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Abstract

For d > 2 andn > d + 1, let P = {p1, . . . , pn} be a set of points inRd

whose convex hull contains the origin0 in its interior. We show that ifP∪{0}
is in general position, then there exists ad-tupleQ = {pi1, . . . , pid} ⊂ P such
that 0 is not contained in the convex hull ofQ∪{p} for any p ∈ P\Q. A
generalization of this property is also considered.

1 Introduction

Let P be a finite point set inRd, in general positionwith respect to the origin0, in
the sense that nok elements ofP∪{0} lie in a (k−2)-flat (2≤ k≤ d+1). We say
thatP surrounds the originif for everyQ⊂P with |Q|= d, there exists anx∈P\Q
such that the origin is contained in conv{x}∪Q, the convex hull of{x}∪Q.

In the special cased = 2, consider a planar point setP = {p1, p2, . . . , pn},
whose elements are listed and enumerated modn in the clockwise cyclic order,
as they can be seen from the origin. Clearly,P surrounds the origin if and only if
for every i, there existsj such that the trianglepi pi+1p j contains the origin in its
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interior. In particular, it follows thatn must be odd. This so-called “antipodality”
property of point sets was explored by Lovász [7] and others[3, 10] to bound the
maximum number “halving lines” of a set ofn points in the plane.

R. Strausz [11] discovered an interesting property of planar point setsP sur-
rounding the origin: For any coloring of the elements ofP with threecolors such
that every color is used at least once, there is arainbow triangle which contains the
origin in its interior, that is, a triangle whose vertices are of different colors. Using
the terminology of [1], we can say that the 3-uniform hypergraph consisting of all
triples inP whose convex hulls contain the origin istight.

It turns out, somewhat counter-intuitively, that inthreeand higher dimensions,
there exists no nontrivial point set that surrounds the origin. By counting simplices
of triangulations, analogously to the argument in [4], we show the following.

Theorem 1. Let d> 2 and let P be a finite point set inRd in general position with
respect to the origin, and suppose that|P|> d+1. Then P contains d-tuple Q such
that the convex hull of Q∪{x} does not contain the origin for any x∈ P.

The above property can be generalized as follows. For any 0≤ k ≤ d + 1,
we say that the setP ⊂ R

d has propertyS(k), if for every Q ⊂ P with |Q| = k,
there exists anR⊂ P\Q with |R| = d+1−k, such that the origin is contained in
convQ∪R.

Obviously, propertyS(k) depends on the choice of origin, and it ismonotonic
in the sense that propertyS(k) is stronger than propertyS(k−1). Carathéodory’s
theorem (see [6] or [12]) states that if the origin is contained in convP, then it
is contained in the convex hull of some(d + 1)-tuple ofP, or simply,0∈ convP
implies propertyS(0). In fact, we may triangulateP from any given point ofP
which implies that propertiesS(0) andS(1) are equivalent.

At the other end of the spectrum, it is easy to show that if|P| > d+ 1, thenP
doesnot have propertyS(d + 1). (This immediately follows by triangulating the
point set; see either part of Claim 4.) Theorem 1 tells us thatpropertiesS(d+ 1)
andS(d) are equivalent. The following two questions arise.

Problem 2. Let d≥ 2 be fixed.

1. What is the largest integer k= k(d) such that there are arbitrarily large
finite point sets P⊂ R

d in general position with respect to the origin that
have property S(k)?

2. What is the smallest integer K= K(d) such that there is no finite point set
P⊂ R

d in general position with respect to the origin with more thand + 1
elements, which has property S(K +1)?

Clearly, we havek(d) ≤ K(d), for everyd.

2



In Section 2 we give a proof of Theorem 1, and in Section 3 we findan equiv-
alent formulation of Problem 2 in terms of facets of convex polytopes. From this
viewpoint it will be easy to extract the following lower bound onk(d).

Theorem 3. For every integer d≥ 2, there exist arbitrarily large point sets inRd

in general position with respect to the origin with propertyS(⌊d
2⌋+ 1). In other

words, k(d) ≥ ⌊d
2⌋+1.

