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Given a triangle ∆, we study the problem of determining the smallest enclosing and

largest embedded isosceles triangles of ∆ with respect to area and perimeter. This prob-

lem was initially posed by Nandakumar [17, 22] and was first studied by Kiss, Pach, and
Somlai [13], who showed that if ∆′ is the smallest area isosceles triangle containing ∆,

then ∆′ and ∆ share a side and an angle. In the present paper, we prove that for any

triangle ∆, every maximum area isosceles triangle embedded in ∆ and every maximum
perimeter isosceles triangle embedded in ∆ shares a side and an angle with ∆. Some-
what surprisingly, the case of minimum perimeter enclosing triangles is different: there
are infinite families of triangles ∆ whose minimum perimeter isosceles containers do not
share a side and an angle with ∆.

Keywords: Isosceles triangle; special container; minimal cover.

1. Introduction

The following classical problem is the starting point of our investigation. Given two

convex bodies, C and C ′ in Rd, decide whether C can be moved into a position
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where it covers C ′. One can easily list some necessary conditions, for instance, the

volume, the surface area and the diameter of C has to be at least as large as the

one of C ′. However, solving the decision problem can be rather challenging, even in

R2, or for special cases that might seem friendly at first sight.

For instance, consider the setup where C ′ is the ‘shadow’ of C, that is, C is

embedded into R3 and C ′ is the orthogonal projection of C onto a 2-dimensional

affine subspace. The necessary conditions are clearly satisfied and it looks plausible

that there is always a congruent copy of C which covers C ′. However, the proof

of this fact is far from straightforward [5, 14], and curiously, the result does not

generalize to higher dimensions: for d ≥ 3, no convex d-polytope embedded in Rd+1

can cover all of its shadows [5].

Another special case is where both convex bodies are triangles in R2: given two

triangles ∆ and ∆′, the goal is to find an efficient way to decide whether ∆ can

be brought into a position where it covers ∆′. This is a classical problem posed by

Steinhaus [26] in 1964 and an algorithmic solution was proposed only 29 years later

by Post [21], who described a set of 18 polynomial inequalities of degree 4 such that

a copy of ∆ can cover ∆′ if and only if at least one of these inequalities are satisfied.

The key geometric component of Post’s solution is the following.

Lemma 1 (Post [21]). If a triangle ∆ can be moved to a position where it covers

another triangle ∆′, then one can also find a covering position of ∆ with a side that

contains one side of ∆′.

Results of this kind help us to reduce the number of configurations to consider,

and are of both theoretical and practical interest.

1.1. Optimal covers from a class

In the present paper, we study a variant of the covering problem where the body

C (or C ′) is not fixed, but can be chosen from a family of possible objects and we

want to find a solution which is in some sense optimal, for example, has minimum

area or perimeter.

Several classical problems in geometry can be viewed as covering problems of this

kind: finding an optimal enclosing triangle, polygon, or ellipse (Löwner-John ellipse)

for a given input set [3, 4, 6–8, 10, 11, 23, 24] as well as their higher dimensional

analogues (that is, simplices, polytopes, ellipsoids [12, 19, 28]). Apart from their

theoretical interest, these problems have found applications in various areas of com-

puter science and mathematics (optimization, packing and covering, approximation

algorithms, convexity, computational geometry), see [9, 15, 25]. In the past decade,

several explicit algorithms were proposed for the case of triangles [3, 16, 20, 27].

In this work, we consider containers that are in some sense oriented. Apart

from ellipses, isosceles triangles are perhaps the most natural candidates for such

containers: their orientation is determined by their axis of symmetry. The study
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of isosceles containers was initiated by Nandakumar [17, 18, 22] who raised the

following two optimisation problems:

(A) Given a triangle ∆, determine the minimum area and the minimum perimeter

isosceles triangles that contain ∆.

