Points surrounding the origin
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Abstract

Ford>2andn>d+1, letP = {ps,...,pn} be a set of points ifR4
whose convex hull contains the oridiin its interior. We show that iPU {0}
is in general position, then there existd-tupleQ = {p;,,..., pi,} C P such
thatO is not contained in the convex hull U {p} foranype P\ Q. A
generalization of this property is also considered.

1 Introduction

Let P be a finite point set ifRY, in general positionwith respect to the origif, in
the sense that rloelements oPU {0} lie in a (k— 2)-flat (2< k <d+1). We say
thatP surrounds the originif for every Q C P with |Q| = d, there exists are P\ Q
such that the origin is contained in cofw} U Q, the convex hull of x} UQ.

In the special casd = 2, consider a planar point s€&t= {ps,pz,...,Pn},
whose elements are listed and enumerated modthe clockwise cyclic order,
as they can be seen from the origin. CleaRysurrounds the origin if and only if
for everyi, there existg such that the triangl@; pi1p; contains the origin in its
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interior. In particular, it follows thah must be odd. This so-called “antipodality”
property of point sets was explored by Lovasz [7] and otfi&rd 0] to bound the
maximum number “halving lines” of a set afpoints in the plane.

R. Strausz [11] discovered an interesting property of planmint setsP sur-
rounding the origin: For any coloring of the elementdPolvith threecolors such
that every color is used at least once, therer@bowtriangle which contains the
origin in its interior, that is, a triangle whose vertices af different colors. Using
the terminology of [1], we can say that the 3-uniform hypemir consisting of all
triples inP whose convex hulls contain the origintight.

It turns out, somewhat counter-intuitively, thatthreeand higher dimensions,
there exists no nontrivial point set that surrounds theiriBy counting simplices
of triangulations, analogously to the argument in [4], wevslthe following.

Theorem 1. Letd> 2 and let P be a finite point set ik in general position with
respect to the origin, and suppose that > d+ 1. Then P contains d-tuple Q such
that the convex hull of Q {x} does not contain the origin for anyP.

The above property can be generalized as follows. For agykO< d + 1,
we say that the sé® c RY has propertyS(k), if for every Q ¢ P with |Q| =k,
there exists aR C P\ Q with |R| = d 4+ 1—k, such that the origin is contained in
convQUR.

Obviously, propertyS(k) depends on the choice of origin, and in®notonic
in the sense that proper§k) is stronger than propertg(k — 1). Carathéodory’s
theorem (see [6] or [12]) states that if the origin is corgdinn convP, then it
is contained in the convex hull of sonfd + 1)-tuple of P, or simply,0 € convP
implies propertyS(0). In fact, we may triangulat® from any given point ofP
which implies that propertieS(0) andS(1) are equivalent.

At the other end of the spectrum, it is easy to show th#®|it> d + 1, thenP
doesnot have propertyS(d + 1). (This immediately follows by triangulating the
point set; see either part of Claim 4.) Theorem 1 tells us phapertiesS(d + 1)
andS(d) are equivalent. The following two questions arise.

Problem 2. Let d > 2 be fixed.

1. What is the largest integer %« k(d) such that there are arbitrarily large
finite point sets R- RY in general position with respect to the origin that
have property &)?

2. What is the smallest integer & K(d) such that there is no finite point set
P c RY in general position with respect to the origin with more théa 1
elements, which has propertykS+ 1)?

Clearly, we haveé(d) < K(d), for everyd.
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In Section 2 we give a proof of Theorem 1, and in Section 3 wedmequiv-
alent formulation of Problem 2 in terms of facets of convelytmpes. From this
viewpoint it will be easy to extract the following lower badionk(d).

Theorem 3. For every integer d> 2, there exist arbitrarily large point sets iR9
in general position with respect to the origin with propeﬂM%J +1). In other
words, Kd) > [4]+1.

From Theorems 1 and 3 it follows thie2) = 2 = K(2) andk(3) =2=K(3). It
would be interesting to know if there are valuegidbr whichk(d) < K(d) holds.

2 Proof of Theorem 1

Given a finite set of pointé in general position ifRY, a triangulation of A is a
decomposition of cond, the convex hull oA, into non-overlappingl-dimensional
simplices, each of which is spanned tby 1 elements ofA and contains no other
point of A. In the plane, the number of trianglesany triangulation ofA is the
same, but this is not the case in higher dimensions. For &gusee [2].

Any (d + 2)-element point set in general positiontf has a uniquéRadon
partition, that is, a partition into two part¥ andY, such that conX and conw
have precisely one point in common. For a survey on Radoatsréim, see [5].

We start with some elementary observations concerhfAg, the maximum
number of simplices in a triangulation Af

Claim 4. Let AcC R be a finite set of points in general position wiy > d+
2. Let @ and a denote the number of vertices @dnvA and the number of its
interior points, respectively, so thap a a; = |A|. Then, for the maximum number
of simplices in a triangulation of A, we have

1. t(A) > ap+da —d,

2. t(A) > |A] - |42
The first bound is always at least as strong as the second ohessua = 0 and
d>3.

