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Abstract. Given a collection of n opaque unit disks in the plane, we
want to find a stacking order for them that maximizes their visible
perimeter, the total length of all pieces of their boundaries visible from
above. We prove that if the centers of the disks form a dense point set,
i.e., the ratio of their maximum to their minimum distance is O(n1/2),
then there is a stacking order for which the visible perimeter is Ω(n2/3).
We also show that this bound cannot be improved in the case of the
n1/2 × n1/2 piece of a sufficiently small square grid. On the other hand,
if the set of centers is dense and the maximum distance between them
is small, then the visible perimeter is O(n3/4) with respect to any stack-
ing order. This latter bound cannot be improved either. These results
partially answer some questions of Cabello, Haverkort, van Kreveld, and
Speckmann.
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1 Introduction

In cartography and data visualization, one often has to place similar copies of a
symbol, typically an opaque disk, on a map or a figure at given locations [De99],
[Gr90]. The size of the symbol is sometimes proportional to the quantitative data
associated with the location. On a cluttered map, it is difficult to identify the
symbols. Therefore, it has been investigated in several studies how to minimize
the amount of overlap [GrC78], [SlM03].

In the present note, we follow the approach of Cabello, Haverkort, van Krev-
eld, and Speckmann [CaH10]. We assume that the symbols used are opaque cir-
cular disks of the same size. Given a collection D of n distinct unit disks in the
(x, y)-plane, a stacking order is a one-to-one assignment f : D → {1, 2, . . . , n}.
We consider the integer f(D) to be the z-coordinate of the disk D ∈ D. The map
corresponding to this stacking order is the 2-dimensional view of this arrange-
ment from the point at negative infinity of the z-axis (for notational convenience,
we look at the arrangement from below rather than from above.) In particular,
for the lowest disk D, we have f(D) = 1, and this disk, including its full perime-
ter, is visible from below. The total length of the boundary pieces of the disks
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Fig. 1. Left: A collection of unit disks in the plane. Right: A stacking order for them.

visible from below is the visible perimeter of D with respect to the stacking or-
der f , denoted by visible(D, f). We are interested in finding a stacking order for
which the visible perimeter of D is as large as possible. See Figure 1.

There are other situations in which this setting is relevant. Sometimes the
vertices of a graph are not represented as points but as circles of a given radius.
It may happen that some vertices overlap in the visualization (especially if they
have further constraints on their geometric position), and then it becomes impor-
tant to choose a convenient stacking order that maximizes the visible perimeter.
As a further example, one often encounters cluttered visualization computed by,
say, force-directed algorithms where groups of vertices are displayed as overlap-
ping circles.

Given an integer n, we define

v(n) = inf
|D|=n

max
f

visible(D, f),

where the maximum is taken over all stacking orders f . We would like to describe
the asymptotic behavior of v(n), as n tends to infinity.

Cabello et al. have already noted that v(n) = Ω(n1/2); in other words, every
set D of n disks of unit radii admits a stacking order with respect to which
its visible perimeter is Ω(n1/2). Indeed, by a well-known result or Erdős and
Szekeres [ErSz35], we can select a sequence of dn1/2e disks Di ∈ D (1 ≤ i ≤
dn1/2e) such that their centers form a monotone sequence. More precisely, letting
xi and yi denote the coordinates of the center of Di, we have x1 ≤ x2 ≤ x3 ≤ . . .
and either y1 ≤ y2 ≤ y3 ≤ . . . or y1 ≥ y2 ≥ y3 ≥ . . .. Then, in any stacking order
f such that f(Di) = i for every i, 1 ≤ i ≤ dn1/2e, a full quarter of the perimeter
of each Di (1 ≤ i ≤ dn1/2e) is visible from below. Therefore, the visible perimeter
of D with respect to f satisfies

visible(D, f) ≥ π

2
dn1/2e.

At the problem session of EuroCG’11 (Morschach, Switzerland), Cabello,
Haverkort, van Kreveld, and Speckmann asked whether v(n) = Ω(n); in other
words, does there exist a positive constant c such that every set of n unit disks
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in the plane admits a stacking order, with respect to which its visible perimeter
is at least cn? We answer this question in the negative; cf. Theorems 2 and 5
below.