In what follows, we study these two questions, together with their ‘dual’ versions:

(B) given a triangle ∆, determine the maximum area and the maximum perimeter

isosceles triangles embedded (that is, contained) in ∆.

Our goal is to describe the list of possible solutions for each of the above four

problems. There are 9 natural candidates for isosceles enclosing or embedded trian-

gles which we call special (for a discussion of cases and figures, see Sec. 2).

Definition 2. For a triangle ∆, we say that ∆′ is a special enclosing (or embedded)

isosceles triangle of ∆ if ∆′ is isosceles, it encloses (or embeds into) ∆, and it shares

a side with ∆ and an angle at one end of this side.

Minimum area isosceles containers have been recently studied by Kiss, Pach,

and Somlai [13]. They showed that in this case, any optimal container is special

and, for each ∆, there are only 3 special isosceles containers for which the minimum

can be attained. In this paper, we complete the picture: we characterize the optimal

solutions for the other three problems stated above.

We prove that for three of the four optimisation problems considered, the opti-

mum is always attained at a special configuration.

Theorem 3. Let ∆ be a triangle in R2

(i) If ∆′′ ⊇ ∆ is a minimum area isosceles container of ∆, then ∆′′ is a special

container of ∆ [13].

(ii) If ∆′ ⊆ ∆ is a maximum area embedded isosceles triangle in ∆, then ∆′ is a

special embedded isosceles triangle of ∆.

(iii) If ∆′ ⊆ ∆ is a maximum perimeter embedded isosceles triangle in ∆, then ∆′

is a special embedded isosceles triangle of ∆.

Moreover, in each of these cases, we will restrict the number of possible optimal

configurations to only 3 special triangles (see Corollary 8 and Remarks 9, 12).

Interestingly, in the case of minimum perimeter containers, the optimal triangle

is not necessarily special.

Theorem 4. There are infinite families of triangles ∆ such that none of their

minimum perimeter isosceles containers is special. We describe 5 different types of

isosceles containers such that any triangle ∆ has a minimum perimeter isosceles

container ∆′ which belongs to one of these types. Only 3 out of them are special.
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We note that for any input triangle, the areas and perimeters of the at most

5 possible optimal embedded or enclosing isosceles triangles can be computed

efficiently.

Our paper is organized as follows. In Sec. 2, we fix the notation and list some easy

preliminary statements. In Sec. 3 and Sec. 4, we present the proofs of Theorem 3(ii)

and Theorem 3(iii), respectively. Finally, Sec. 5 is dedicated to the description of

the 5 types of isosceles containers mentioned in Theorem 4 and to the proof of this

result.

2. Preliminaries and Notation

We start by stating three simple lemmas (Lemmas 5–7) formulating elementary

properties of the optimal embedded and enclosing isosceles triangles and, thus,

providing a unified starting point for the proofs of Theorems 3 and 4. The straight-

forward proofs of these lemmas can be found in the appendix to the arXiv version

of the paper; see also [1].

Lemma 5. Let ∆1 and ∆2 be two triangles.

(i) Let ∆′1 be a similar copy of ∆1 of maximum area (resp. perimeter) such that

∆′1 ⊆ ∆2. Then

(a) there is a side of ∆2 that contains a side of ∆′1;

(b) every side of ∆2 contains a vertex of ∆′1;

(c) ∆′1 and ∆2 have a common vertex.

(ii) Let ∆′1 be a similar copy of ∆1 of minimum area (resp. perimeter) such that

∆2 ⊆ ∆′1. Then

(a) there is a side of ∆′1 that contains two vertices of ∆2;

(b) every side of ∆′1 contains a vertex of ∆2;

(c) ∆′1 and ∆2 have a common vertex.

Optimal isosceles enclosing and embedded triangles satisfy further properties.

Lemma 6. (i) For every triangle ∆, there exist a minimum area (resp. perimeter)

isosceles container of ∆ and a maximum area (resp. perimeter) isosceles triangle

embedded in ∆.

