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Abstract. It is proved that every k-fold packing of the plane by simply
connected compact sets with the property that any n of them determines
o(n2) holes can be decomposed into a bounded number of packings.

1. Introduction

The notions of multiple packings and coverings were introduced in a geo-
metric setting independently by Harold Davenport and László Fejes Tóth
(TODO: Give references.). In the present note, we will be concerned only
with packings. A k-fold packing is a family X of sets with the property
that the intersection of any k + 1 members of X is empty. A 1-fold pack-
ing is simply called a packing. The problem of determining the maximum
density of a k-fold packing with congruent copies of a fixed convex body
has been extensively studied [9]. For small values of k, it was found that
densest k-fold lattice packings in the plane split into k packings [3, 5, 12].
The situation gets more complicated for larger values of k, but in general
a k-fold packing of convex bodies that are fat (TODO: Explain in few words
what “fat” means.) can be decomposed into O(k) packings, as shown by Pach
[19]. A simple but interesting corollary of this is that any k-fold packing of
homothets (uniformly scaled and translated copies) of a convex body in Rd

splits into at most cdk packings, where the constant cd depends only on the
dimension.

The problem of decomposing a family of sets into packings can be rephrased
as a coloring problem for intersection graphs. The intersection graph of a
family X of sets is a graph on the vertex set X in which two vertices are joined
by an edge if and only if the corresponding members of X have nonempty
intersection. A proper coloring of a graph is an assignment of colors to the
vertices such that no two adjacent vertices receive the same color. Hence,
decomposing a family X into a small number of packings is equivalent to
finding a proper coloring of the intersection graph of X with a small number
of colors. The chromatic number of a graph is the minimum number of col-
ors used in a proper coloring. The clique number of a graph is the maximum
size of a set of pairwise adjacent vertices.
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If the intersection graph of X has clique number at most k, then X is
a k-fold packing, but not necessarily the other way around. However, for
axis-aligned boxes in Euclidean space, the two notions coincide: a family is
a k-fold packing if and only if the clique number of its intersection graph
is at most k. In R2, Asplund and Grünbaum [1] proved that the intersec-
tion graphs of axis-aligned rectangles with clique number k have chromatic
number O(k2). This is equivalent to saying that every k-fold packing of
axis-aligned rectangles in the plane can be decomposed into O(k2) packings.
On the other hand, Burling [4] constructed 2-fold packings of axis-aligned
boxes in R3 with arbitrarily large chromatic number. Pawlik et al. [20, 21]
provided similar constructions for straight-line segments and many other
kinds of geometric sets in the plane with the property that their intersec-
tion graphs are triangle-free, but they can have arbitrarily large chromatic
number. For a survey on coloring geometric intersection graphs, see [15].

The aim of the present note it to show that there exists a function p(k)
such that every k-fold packing of the plane by geometric objects taken from
a family of small complexity (in the sense that we describe later on) can be
split into p(k) packings.

There are some standard measures of complexity for families of geomet-
ric objects, used in bounding the computational complexity of various al-
gorithms in motion planning, computer vision, and geometric transversal
theory. A simple arc with respect to a finite family X of sets is a Jordan
arc whose interior is entirely contained in or disjoint from every set in X .
The union boundary complexity of X is the minimum number of simple arcs
whose union is the boundary of

⋃
X . A related measure of complexity is

the number of holes in
⋃
X , that is, bounded arc-connected components of

R2 \
⋃
X . For families X of simply connected compact sets, the number

of holes is bounded from above by half of the union boundary complexity.
However, for some families of geometric objects, the number of holes in the
union can be much smaller than the union boundary complexity.

We prove that for any fixed k, every k-fold packing of simply connected
compact sets in the plane, the union of any n of which determines a sub-
quadratic number of holes, can be decomposed into a bounded number of
packings.

Theorem 1. Let k ∈ N, let f : N→ N be a function such that f(n) = o(n2),
and let F be an infinite family of simply connected compact sets in the plane
with the property that every finite subfamily X of F determines at most
f(|X |) holes. Then there exists a constant p = pf (k) such that every k-fold
packing by members of F can be decomposed into p packings.

It is enough to prove Theorem 1 for k-fold packings that are finite subfam-
ilies of F , as then the general statement follows by a standard compactness
argument. Therefore, for the remainder of the paper, every k-fold packing
that we consider is implicitly assumed to be finite. With this assumption,
we will prove the following stronger result.

Theorem 2. Let k, f , and F be the same as in the previous theorem.
Then there exists a constant p = pf (k) depending only on f such that the



DECOMPOSITION OF MULTIPLE PACKINGS 3

intersection graph of any k-fold packing by members of F has a vertex of
degree smaller than pf (k).