Proof. 1. Itis easily seen, by induction ah that there exists a triangulatian of

the vertex set of cond, using at leaséy — d simplices [9]. Any pointp € A that

lies in the interior of comA belongs to a unique simplex &¢c 7. Subdividing
Sfrom p into d + 1 smaller simplices, we increase the number of simplices by
d. Including successively all other interior points, we dta triangulation ofA,
consisting of at leasdiy — d + a;d simplices.

2. Fix any (d + 2)-element subsef’ C A, and consider its (unique) Radon

partition A’ = X UY, where|X| > |Y|, so that we havéX| = m > [2£2]. Notice
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that the simplice§, = convA’\ {x}, for all x € X, form a triangulation o\’. (This

fact is essentially equivalent to a theorem of Proskuryd8pyvwhich states that
any two points ofX are separated by the hyperplane spanned by the remaining
points of A’.) Thus,A’ can be triangulated using simplices. Every additional
point of A can be included in this triangulation, increasing the nunobgimplices

by at least one. This yields that

() = m ALz | 52| A @2 2 A |

Y

d+2J

as desired. O

Now we are in a position to establish Theorem 1. Het 2. Suppose for
contradiction that there is a setof more thand + 2 points in general position in
R+ that surrounds the origi. Fix ad-dimensional hyperplanB that does not
pass througl® and is not parallel to any lin@p (p € P). For anyp € P, either
the rayO_f) or its reflection about the origipr,o_f), intersectd1. In the former case,
assign top the intersection poird, = 0_>pﬁ I, and color itamber In the latter one,

assign top the pointb, = (—O_f)) NI, and color itblue Let A andB denote the
sets of amber and blue points, and3et AUB. Clearly, ANB = 0 and the seSis
in general position ifRY.

The assumption thd surrounds the origin implies (in fact, is equivalent to the
condition) that the two-colored s8tc RY satisfies the following property.

Claim 5. The set S= AUB (A, B # 0) is in general position iRY and|S > d + 2.
For every TC S,|T| = d+ 1, there exists x S\ T such that

conv(TU{x})NnAnconv(TU{x})NB#0.

In particular, every full-dimensional simplex whose veg8 belong to A contains
at least one element of B, and every full-dimensional simpleose vertices belong
to B contains at least one element of A.

Notice that the above construction can be carried out fordadimensional
hyperpland1. Changingl will result in a projective transformatiorof the point
setS= S(M). In the process, the color of a poiptchanges as it passes through a
position “at infinity” (asl becomes parallel to the lir@p).

Choose a projective transformation that maximizgs- |B|, that is, for which
the number of amber points is as large as possible. In theekegandB stands
for the corresponding sets of amber and blue points.

Claim 6. The sets A and B satisfy



1. [HNA| > |H NB], for any half-space H;
2. BC convA;
3. |Al>d+2

Proof. 1. If in some open half-spade, the points fromB outnumbered the points
from A, then a projective transformation that takes the supgpiiyperplane oH
to infinity would increaseA| — |B.

2. Choosing to be ad-flat induced by any + 1 elements oP, the result-
ing d-dimensional set has at leas$t- 1 amber points. Therefore, in the optimal
configuration,A ¢ RY is full-dimensional andA| > d + 1. Applying part 1 of the
statement to the half-spaces bounded by the facets of&Aamd disjoint from the
interior of convA, we obtain that no point d8 can lie outside of the convex hull of
A

3. Suppose for contradiction thd| =d+1. SinceS > d+2, there are at least
two elements oB in the interior of comVA. Then the interior of any supporting half-
space of the simplex coy, whose boundary hyperplane passes through a facet of
convA, contains two blue points and only one amber point. Thisrealntts part
1. O

We distinguish two cases.

Case 1l a > 0, i.e., the interior oftonvA contains at least one point of A.
Letag =d+ 1+ xanda; = 1+, for some non-negative numbetsndy. By
Claim 5,Sdoes not contain empty monochromatic full-dimensionalpdices. In
particular, every amber simplex contains at least one bduet [in its interior, so
that
|B| > t(A) > 1+x+d(1+y),

where the second inequality follows by Claim 4(1). Applyithg same claim t&,
we obtain that

t(B) > |B|—d>1+x+d(14+y)—d=1+x+dy.

On the other hand, every blue simplex contains at least orlzerapoint. By
Claim 6(2), such a point must belong to theterior of convA. Therefore, we
have

a;=1+y>1t(B).

Comparing the last two inequalities, we obtain thaty = 0 and|B| > d+ 1.

The caseg=d+ 1,8 =1, |B| > d+ 1 is impossible: On one of the sides of
a hyperplane containing a facet of cdBvhere are fewer thad points of A. By
Claim 6(1), this violates the maximality oA — |B|.




Nl
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Figure 1:{x,2,3,5} does not induce a Radon-partition for ang {1,4,6}.
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Case2: a3 =0, i.e., Ais in convex position.