Given a set of points P in the plane, let D(P ) denote the collection of disks
of radius 1 centered at the elements of P . For any positive real ε, let εP stand
for a similar copy of P , scaled by a factor of ε. For a stacking order f of D(P )
we will study the quantity visible(D(εP ), f). (Note the slight abuse of notation:
We denote the stacking order of D(P ) and the corresponding stacking order of
D(εP ) by the same symbol f . The two orders are also identified in Lemmas 1
and 6 and in Theorems 2, 3, and 5.) It is not hard to verify that, as ε gets
smaller, the function visible(D(εP ), f) decreases. To see this, it is enough to
observe, as was also done by Cabello et al. (unpublished), that as we contract
the set of centers, the part of the boundary of each unit disk visible from below
shrinks. As we will see in Lemma 6, the limit in the following lemma has a simple
alternative geometric interpretation.

Lemma 1 For every point set P in the plane, and for every stacking order f of
the collection of disks D(εP ), we have

visible(D(εP ), f) ≥ lim
ε→0

visible(D(εP ), f).

As in [AlKP89], [Va92], and [Va96], we consider C-dense n-element point
sets P , i.e., point sets in which the ratio of the maximum distance between two
points to the minimum distance satisfies

max(|pq| : p, q ∈ P )

min(|pq| : p, q ∈ P, p 6= q)
≤ Cn1/2.

Theorem 2 For any C-dense n-element point set P in the plane and for any
stacking order f , we have

lim
ε→0

visible(D(εP ), f) ≤ C ′n3/4,

where C ′ is a constant depending only on C.

The order of magnitude of the upper bound in Theorem 2 cannot be im-
proved:

Theorem 3 For every positive integer n, there exists a 2-dense n-element point
set Pn in the plane and a stacking order f such that

lim
ε→0

visible(D(εPn), f) ≥ n3/4/2.

In the general case, where P is an arbitrary n-element point set in the plane,
we have been unable to improve on the easy lower bound

max
f

visible(D(P ), f) = Ω(n1/2),

sketched above. However, under special assumptions on P , we can do better.
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Theorem 4 Every C-dense n-element point set P in the plane admits a stacking
order f with

visible(D(P ), f) ≥ C ′′n2/3,

where C ′′ > 0 depends only on C.

In particular, Theorem 4 provides an Ω(n2/3) lower bound for the visible
perimeter of a collection of n unit disks centered at the points of an n1/2 × n1/2
piece of a square lattice of any side length, under a suitable stacking order.
Assuming the side length is very small, this is better than the line-by-line “lex-
icographic” stacking order for which the visible perimeter is only Θ(n1/2 log n).
It turns out that in this case there is no stacking order for which the order of
the magnitude of the visible perimeter would exceed n2/3.

Theorem 5 Let n be a perfect square and let Gn denote an n1/2 by n1/2 piece
of the square lattice in the plane. For any stacking order f , we have

lim
ε→0

visible(D(εPn), f) = O(n2/3).

Consequently, we have v(n) = O(n2/3).
In this note, we are concerned only with worst case results. It turns out that

in the worst case, the centers of the unit disks are very close to each other, so
all disks have a point in common. This is, of course, not a realistic assumption
in the labeling problem in cartography that has motivated our investigations. In
practical applications, only a bounded number of unit disks share a point. In the
full version of this paper, we show how to apply our results when such a bound
is known.

In the full version of this paper we also make some additional concluding
remarks.

2 Dense Sets with Largest Visible Perimeter
Proofs of Theorems 2 and 3

First, we express the limit of visible perimeters appearing in Theorems 2 and 3
in a simpler form. Given a set of points P in the plane, let convP stand for its
convex hull. Let D(p) denote the unit disk centered at p and let D(P ) stand for
the set {D(p) : p ∈ P}.

Fix an orthogonal system of coordinates in the plane. For any point p = (x, y)
and for any ε > 0, let εp denote the point with coordinates (εx, εy).

Lemma 6 Let P = {p1, p2, . . . , pn} be a set of points in the plane, let ε > 0,
and let f be the stacking order of the unit disks about the elements of εP such
that f(D(εpi)) = i for i = 1, 2, . . . , n.

We have

lim
ε→0

visible(D(εP ), f) =

n∑
i=1

τi,
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where τ1 = 2π, and for all other indices, τi = 0 if pi belongs to conv{p1, p2, . . . ,
pi−1}, and τi is equal to the external angle of the convex polygon conv{p1, p2, . . . , pi}
at vertex pi, otherwise. See Figure 2.

pi 

τi 

Fig. 2. If pi lies outside the convex hull of the preceding points, then τi is defined as
the external angle of the polygon conv{p1, . . . , pi} at vertex pi.

