�ne the set of stations Sk. Pass to the dual plane.The �rst jun
tion, v1, lies inside or on the boundary of the fa
e fk of A(L�k [ L+k ),whose rightmost vertex is vk, so that the segment e = v1vk is 
ontained in the 
losureof fk.Suppose �rst that vk = m�0. We 
an assume by symmetry that in the dual planeall the d1 lines removed from L�1 = L� during the pro
edure pass below e, and all thedk lines of L�k pass above e (as in the pre
eding se
tion, this statement is not totallyobvious when e lies on the boundary of f). Let `�1 ; : : : ; `�d1 and ��1 ; : : : ; ��dk denote theremoved lines of L�1 and of L�k , respe
tively, listed in the de
reasing order of theirslopes. By the spe
ial 
hoi
e of our 
oordinate system, ea
h line `�i interse
ts everyline ��j to the left of v1. Indeed, the slope of the primal segment (��j )�(`�i )� is largerthan that of m1, be
ause (��j )� 2 m0 lies below m1 and to the left of (`�i )� 2 m1;see Figure 10(a). (We note that the assumption that all lines in L�1 pass stri
tlybelow vk implies that 
 := m0 \m1 is not dual to any line in L�1 , implying that ea
h(��j )� does indeed lie to the left of every (`�i )�.) De�ne the last set of stations, Sk,as the 
olle
tion of all interse
tion points of `�d1 with the lines ��1 ; : : : ; ��dk , and allinterse
tion points of ��dk with the lines `�1 ; : : : ; `�d1 . See Figure 10(b). Clearly, wehave jSkj = dk + d1 � 1 su
h points, all lying to the left of v1.Suppose next that vk 6= m�0. In this 
ase, a

ording to Claim 4.2, vk lies on r�and dk = 1. Refer to Figure 11. Again, let `�1 ; : : : ; `�d1 denote the lines removed fromL�1 = L� at v1, listed in the de
reasing order of their slopes. In the dual plane, theline r� passes above v1 and, by the 
hoi
e of the 
oordinate system, it interse
ts every13
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(a)
R+ m1 = v�1(`�d1 )�

(b)
v1 vk`�1`�2 ��1��2 = r�

t
m0 = v�kr R�(��d1�1)�

Figure 10: The 
ase vk = m�0 of the 
onstru
tion of Sk. (a) The primal stru
ture. (b)The stations in Sk (highlighted to the left of v1).`�i to the left of v1, with the possible ex
eption of `�1 . The interse
tion r� \ `�1 
an lieto the right of v1 (and of vk) only if the point 
 := m0\m1 belongs to R� and is dualto a line removed at v1, in whi
h 
ase that line must be `�1 = 
�. Note that in this
ase r� \ `�1 = r� \ 
� is identi
al to the point m�0 dual to m0, and the 
hoi
e of the
oordinate system implies that this is the rightmost vertex of A(L) on r�. We de�neSk to be the set of interse
tion points between the lines `�1 ; : : : ; `�d1 and r�.1 Thus,either all points of Sk, or all but one (namely, m�0) lie to the left of v1. Clearly, wehave jSkj = d1 = dk + d1 � 1, as required.We have to 
omplete the proof of Claim 3.4. It remains to show the following:Claim 4.3. For any u 2 Q and any v 2 Sk, the maximal wedges W (u) and W (v)asso
iated with them are non-avoiding.Proof: If both u and v belong to Sk, then the 
laim is obviously true. From now onsuppose that u 62 Sk. Then we have u 2 fvig [ Si [ fvi+1g, for some 1 � i < k.We start with the 
ase vk = m�0. Let v 2 Sk be the interse
tion point of two lines,` and �, passing through v1 and vk, respe
tively, whi
h, without loss of generality,we assume to belong to L�, If u is 
ontained in the double wedge bounded by ` and�, then u 2 W (v), so that W (u) and W (v) are non-avoiding. Otherwise, sin
e v liesto the left of v1, u lies either above � or below `. If u is above �, then it is not ajun
tion, so it must be the 
rossing point of a line `+ 2 L+ and a line `� 2 L� whi
hare removed during the pro
edure at jun
tion vi and at jun
tion vi+1, respe
tively.See Figure 12(a). Both vi and vi+1 lie on or below �, so that the left portion of thedouble wedge bounded by `� and `+ 
ontains v. Thus, we have v 2 W (u). If, on the1Note the assymmetry between this 
ase, where the stations are 
onstru
ted using lines in L�only, and the previous 
ase, where the stations 
an be 
onstru
ted using either lines of L� or linesof L+, depending on the relative position of the lines in
ident to v1 and vk.14
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m0 v�k(a)
R�R+

(b)
r�v1 vk

m1 = v�1(`�d1)� `�d1
� = `�1 m�0
Figure 11: The 
ase vk 6= m�0 of the 
onstru
tion of Sk. (a) The 
hoi
e of the
oordinate frame. (b) The dual pi
ture.

vi+1vk`+`� �`
v u

(a) v1 vk �`
v

(b) u
`+`�viv1

Figure 12: The proof that W (u) and W (v) are non-avoiding when v is a station tothe left of v1.other hand, u is below `, as in Figure 12(b), then it is either a jun
tion or a station,and it is the 
rossing point of a line `� 2 L� and a line `+ 2 L+, ea
h of whi
h isremoved at jun
tion vi or at jun
tion vi+1. Now `� must pass above (or through) v1and hen
e above v, while `+ must pass below v. Again we 
an 
on
lude that the leftportion of the double wedge bounded by `� and `+, and thus W (u), 
ontains v.If vk 6= m�0, the above argument 
an be repeated verbatim, unless m�0 2 Sk andv = m�0; so assume this to be the 
ase. Now it is simplest to establish the 
laim inthe primal plane, by noting that the segment dual to W (v) lies on the line m0, andthat, by 
onstru
tion (sin
e u =2 Sk), the segment dual to W (u) must 
onne
t a pointof R� to a point of R+, and thus must interse
t m0, showing that these two segmentsare non-avoiding. 2By verifying the last 
laim, we have 
ompleted the proof of Claim 3.4 and hen
eof Theorem 3.2. This was our last debt.
15
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