Now we have|B| < d+ 1, otherwise there is a full-dimensional empty blue
simplex, contradicting Claim 5. ThereforB,is contained in some hyperplahe
Applying part 1 of Claim 6 to a half-space boundedtbthat contains at most as
many elements oA as the other, we obtain that

)

On the other hand, as in Case 1, we have
d+2
B > t(A) > |A| - {%J .

Comparing the upper and lower bounds|Bhand taking Claim 6(3) into ac-
count, we obtain thad is even andA| = d + 2.

If d > 2, then|B| < d, soB is contained in an infinite family of hyperplanes that
sweep througtR9. One of these hyperplanes must pass through a potwhich
gives us a half-space that contains more points fBthan fromA, contradicting
the maximality of|A| — |B|.

The remaining case = 2: The 4 points ofA are in convex position, and the
2 points ofB lie in opposite quadrants spanned by the diagonals of goriv is
easily seen that this configuration violates Claim 5. See FigrorT = {2,3,5},
there is no suitabl®&). This completes the proof of Theorem 1.

3 k-surrounding sets

A point setP in general position with respect to the origihis said to bek-
surrounding or is said to haveroperty 3Kk), if any k-element subset d? can
be extended to & + 1)-element subset that contai@én its interior.



Proof of Theorem 3The case whed is odd follows from the case whehis even.
To see this, suppose c R?" has propertyS(n+ 1), and consideP as a subset
of the hyperplang{(xy,...,Xn, —1)} € R such thatP surrounds the point
(0,...,0,-1). LetQ=PU{(0,...,0,1)}. Itis easily seen tha® has property
S(n+1): Let X C Q be of sizen+ 1. If X C P, there exists a s&t C P with
[Y| = n such that(0,...,0,—1) € convX UX'. Then the origin is contained in
convXUX'U{(0,...,0,1)}. Otherwise X = X'U{(0,...,0,1)}, whereX' C P
and |X’| = n. Taking into account that proper§(n+ 1) implies propertyS(n),
there exists a set C P with |Y| = n+1 such that(0,...,0,—1) € convX'UY,
and consequently, the origin is contained in céw Y. Therefore, it suffices to
consider the case whehis even.

To complete the proof of Theorem 3, it will be more convenigentransform
the problem via the well known Gale transform. (For detailaaerning the Gale
transform, we refer the reader to [6] or [12].)

Letd > 2 be an integer and suppoBe- RY is in general position with respect
to the origin,|P| = n, andP has property§(k). The Gale transform d?U {0} is a
(|P| +1)-element vector configuration IR"~9, which we denote by U{1}. Here
|[V| = nand the vectol corresponds to the origiin the “primal” space.

PropertyS(k) corresponds to the following property ¥f For everyU C V
with |U| = n—Kk, there exist® C U with |W| =n—d— 1, such thatny - 1)(nw -
v) < 0 for everyv € V\ W. Here,ny, is some fixed vector orthogonal W, and,
-, denotes the usual dot product.

In particular, propertyS(k) implies that there is aiin — d — 1)-dimensional
hyperplaneH through the origin with normal vectar such that(n-1)(n-v) < 0
for everyv € V. Therefore, if we extend the vectors\dto rays, they will intersect
H — 1. The set of intersection pointB;, is a set o points in general position in
R"-94-1 with the following property, denoted b§ (k): Among any n- k points of
P*, there are some & d — 1 that form a facet o€onvP*.

In fact, this necessary condition is also sufficient, for caa choose an ap-
propriate vectod in R"~¢ which corresponds to a point setc RY with property
S(k). Summarizing:

Observation 7. There exist n points ilRY satisfying property &) if and only if
there exist n points ilR"~9-1 satisfying property k).

We now complete the proof of Theorem 3. First note thatifer 2, the regular
2n+ 1-gon has propert$(2). It remains to exhibit arbitrarily large sets point sets
in RY for evend > 4 with propertyS(d/2+ 1).

For positive integer& andn > 2k— 1, letC(n, k) denote the cyclic polytope on
n vertices inR"~2*1, The facets o€(n,k) have a simple characterization known
as Gale’s evenness condition (see [6] or [12]). Using thasatterization, itis easy



to show that whem is odd,C(n,k) has propertys*(k). Hence, by Observation 7,
there exisn points inR?2 with propertyS(k). O

Remark.For the particular point sets we get fradin, k) it is easily checked,
using Gale’s evenness condition, that the maxintifor which there exists color-

ings of the points with colors and no rainbow simplex containing the origin, is
n+2k—1
R

By Observation 7, Problem 2 can be reformulated in terms efpitoperty
S'(k). We obtain the following.

Problem 8. Let d > 2 be fixed.

1. What is the largest integer k(d) such that there exists arbitrarily large
finite point sets P in general position ®RI”I~9-1 that have property ‘gk)?

2. What is the smallest integer & K(d) such that there exists no finite point
set P in general position ifR/"I=9-1 with more than d+ 1 elements, which
has property SK +1)?
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