Proof. We prove that the contribution of D(εpi) to the visible perimeter tends
to τi as ε→ 0 for each 1 ≤ i ≤ n.

Since D(εp1) is the lowest disk in D(εP ), its whole boundary is visible from
below. Therefore, its contribution is 2π. Let i > 1. If pi belongs to the interior
of conv{p1, p2, . . . , pi−1}, then there is a threshold ε0 > 0 such that

D(εpi) ⊂
i−1⋃
j=1

D(εpj),

for every ε < ε0. In this case, no portion of the boundary of D(εpi) is visible
from below, provided that ε is sufficiently small. If pi lies on the boundary of
conv{p1, p2, . . . , pi}, then it is in between some points pj and pk with 1 ≤ j <
k < i and although D(εpi) will not be entirely covered by earlier disks for any
ε > 0, the part of its boundary outside D(εpj) ∪D(εpk) tends to zero as ε→ 0.

Finally, if pi lies outside conv{p1, . . . , pi−1}, then it is a vertex of conv{p1, . . . ,
pi}. Consider the external unit normal vectors to the two sides of conv{p1, . . . pi}
that meet at εpi (or in the case if the convex hull is a single segment, the two
unit normal vectors for this segment). Drawing these vectors from εpi, the arc
on the boundary of D(pi) between them is of length τi and it is not covered by⋃i−1

j=1D(εpj). Thus, it is visible from below, and, as ε→ 0, the total contribution
of the remaining part of the boundary of D(εpi) to the visible perimeter tends
to 0, concluding the proof. �

Proof of Theorem 2. Consider a C-dense point set P in the plane and let f be a
stacking order for D(P ). Suppose without loss of generality that the minimum
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distance between the elements of P is 1 and the maximum distance (diameter) is
at most Cn1/2. We write P = {p1, p2, . . . , pn} with f(D(pi)) = i. Using Lemma 6,
it is enough to prove

∑n
i=1 τi ≤ C ′n3/4 for the angles τi defined in the lemma.

As τi = 0 whenever pi is contained in conv{p1, . . . , pi−1}, we can assume this is
never the case.

q' 

pi 

q 

τi 1 1 

Fig. 3. The triangle piqq
′ lies entirely outside the convex hull of p1, . . . , pi−1.

For every i (1 ≤ i ≤ n), let per(i) denote the perimeter of conv{p1, p2, . . . , pi}.
We define the perimeter of a segment to be twice its length and the perime-
ter of a point to be 0. Let 2 ≤ i ≤ n, consider the two sides of the poly-
gon conv{p1, p2, . . . , pi} meeting at pi, and denote by q and q′ the points on
these sides at unit distance from pi. Since no point of P is closer to pi than
1, the triangle piqq

′ does not contain any element of {p1, p2, . . . , pi−1}. Hence,
conv{p1, p2, . . . , pi−1} is contained in the convex region obtained from conv{p1,
p2, . . . , pi} by cutting off the triangle piqq

′. (In the degenerate case when conv{p1,
. . . , pi} is a segment, q = q′ is the point of this segment at unit distance from
pi, and the empty “triangle” becomes just a unit segment.) This observation
implies that the perimeter of conv{p1, p2, . . . , pi−1} satisfies

per(i− 1) ≤ per(i)− |piq| − |piq′|+ |qq′| = per(i)− 2 + 2 cos
τi
2
≤ per(i)− τ2i

5
.

Here we used that the external angle of the triangle piqq
′ at vertex pi is τi.

Thus, we have

per(i)− per(i− 1) ≥ τ2i
5
,

for all i > 1. Adding up these inequalities, we obtain

per(n) ≥
n∑

i=2

τ2i
5
.

Since per(n) is at most π times the diameter of P , that is, per(n) ≤ πCn1/2, we
have

n∑
i=2

τ2i ≤ 5πCn1/2.
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Applying the relationship between the arithmetic and quadratic means, we can
conclude that

n∑
i=2

τi ≤ (n− 1)1/2

(
n∑

i=2

τ2i

)1/2

< (5πC)1/2n3/4.

Taking into account that τ1 = 2π, the theorem follows by Lemma 6. �

Proof of Theorem 3. Suppose for simplicity that n = 2k2. Our point set Pn

consists of the vertices of k concentric regular 2k-gons of radii r0, r0 + 1, . . .,
r0+k−1, where r0 is such that the first 2k-gon has unit side length. A calculation
shows that Pn is 2-dense, as required.