From Theorems 1 and 3 it follows thatk(2) = 2= K(2) andk(3) = 2= K(3). It
would be interesting to know if there are values ofd for whichk(d) < K(d) holds.

2 Proof of Theorem 1

Given a finite set of pointsA in general position inRd, a triangulation of A is a
decomposition of convA, the convex hull ofA, into non-overlappingd-dimensional
simplices, each of which is spanned byd+1 elements ofA and contains no other
point of A. In the plane, the number of triangles inany triangulation ofA is the
same, but this is not the case in higher dimensions. For a survey, see [2].

Any (d + 2)-element point set in general position inR
d has a uniqueRadon

partition, that is, a partition into two parts,X andY, such that convX and convY
have precisely one point in common. For a survey on Radon’s theorem, see [5].

We start with some elementary observations concerningt(A), the maximum
number of simplices in a triangulation ofA.

Claim 4. Let A⊂ R
d be a finite set of points in general position with|A| ≥ d +

2. Let a0 and a1 denote the number of vertices ofconvA and the number of its
interior points, respectively, so that a0 +a1 = |A|. Then, for the maximum number
of simplices in a triangulation of A, we have

1. t(A) ≥ a0 +da1−d,

2. t(A) ≥ |A|−
⌊

d+2
2

⌋

.

The first bound is always at least as strong as the second one, unless a1 = 0 and
d ≥ 3.

Proof. 1. It is easily seen, by induction ond, that there exists a triangulationT of
the vertex set of convA, using at leasta0−d simplices [9]. Any pointp∈ A that
lies in the interior of convA belongs to a unique simplex ofS∈ T . Subdividing
S from p into d + 1 smaller simplices, we increase the number of simplices by
d. Including successively all other interior points, we obtain a triangulation ofA,
consisting of at leasta0−d+a1d simplices.

2. Fix any (d + 2)-element subsetA′ ⊂ A, and consider its (unique) Radon
partition A′ = X ∪Y, where|X| ≥ |Y|, so that we have|X| = m≥

⌈

d+2
2

⌉

. Notice
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that the simplicesSx = convA′ \{x}, for all x∈ X, form a triangulation ofA′. (This
fact is essentially equivalent to a theorem of Proskuryakov[8], which states that
any two points ofX are separated by the hyperplane spanned by the remaining
points ofA′.) Thus,A′ can be triangulated usingm simplices. Every additional
point ofA can be included in this triangulation, increasing the number of simplices
by at least one. This yields that

t(A) ≥ m+ |A\A′| ≥

⌈

d+2
2

⌉

+ |A|− (d+2) ≥ |A|−

⌊

d+2
2

⌋

,

as desired.

Now we are in a position to establish Theorem 1. Letd ≥ 2. Suppose for
contradiction that there is a setP of more thand+ 2 points in general position in
R

d+1 that surrounds the origin0. Fix ad-dimensional hyperplaneΠ that does not
pass through0 and is not parallel to any line0p (p ∈ P). For anyp ∈ P, either
the ray

−→
0p or its reflection about the origin,−

−→
0p, intersectsΠ. In the former case,

assign top the intersection pointap =
−→
0p∩Π, and color itamber. In the latter one,

assign top the pointbp = (−
−→
0p)∩Π, and color itblue. Let A andB denote the

sets of amber and blue points, and letS= A∪B. Clearly,A∩B= /0 and the setS is
in general position inRd.

The assumption thatP surrounds the origin implies (in fact, is equivalent to the
condition) that the two-colored setS⊂ R

d satisfies the following property.

Claim 5. The set S= A∪B (A,B 6= /0) is in general position inRd and|S| > d+2.
For every T⊂ S,|T| = d+1, there exists x∈ S\T such that

conv(T ∪{x})∩A∩conv(T ∪{x})∩B 6= /0.

In particular, every full-dimensional simplex whose vertices belong to A contains
at least one element of B, and every full-dimensional simplex whose vertices belong
to B contains at least one element of A.

Notice that the above construction can be carried out for anyd-dimensional
hyperplaneΠ. ChangingΠ will result in aprojective transformationof the point
setS= S(Π). In the process, the color of a pointp changes as it passes through a
position “at infinity” (asΠ becomes parallel to the line0p).