One of the earliest results on the union boundary complexity and, hence,
for the number of holes was established by Kedem et al. [14]. They proved
that the union boundary complexity of every family of n pseudodiscs, that is,
compact sets in the plane bounded by simple closed curves any two of which
share at most 2 points, is O(n). Therefore, our theorems imply that any
k-fold packing of pseudodiscs splits into a bounded number p(k) of packings.

Matoušek et al. [17] showed that families of n fat triangles in the plane
determine O(n) holes. Efrat and Sharir [8] proved a near-linear bound for
families of fat convex sets (TODO: They proved that the union boundary
complexity is near-linear for families of fat convex sets the boundaries of any
two of which intersect a bounded number of times. The latter condition should
not be necessary to obtain a bounded number of holes, but is this really the
case?). Therefore, our theorems also apply to this case and generalize the
planar version of the statement on fat convex sets mentioned in the first
paragraph. For further results on the complexity of various kinds of fat
objects, consult [2, 6, 7, 16].

Our proof of Theorem 2 is based on a result due to Fox and Pach [10],
which asserts that the intersection graphs of finite families of arc-connected
sets in the plane with no subgraph isomorphic to Kt,t have bounded mini-
mum degree. The bound on pf (k) it gives for fixed f is double exponential
in k (TODO: Verify this statement.). Micek and Pinchasi [18] proved inde-
pendently, using the probabilistic method, that the intersection graphs of
k-fold packings by geometric objects with linear union boundary complexity
have minimum degree O(k).

First, in Section 2, we establish our result in a simple special case—
for k-fold packings of pseudodiscs. For the proof of Theorem 2 in its full
generality, we need a technical lemma on the number of holes determined
by 2-fold packings, which is formulated and proved in Section 3. The proof
in the general case is presented in Section 4.

2. The case of pseudodiscs

The members of a family of compact sets in the plane are called pseu-
dodiscs if they are bounded by simple closed curves, any two of which share
at most two points. We first give a short proof of the following.

Proposition 3. For every positive integer k, there is a constant p = p(k)
such that every k-fold packing of pseudodiscs has a member that intersects
fewer than p other members.

For the proof, we use two well-known results. Let Kt,t denote a complete
bipartite graph with t vertices in each of its parts. The main idea of the proof
of Proposition 3 is to show that the intersection graph of any k-fold packing
of pseudodiscs has no subgraph isomorphic to Kt,t for t large enough, and
then apply the following result.
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Theorem 4 (Fox, Pach [10]). For any t ∈ N, there is a constant c = c(t)
with the property that the intersection graph of any finite family of arc-
connected sets in the plane with no subgraph isomorphic to Kt,t has a vertex
of degree smaller than c.

We also make use of the following result, often referred to as Topological
Helly Theorem.

Theorem 5 (Helly [11]). For any family of pseudodiscs in which every triple
has a point in common, all members have a point in common.

Proof of Proposition 3. By Theorem 4, it is sufficient to prove that the in-
tersection graph of the pseudodiscs contains no Kt,t as a subgraph, for a
sufficiently large t, to be specified later. Suppose it does, and consider the
t pseudodiscs that belong to the first vertex class. Color a triple of them
red if they have a point in common, and blue otherwise. It follows from
Theorem 5 that there are no k + 1 pseudodiscs, all of whose triples are red.
Otherwise, they would share a point, contradicting our assumption that the
pseudodiscs form a k-fold packing. Thus, if t is large enough, by Ramsey’s
theorem the first vertex class of Kt,t has 9 pseudodiscs that form a 2-fold
packing. Their intersection graph is planar and hence 4-colorable, so at least
3 of these 9 pseudodiscs must be pairwise disjoint. In the same way, we can
choose 3 pairwise disjoint pseudodiscs from the second vertex class of Kt,t.
The 6 pseudodiscs chosen induce a K3,3 in the intersection graph. Moreover,
their arrangement gives rise to a noncrossing drawing of K3,3 in the plane,
which is the desired contradiction. �

3. Lower bound on the number of holes

For any set X, let Γ(X) denote the family of arc-connected components
of X, and let h(X) stand for the number of holes in X, that is, let h(X) =
|Γ(R2 \X)| − 1.

Lemma 6. Let X1, . . . , XN be not necessarily distinct compact sets in the
plane such that the intersection of any three of them is empty. Let S be the
set of points that belong to exactly two of X1, . . . , XN . It follows that

h
( N⋃
i=1

Xi

)
≥ |Γ(S)| −

N∑
i=1

|Γ(Xi)|+ 1.

Proof. Consider a bipartite graph G with vertex set

V (G) = Γ(S) ∪
N⋃
i=1

Γ(Xi \ S)

and edge set

E(G) =
{

(A,B) ∈ Γ(S)×
( N⋃
i=1

Γ(Xi \ S)
)

: A ∪B is arc-connected
}
.