Our stacking order f takes the 2k-gons in increasing order of radius, taking
the vertices of each 2k-gon in clockwise order.

For a given point p ∈ Pn, let C be the circumcircle of the 2k-gon containing
p, let C ′ be the circumcircle of the next smaller 2k-gon, and let ` and `′ be lines
through p tangent to C and C ′, respectively. A calculation shows that the angle
τ between ` and `′ is at least n−1/4.

We need to estimate the angles τi of Lemma 6. For almost all the points of
Pn (certainly for at least half of the points of each 2k-gon), the corresponding
angle τi is at least τ . Therefore,

∑
τi ≥ n3/4/2, as required. �

3 All Dense Sets Have Good Stacking Orders
Proof of Theorem 4

Throughout this section, let P be a C-dense n-point set in the plane. We will
define a stacking order f for D(P ) for which the external angles τi defined in
Lemma 6 satisfy

∑n
i=1 τi ≥ C ′′n2/3, for some constant C ′′ > 0 depending only

on C. Then the theorem follows from Lemma 6.
Assume without loss of generality that the minimum distance in P is 1. Then,

since P is C-dense, there exists a disk of radius Cn1/2 that contains all of P .
Let D be such a disk, and let K be a circle of radius 2Cn1/2 concentric with D.

Given a point p ∈ K, we define a family F = F (p) of annular sectors that
disjointly cover the plane, as follows: For each positive integer i, let Ki = Ki(p)
be a circle centered at p with radius in−1/6; then divide each annulus between
two consecutive circles into sectors of angular length α = C∗n−1/3 for a large
enough constant C∗ (as will be specified below). See Figure 4 (left).

Note that each annular sector that intersects D has area Θ(1) (since its radius
is Θ(n1/2)). Since D has area Θ(n), there must be Θ(n) sectors that intersect
D. Call a sector occupied if it contains at least one point of P .

Lemma 7 There exists a point p ∈ K for which Ω(n) sectors of F (p) are occu-
pied.

Proof. Choose p uniformly at random on K and construct the sectors using p
and dividing the annuli into the correct length sectors in an arbitrary way. For
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D 

K 

p 

pi 
pi–1 

q1 q2 

β 

Fig. 4. Left: Partition of D into annular sectors centered at a point p ∈ K. Right:
Point pi contributes external angle at least β.

each point pi ∈ P , define the random variable n(pi) to be the number of points
of P contained in the sector of F (p) that contains pi. We claim that the expected
value E[n(pi)] of n(pi) satisfies

E[n(pi)] ≤ k

for some constant k.
Indeed, let R = Rpi

(p) be a rectangle centered at pi, with dimensions
(k′n1/6) × (k′n−1/6), and with short sides parallel to the line ppi, for an ap-
propriate constant k′. If k′ is large enough (but constant with respect to n),
then R completely contains the sector of F (p) that contains pi. Thus, it suffices
to bound the expected number of points of P in R. Note that, as p rotates around
K, R rotates around its center together with p.

Partition the plane into annuli centered at pi by tracing circles around pi of
radii 1, 2, 4, 8, . . .. The annulus with inner radius r and outer radius 2r contains
at most k2r

2 points of P , for some constant k2. Each such point has proba-
bility at most k3n

−1/6r−1 of falling in R (over the choice of p), for another
constant k3; therefore, the expected contribution of this annulus to n(pi) is at
most k2k3rn

−1/6. Summing up for all annuli with inner radius r ≤ k′n1/6, we
obtain that E[n(pi)] ≤ k for some constant k, as claimed.

Now, call point pi isolated if n(pi) ≤ 2k. By Markov’s inequality, each point pi
has probability at least 1/2 of being isolated. Therefore, the expected number of
isolated points is at least n/2. There must exist a p that achieves this expectation,
and for it we obtain at least n/(4k) occupied sectors, proving the lemma. �

Proof of Theorem 4. Fix a point p for which F (p) has Ω(n) occupied sectors.
Color the sectors with four colors, using colors 1 and 2 alternatingly on the
odd-numbered annuli and colors 3 and 4 alternatingly on the even-numbered
annuli.

There must be a color for which Ω(n) sectors are occupied. Consider only the
occupied sectors with this color. Let these sectors be S1, S2, . . . , Sm, listed by
increasing distance from p, and for each fixed distance, in clockwise order around
p. Select one point pi ∈ P ∩Si from each of these sectors. Let the stacking order
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f start with these points, that is, f(D(pi)) = i for i = 1, . . . ,m. The order of
the remaining points in P is arbitrary.