Choose a projective transformation that maximizes|A|− |B|, that is, for which
the number of amber points is as large as possible. In the sequel, A andB stands
for the corresponding sets of amber and blue points.

Claim 6. The sets A and B satisfy
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1. |H ∩A| ≥ |H ∩B|, for any half-space H;

2. B⊂ convA;

3. |A| ≥ d+2;

Proof. 1. If in some open half-spaceH, the points fromB outnumbered the points
from A, then a projective transformation that takes the supporting hyperplane ofH
to infinity would increase|A|− |B|.

2. ChoosingΠ to be ad-flat induced by anyd + 1 elements ofP, the result-
ing d-dimensional set has at leastd + 1 amber points. Therefore, in the optimal
configuration,A⊂ R

d is full-dimensional and|A| ≥ d+1. Applying part 1 of the
statement to the half-spaces bounded by the facets of convA and disjoint from the
interior of convA, we obtain that no point ofB can lie outside of the convex hull of
A.

3. Suppose for contradiction that|A|= d+1. Since|S|> d+2, there are at least
two elements ofB in the interior of convA. Then the interior of any supporting half-
space of the simplex convA, whose boundary hyperplane passes through a facet of
convA, contains two blue points and only one amber point. This contradicts part
1.

We distinguish two cases.

Case 1: a1 > 0, i.e., the interior ofconvA contains at least one point of A.
Let a0 = d+1+x anda1 = 1+y, for some non-negative numbersx andy. By

Claim 5,Sdoes not contain empty monochromatic full-dimensional simplices. In
particular, every amber simplex contains at least one blue point in its interior, so
that

|B| ≥ t(A) ≥ 1+x+d(1+y),

where the second inequality follows by Claim 4(1). Applyingthe same claim toB,
we obtain that

t(B) ≥ |B|−d ≥ 1+x+d(1+y)−d = 1+x+dy.

On the other hand, every blue simplex contains at least one amber point. By
Claim 6(2), such a point must belong to theinterior of convA. Therefore, we
have

a1 = 1+y≥ t(B).

Comparing the last two inequalities, we obtain thatx = y = 0 and|B| ≥ d+1.
The casea0 = d+1, a1 = 1, |B| ≥ d+1 is impossible: On one of the sides of

a hyperplane containing a facet of convB there are fewer thand points ofA. By
Claim 6(1), this violates the maximality of|A|− |B|.
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Figure 1:{x,2,3,5} does not induce a Radon-partition for anyx∈ {1,4,6}.

Case 2: a1 = 0, i.e., A is in convex position.
Now we have|B| < d + 1, otherwise there is a full-dimensional empty blue

simplex, contradicting Claim 5. Therefore,B is contained in some hyperplaneh.
Applying part 1 of Claim 6 to a half-space bounded byh that contains at most as
many elements ofA as the other, we obtain that

|B| ≤

⌊

|A|
2

⌋

.

On the other hand, as in Case 1, we have

|B| ≥ t(A) ≥ |A|−

⌊

d+2
2

⌋

.

Comparing the upper and lower bounds on|B| and taking Claim 6(3) into ac-
count, we obtain thatd is even and|A| = d+2.

If d > 2, then|B|< d, soB is contained in an infinite family of hyperplanes that
sweep throughRd. One of these hyperplanes must pass through a point ofA, which
gives us a half-space that contains more points fromB than fromA, contradicting
the maximality of|A|− |B|.

The remaining case isd = 2: The 4 points ofA are in convex position, and the
2 points ofB lie in opposite quadrants spanned by the diagonals of convA. It is
easily seen that this configuration violates Claim 5. See Fig. 1 (ForT = {2,3,5},
there is no suitablex). This completes the proof of Theorem 1.