(ii) If ∆1 is a maximum area (resp. perimeter) isosceles triangle embedded in ∆,

then every vertex of ∆1 lies on a side of ∆.

(iii) If ∆2 is a minimum area (resp. perimeter) isosceles container of ∆, then every

vertex of ∆ lies on a side of ∆2.

Basic notation. For any two points, A and B, let AB denote the closed segment

connecting them, and let |AB| stand for the length of AB. To unify the presentation,

in the sequel we fix a triangle ABC with side lengths a = |BC|, b = |AC|, c = |AB|.
If two sides are of the same length, then ABC is the unique minimum area and
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perimeter isosceles container (and also maximum area and perimeter embedded

isosceles triangle) of itself. Therefore without loss of generality, we assume that

a < b < c. In the remaining part of this section, we introduce the notation that we

use for the special embedded and enclosing isosceles triangles, which are the key

objects of our paper (see Definition 2, Theorems 3 and 4).

2.1. Special embedded isosceles triangles

Given a triangle ABC, we describe its special embedded isosceles triangles, that is,

all those isosceles triangles contained in ABC that have a common side with ABC

and share an angle at one of the endpoints of the common side.

Special embedded triangles of the first kind. Let A′ be a point of AC with

|A′C| = |BC| and let B′ and A′′ be two points of AB such that |AB′| = |AC| and

|A′′B| = |BC| (see Fig. 1). We say that A′BC, AB′C, and A′′BC are the special

embedded triangles of the first kind associated with ABC.

Special embedded triangles of the second kind. Let C1 be the intersection

of the perpendicular bisector of AB and the segment AC. Analogously, let A1 be

the intersection of the perpendicular bisector of BC and AC, and let B1 be the

intersection of the perpendicular bisector of BC and the line AC (see Fig. 2). The

triangles A1BC, AB1C, and ABC1 are the special embedded triangles of the second

kind associated with ABC.

Special embedded triangles of the third kind. Let A be a point of AB, where

|AC| = |BC|. Analogously, let A ∈ AC, and B ∈ BC such that |AB| = |BC|, and

|BA| = |AC| (see Fig. 3). Note that if ABC is non-acute, then ABC and ABC

A B

C

A B

C

A B

C

A

B′ A′′

Fig. 1. Special embedded triangles of the first kind.

A B

C

A B

C

A B

C

C1

B1A1

Fig. 2. Special embedded triangles of the second kind.
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A

Fig. 3. Special embedded triangles of the third kind.

do not exist. The triangles ABC, ABC, and ABC are called the special embedded

triangles of the third kind associated with ABC.

2.1.1. Basic inequalities for special embedded triangles

We collect a few inequalities on the area and perimeter of special isosceles embedded

triangles. For a triangle ∆, let per(∆) and area(∆) denote the perimeter and the

area of ∆, respectively.

Lemma 7. If ABC satisfies a < b < c, then

(i) area(A′′BC) < area(A′BC);

(ii) area(A1BC) < area(AB′C) and area(AB1C) < area(ABC1);

(iii) area(ABC) < area(ABC1), area(ABC) < area(ABC), and area(ABC) <

area(AB′C);

(iv) if ABC is obtuse, then area(A′BC) < area(ABC1).

Lemma 7 implies that only 3 of the special embedded triangles of ABC can be

optimal.

Corollary 8. If ABC satisfies a < b < c, then any maximum area special embedded

triangle of ABC is one of the following triangles: A′BC, AB′C, ABC1.

Remark 9. Similar results hold for the perimeter function, implying that any

maximum perimeter special embedded triangle of ABC is one of the triangles AB′C,

A1BC, or ABC1.

2.2. Special enclosing isosceles triangles

Given a triangle ABC, now we describe its special enclosing isosceles triangles, that

is, all those isosceles triangles containing ABC that have a common side with ABC

and share an angle at one of the endpoints of the common side.