We claim that each selected point pi contributes an external angle of τi =
Ω(n−1/3), which implies that

∑
τi = Ω(n2/3), as desired.

Indeed, consider the i-th selected point pi. Suppose without loss of generality
that p lies directly below pi. Let Kk and Kk+1 be the inner and outer circles
bounding the annulus that contains pi. Trace rays z1 and z2 from pi tangent to
Kk−1, touching Kk−1 at points q1 and q2. See Figure 4 (right).

Every point pj , j < i, that is not contained in the same annulus as pi lies
below these rays. Moreover, the angle β that these rays make with the horizontal
is Θ(n−1/3): Consider, for example, the ray z1. The triangle ppiq1 is right-angled,
with angle ]pipq1 = β. We have pq1 = Θ(n1/2) and ppi = pq1 + Θ(n−1/6). It
follows that piq1 = Θ(n1/6), and so β ≈ tanβ = piq1/pq1 = Θ(n−1/3).

Now suppose that pi−1 lies in the same annulus as pi. If the constant C∗

in the definition of α is chosen large enough, then pi−1 must have a smaller
y-coordinate than pi. (In the worst case, pi lies near the bottom-left corner of
its sector and pi−1 lies near the top-right corner of its sector.)

Thus, pi contributes external angle τi ≥ β = Ω(n−1/3), as claimed. �

4 The “Worst” Dense Set: the Grid
Proof of Theorem 5

In this section, we assume that n is a square number and Gn denotes an n1/2

by n1/2 piece of the integer grid. Note that Gn is a
√

2-dense set consisting of n
points.

As we mentioned in the Introduction, in the special case where P = εGn,
Theorem 4 has a very simple proof. ForD(εGn), one can produce a stacking order
with large visible perimeter using the following greedy algorithm (which can also
be applied to any other point set P ): Set Pn = Gn, and select a vertex of conv(Pn)
whose external angle is maximum. Let this vertex be pn, the last element in the
desired order fgreedy. Repeat the same step for the set Pn−1 = Pn \ {pn}, and
continue in this fashion until the first element p1 gets defined.

By Jarnik’s theorem [Ja25], every convex polygon has O(n1/3) vertices in
Gn. Therefore, at each step, the greedy algorithm selects a point pi that makes
an external angle τi = Ω(n−1/3). Hence,

∑
τi = Ω(n2/3) for the order fgreedy.

Lemma 6 completes the proof.
Now we turn to the proof of Theorem 5. Our proof is an improved version of

the proof of Theorem 2. There we were concerned with how the perimeter of the
convex hull grows as we add the points of our set one by one as prescribed by the
stacking order. As is well known, the perimeter of a convex set in the plane is
the integral of its width in all directions (this is known as Cauchy’s theorem; see
e.g. [PaA95], Theorem 16.15). The proof of Theorem 5 is very similar, but we
deal with the the widths in different directions in a non-uniform way. The width
in a direction close to the direction of a short grid vector is more important in
the analysis than widths in other directions.
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Proof of Theorem 5. Let Gn = {p1, . . . , pn} be an enumeration of the points
of Gn according to a given stacking order, and let τi denote the corresponding
external angles, as defined in Lemma 6. According to the lemma, we need to
prove that

∑n
i=1 τi = O(n2/3). Let us partition this sum into several parts, and

bound the contribution of each part separately.
Let [n] = {1, . . . , n}. We start with the small angles. Let

I0 = {i ∈ [n] | τi < n−1/3}.

Clearly, we have ∑
i∈I0

τi < n · n−1/3 = n2/3.

pi 

pj 

qi q'i β 

v(i) 
ci ci 

Ci–1 

Fig. 5. The triangle piqiq
′
i is the largest isosceles triangle at point pi that does not

intersect the interior of Ci−1.

As in the proof of Theorem 2, let Ci = conv{p1, . . . , pi} and denote the
perimeter of Ci by per(i). SinceGn is a piece of the integer grid, we have per(n) =
4(n1/2−1). Consider only those indices i > 1 that do not belong to I0. For these
indices, we have τi > 0, so that pi must be a vertex of Ci. For each such point pi,
let ci denote the smallest number satisfying the following condition: the segment
connecting the points qi and q′i that lie on the boundary of Ci at distance ci from
pi, intersects Ci−1. (In the case where Ci is a segment, we have qi = q′i ∈ Ci−1.)
Note that the segment qiq

′
i contains a point pj with 1 ≤ j < i. See Figure 5.