3 k-surrounding sets

A point set P in general position with respect to the origin0 is said to bek-
surrounding, or is said to haveproperty S(k), if any k-element subset ofP can
be extended to a(d+1)-element subset that contains0 in its interior.
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Proof of Theorem 3.The case whend is odd follows from the case whend is even.
To see this, supposeP ⊂ R

2n has propertyS(n+ 1), and considerP as a subset
of the hyperplane{(x1, . . . ,x2n,−1)} ⊂ R

2n+1, such thatP surrounds the point
(0, . . . ,0,−1). Let Q = P∪{(0, . . . ,0,1)}. It is easily seen thatQ has property
S(n+ 1): Let X ⊂ Q be of sizen+ 1. If X ⊂ P, there exists a setY ⊂ P with
|Y| = n such that(0, . . . ,0,−1) ∈ conv X ∪X′. Then the origin is contained in
convX ∪X′ ∪{(0, . . . ,0,1)}. Otherwise,X = X′ ∪{(0, . . . ,0,1)}, whereX′ ⊂ P
and |X′| = n. Taking into account that propertyS(n+ 1) implies propertyS(n),
there exists a setY ⊂ P with |Y| = n+ 1 such that(0, . . . ,0,−1) ∈ convX′ ∪Y,
and consequently, the origin is contained in convX ∪Y. Therefore, it suffices to
consider the case whend is even.

To complete the proof of Theorem 3, it will be more convenientto transform
the problem via the well known Gale transform. (For details concerning the Gale
transform, we refer the reader to [6] or [12].)

Let d ≥ 2 be an integer and supposeP⊂ R
d is in general position with respect

to the origin,|P| = n, andP has propertyS(k). The Gale transform ofP∪{0} is a
(|P|+1)-element vector configuration inRn−d, which we denote byV∪{1}. Here
|V| = n and the vector1 corresponds to the origin0 in the “primal” space.

PropertyS(k) corresponds to the following property ofV: For everyU ⊂ V
with |U|= n−k, there existsW ⊂ U with |W| = n−d−1, such that(nW ·1)(nW ·
v) < 0 for everyv ∈ V\W. Here,nW, is some fixed vector orthogonal toW, and,
·, denotes the usual dot product.

In particular, propertyS(k) implies that there is an(n− d− 1)-dimensional
hyperplaneH through the origin with normal vectorn such that(n · 1)(n · v) < 0
for everyv ∈ V. Therefore, if we extend the vectors ofV to rays, they will intersect
H −1. The set of intersection points,P∗, is a set ofn points in general position in
R

n−d−1 with the following property, denoted byS∗(k): Among any n−k points of
P∗, there are some n−d−1 that form a facet ofconvP∗.

In fact, this necessary condition is also sufficient, for onecan choose an ap-
propriate vector1 in R

n−d which corresponds to a point setP⊂ R
d with property

S(k). Summarizing:

Observation 7. There exist n points inRd satisfying property S(k) if and only if
there exist n points inRn−d−1 satisfying property S∗(k).

We now complete the proof of Theorem 3. First note that ford = 2, the regular
2n+1-gon has propertyS(2). It remains to exhibit arbitrarily large sets point sets
in R

d for evend ≥ 4 with propertyS(d/2+1).
For positive integersk andn> 2k−1, letC(n,k) denote the cyclic polytope on

n vertices inR
n−2k+1. The facets ofC(n,k) have a simple characterization known

as Gale’s evenness condition (see [6] or [12]). Using this characterization, it is easy
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to show that whenn is odd,C(n,k) has propertyS∗(k). Hence, by Observation 7,
there existn points inR

2k−2 with propertyS(k).

Remark.For the particular point sets we get fromC(n,k) it is easily checked,
using Gale’s evenness condition, that the maximumt for which there exists color-
ings of the points witht colors and no rainbow simplex containing the origin, is
n+2k−1

2 .

By Observation 7, Problem 2 can be reformulated in terms of the property
S∗(k). We obtain the following.

Problem 8. Let d≥ 2 be fixed.

1. What is the largest integer k= k(d) such that there exists arbitrarily large
finite point sets P in general position inR|P|−d−1 that have property S∗(k)?

2. What is the smallest integer K= K(d) such that there exists no finite point
set P in general position inR|P|−d−1 with more than d+ 1 elements, which
has property S∗(K +1)?
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