Let Gi denote the subgraph of G induced by the vertex set Γ(Xi ∩ S) ∪
Γ(Xi \ S). The number of connected components of Gi is exactly |Γ(Xi)|,
and thus

|E(Gi)| ≥ |V (Gi)| − |Γ(Xi)|.



DECOMPOSITION OF MULTIPLE PACKINGS 5

Since each edge of G belongs to exactly one of G1, . . . , GN , and each arc-
connected component of S belongs to exactly two of X1, . . . , XN , we have

|E(G)| ≥
N∑
i=1

(
|V (Gi)| − |Γ(Xi)|

)
= |V (G)|+ |Γ(S)| −

N∑
i=1

|Γ(Xi)|.

The graph G is planar, and the number of holes in X1 ∪ . . .∪XN is at least
the number of inner faces in a planar drawing of G. Therefore, by Euler’s
formula, we have

|V (G)| − |E(G)|+ h
( N⋃
i=1

Xi

)
≥ 1.

Putting all together, we obtain

|Γ(S)| ≤
N∑
i=1

|Γ(Xi)|+ |E(G)| − |V (G)| ≤
N∑
i=1

|Γ(Xi)|+ h
( N⋃
i=1

Xi

)
− 1. �

4. Proof of Theorem 2

Like in the proof of Proposition 3, we will show that the intersection graph
of any k-fold packing by members of F has no subgraph isomorphic to Kt,t

for t large enough, and then apply Theorem 4.
We will use a generalization of Turán’s theorem to k-uniform hypergraphs.

A k-uniform hypergraph H consists of a set of vertices, denoted by V (H),
and a set of edges, denoted by E(H), that are k-element subsets of V (H).
An independent set in such a hypergraph H is a subset of V (H) that does
not entirely contain any edge of H.

Theorem 7 (Katona, Nemetz, Simonovits [13]). For any k,m ∈ N, every
k-uniform hypergraph with n ≥ m vertices and fewer than

(
n
k

)
/
(
m
k

)
edges

contains an independent set of size m.

A stronger bound with an easy probabilistic proof has been established
by Spencer [22].

Lemma 8. Let k ≥ 2 and r be positive integers, α be a positive real, and
f : N → N be a function such that f(n) = o(n2). Then there is an integer
M = Mf (k, r, α) that satisfies the following condition. For any collection
of not necessarily distinct compact sets X1, . . . , Xn in the plane that form a
k-fold packing such that

(1) |Γ(Xi)| ≤ r for 1 ≤ i ≤ n,
(2) each member of Γ(Xi) is simply connected for 1 ≤ i ≤ n,
(3) the number of k-tuples of sets in X1, . . . , Xn with nonempty inter-

section is at least α
(
n
k

)
,

(4) h(Xi1 ∪ . . . ∪Xit) ≤ f(t) for any choice of Xi1 , . . . , Xit,
we have n < M .

Proof. We proceed by induction on k. Suppose k = 2. By Lemma 6, we
have h(X1 ∪ . . .∪Xn) ≥ α

(
n
2

)
− rn+ 1 > f(n) if n is large enough. Hence it

is enough to define Mf (2, r, α) to be greater than every n for which α
(
n
2

)
−

rn+ 1 ≤ f(n).
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Now, suppose k ≥ 3. Since the number of k-tuples of sets in X1, . . . , Xn

with nonempty intersection is at least α
(
n
k

)
, one of X1, . . . , Xn belongs to at

least α
(
n
k

)
· kn = α

(
n−1
k−1

)
of these k-tuples. Assume without loss of generality

that it is Xn, and let Yi = Xi ∩ Xn for 1 ≤ i ≤ n − 1. It follows that the
intersection of any k sets in Y1, . . . , Yn−1 is empty, and the number of (k−1)-
tuples of sets in Y1, . . . , Yn−1 with nonempty intersection is at least α

(
n−1
k−1

)
.

By Lemma 6, we have |Γ(Yi)| ≤ 2r + f(2) − 1 for 1 ≤ i ≤ n − 1. For any
choice of Yi1 , . . . , Yit , since each member of Γ(Xn) is simply connected, each
hole of Yi1 ∪ . . .∪ Yit is a hole of Xi1 ∪ . . .∪Xit and thus h(Yi1 ∪ . . .∪ Yit) ≤
f(t). Therefore, we can apply the induction hypothesis to Y1, . . . , Yn−1 to
conclude that n− 1 < Mf (k− 1, 2r+ f(2)− 1, α). Hence it is enough to set
Mf (k, r, α) = Mf (k − 1, 2r + f(2)− 1, α) + 1. �

Lemma 9. Let k, ` ∈ N and f : N → N be a function such that f(n) =
o(n2). Then there is an integer N = Nf (k, `) that satisfies the following
condition. For any family {X1, . . . , Xn} of simply connected compact sets
in the plane that form a k-fold packing such that

(1) no ` members of {X1, . . . , Xn} are pairwise disjoint,
(2) h(Xi1 ∪ . . . ∪Xit) ≤ f(t) for any choice of Xi1 , . . . , Xit,

we have n < N .