In the proof of Theorem 2, we argued that per(i) − per(i − 1) ≥ τ2i /5. Now
the same argument gives that per(i)− per(i− 1) > ciτ

2
i /5. Let

I1 = {i ∈ [n] \ (I0 ∪ {1}) | ciτi > n−1/6}.

For i ∈ I1, we have per(i)−per(i−1) ≥ τin−1/6/5. Using that per(i) is monotone
in i, we conclude that∑

i∈I1

τi ≤ 5n1/6(per(n)− per(1)) < 20n2/3.

Let
I2 = [n] \ ({1} ∪ I0 ∪ I1).
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To bound the angles τi for indices i ∈ I2, we need a charging scheme and we need
to consider the growth of the width of Ci in some specific directions. The width
of a planar set in a given direction is the diameter of the orthogonal projection
of the set to a line in this direction. Let us associate the directions in the plane
with the points of the unit circle K. We identify opposite points of this circle
as the widths of the same set in opposite directions are the same. This makes
the total length of K become π. We define a set of arcs along K as follows. For
any non-zero grid vector v from the integer grid and for any integer ` ≥ 0, let
Vv,` denote the arc of length 2−` symmetric around the direction of v. For any
direction α ∈ K, let pi(α) denote the width of Ci in the direction orthogonal to
α (i.e., the corresponding projection is parallel to α).

The perimeter per(i) is equal to the integral of pi(α) along the circle K (note
that after the identification of opposite points the length of K became π). We
have pi(α) = pi−1(α), unless the direction α is tangent to Ci at the vertex pi.
Let Ui denote the arc of directions where such a tangency occurs. Clearly, the
length of Ui is τi, and for any arc V that contains Ui, we have∫

V

(pi(α)− pi−1(α))dα = per(i)− per(i− 1) ≥ ciτ2i /5.

For each index i ∈ I2, choose a grid point pj on the segment qiq
′
i. (Recall

that the points qi and q′i are at distance ci from pi, and that there is always a
grid point between them.) We charge the index i to the pair (v(i), `(i)), where
v(i) is the grid vector pointing from pj to pi and `(i) is the largest integer such
that Vv(i),`(i) contains Ui. Notice that |v(i)| ≤ ci.

Note that Ui is symmetric around the direction of the segment qiq
′
i. For the

angle β between this direction and the direction of v(i) we have |vi| sinβ =
ci sin(τi/2) (refer again to Figure 5). This implies β < ciτi/|v(i)|, and hence
2−`(i) < 4β + 2τi < 6ciτi/|v(i)|. Finally, we also have∫

Vv(i),`(i)

(pi(α)− pi−1(α))dα ≥ ciτ2i /5 > 2−`(i)|v(i)|τi/30.

Let s(v, `) =
∑
τi, where the summation extends over all i ∈ I2 charged

to (v, `). The integral
∫
Vv,`

pi(α)dα is monotone in i and grows by at least

2−`|v|τi/30 at every i that is charged to (v, `). We have p1(α) = 0 and pn(α) <
(2n)1/2, so that the total growth is less than 2−`(2n)1/2. This implies that
s(v, `) < 43n1/2/|v|.

Consider the set of all pairs (v, `) such that there is an index i ∈ I2 charged
to them. We have ciτi ≤ n−1/6, τi ≥ n−1/3 and |v| ≤ ci, which implies that
|v| ≤ n1/6. We proved that 2−` < 6ciτi/|v| ≤ 6n−1/6/|v|. On the other hand, we
also have 2−` ≥ 2τi ≥ 2n−1/3. Thus, for any given grid vector v, there are at
most log(6n1/6/|v|) possible values of `, where log denotes the binary logarithm.

Hence, ∑
i∈I2

τi =
∑
v,`

s(v, `) ≤
∑

|v|≤n1/6

log(6n1/6/|v|)43n1/2/|v|.
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Evaluating this sum on the grid vectors v of the integer grid, we obtain∑
i∈I2

τi = O(n2/3).

We have

n∑
i=1

τi = τ1+
∑
i∈I0

τi+
∑
i∈I1

τi+
∑
i∈I2

τi = 2π+O(n2/3)+O(n2/3)+O(n2/3) = O(n2/3),

completing the proof of the theorem. �
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