Proof. We proceed by induction on k. For k = 1 the statement is trivial.
Thus suppose that k ≥ 2 and the statement holds up to k−1. Let H denote
the k-uniform hypergraph with V (H) = {X1, . . . , Xn} and E(H) consisting
of the k-tuples of sets with nonempty intersection. Let m = Nf (k − 1, `)
and α = 1/

(
m
k

)
. Set Nf (k, `) = max{Mf (k, 1, α),m} for Mf as claimed by

Lemma 8. If |E(H)| ≥ α
(
n
k

)
, then we can apply Lemma 8 to conclude that

n ≤ Nf (k, `). Thus, assume |E(H)| < α
(
n
k

)
. Since n ≥ m, it follows from

Theorem 7 that H contains an independent set I of size m. Such I forms
a (k − 1)-fold packing, so we can apply the induction hypothesis to I and
conclude that m < Nf (k − 1, `), which is a contradiction. �

Proof of Theorem 2. Let X be a finite subfamily of F and G be the inter-
section graph of X . We show, for a suitable constant t ∈ N, that G contains
no subgraph isomorphic to Kt,t. Then, by Theorem 4, G contains a vertex
of degree smaller than c(t), so that we can set pf (k) = c(t).

Suppose that G contains an induced subgraph isomorphic to K`,`, and let
Y ⊂ X be the set of vertices of this subgraph. If ` is large enough, then
by Lemma 6 and the fact that Y is a 2-fold packing, we have h(

⋃
Y) ≥

`2−2`+ 1 > f(2`), which is a contradiction. Therefore, we can assume that
G contains no induced subgraph isomorphic to K`,` for an appropriately
chosen ` ∈ N.

Let t = Nf (k, `) for Nf as claimed by Lemma 9. Suppose for a contra-
diction that G contains a subgraph isomorphic to Kt,t. Let A and B denote
its two vertex classes. At least one of A,B, say A, contains no independent
set (packing) of size `, as otherwise the two independent sets, one in A and
one in B, would induce a subgraph isomorphic to K`,` in G. Therefore, the
assumptions of Lemma 9 are satisfied for A, and we conclude that |A| < t.
This contradiction completes the proof of Theorem 2. �



DECOMPOSITION OF MULTIPLE PACKINGS 7

References

[1] Edgar Asplund and Branko Grünbaum, On a colouring problem, Math. Scand. 8:181–
188, 1960.

[2] Mark de Berg, Improved bounds on the union complexity of fat objects, Discrete
Comput. Geom. 40(1):127–140, 2008.

[3] William J. Blundon, Multiple covering of the plane by circles,Mathematika 4(1):7–16,
1957.

[4] James P. Burling, On coloring problems of families of prototypes, Ph.D. thesis, Uni-
versity of Colorado, Boulder, 1965.

[5] Vishwa C. Dumir and Rajinder J. Hans-Gill, Lattice double packings in the plane,
Indian J. Pure Appl. Math. 3(3):481–487, 1972.

[6] Alon Efrat, The complexity of the union of (α, β)-covered objects, SIAM J. Comput.
34(4):775–787, 2005.

[7] Alon Efrat, Günter Rote, and Micha Sharir, On the union of fat wedges and separating
a collection of segments by a line, Comput. Geom. 3:277–288, 1993.

[8] Alon Efrat and Micha Sharir, On the complexity of the union of fat convex objects
in the plane, Discrete Comput. Geom. 23(2):171–189, 2000.
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féle gráftételre, és megjegyzések bizonyos általánośıtásaira (Another proof of Turán’s
graph theorem and some generalizations), Mat. Lapok 15(1–3):228–238, 1964.

[14] Klara Kedem, Ron Livne, János Pach, and Micha Sharir, On the union of Jordan
regions and collision-free translational motion amidst polygonal obstacles, Discrete
Comput. Geom. 1(1):59–71, 1986.

[15] Alexandr Kostochka, Coloring intersection graphs of geometric figures with a given
clique number, in: János Pach (ed.), Towards a Theory of Geometric Graphs, Con-
temp. Math. 342, Amer. Math. Soc., Providence, RI, 127–138, 2004.

[16] Marc van Kreveld, On fat partitioning, fat covering, and the union size of polygons,
Comput. Geom. 9(4):197–210, 1998.
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