Special containers of the first kind. Let B′ denote the point on the ray ~CB,

for which |B′C| = |AC|. Analogously, let C ′ (and C ′′) denote the points on ~AC

(resp., ~BC) such that |AC ′| = |AB| (resp., |BC ′′| = |AB|), see Fig. 4. We call the
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A

B

C

B′

C ′

C ′′

A B

C

B1

C1

C2

Fig. 4. Special containers of the first kind (AB′C,ABC′, and ABC′′) and second kind (AB1C,
ABC1, and ABC2).

triangles AB′C, ABC ′, and ABC ′′ special containers of the first kind associated

with ABC.

Special containers of the second kind. Let B1 denote the point on the ray ~AB,

different from A, for which |B1C| = |AC|. Analogously, let C1 (resp., C2) denote the

point on ~AC (resp., ~BC) for which |BC1| = |AB| and C1 6= A (resp., |AC2| = |AB|
and C2 6= B), see Fig. 4. The triangles AB1C, ABC1, and ABC2 are called the

special containers of the second kind associated with ABC.

Special containers of the third kind. Let A be the intersection of the perpen-

dicular bisector of BC and the line AC. Since we have b = |AC| < |AB| = c, the

point A lies outside of ABC. Analogously, denote by B (resp., C) the intersection

of the perpendicular bisector of AC (resp. AB) and the line BC. (If ABC is non-

acute ABC and ABC do not contain ABC (Fig. 5).) The triangles ABC, ABC,

and ABC are called the special containers of the third kind associated with ABC,

provided that they contain ABC.

2.2.1. Basic inequalities for special containers

Similarly to the case of maximum area embedded triangles, we can show that not

all special containers can be of minimum perimeter.

C

A B

B
A

C

A B

C

C

Fig. 5. Special containers of the third kind (ABC,ABC,ABC) in the acute and in the non-acute
cases.
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Lemma 10. If ABC satisfies a < b < c, then

(i) per (ABC ′) < per (ABC ′′) and per (AB′C) < per (AB1C) ;

(ii) per (ABC ′) < per (ABC2) < per (ABC1) ;

(iii) per (ABC ′) < per
(
ABC

)
< per

(
ABC

)
.

The straightforward proof of Lemma 10 is given in the arXiv version of the

paper [1]. Lemma 10 immediately gives the following corollary.

Corollary 11. If ABC satisfies a < b < c, then any minimum perimeter special

container of ABC is one of the following triangles: AB′C, ABC ′, ABC.

Remark 12. Similar results hold for the area function, implying that a minimum

area special container of ABC is one of the triangles AB′C, ABC ′, or AB1C.

3. Maximum Area Embedded Isosceles Triangles

— Proof of Theorem 3(ii)

Let ABC be a triangle and let XY Z denote one of its maximum area isosceles

embedded triangles. In this section, we prove that XY Z has to be a special embed-

ded triangle. We use the notation a = |BC|, b = |AC|, c = |AB|, x = |Y Z|,
y = |XZ|, z = |XY |, and assume (with no loss of generality) that a < b < c.

By Lemmas 5 and 6, we have the following statements on maximum area embed-

ded isosceles triangles.

Lemma 13. Let XY Z be any maximum area isosceles triangle embedded in ABC.

Then

(i) a side of ABC contains a side of XY Z;

(ii) every side of ABC contains a vertex of XY Z;

(iii) ABC and XY Z have a common vertex;

(iv) no vertex of XY Z lies in the interior of ABC.

If XY Z has at least two common vertices with ABC, then by Lemma 13(iv),

XY Z and ABC have a common side and a common angle. Therefore, we can assume

that ABC and XY Z have exactly one common vertex.

Denote the midpoints of the sides BC, AC, and AB by mA, mB , and mC ,

respectively. We divide the boundary of ABC into 3 polylines defined as

m̂AmB = mAC ∪ CmB , m̂BmC = mBA ∪AmC , m̂CmA = mCB ∪BmA.

We get the following constraint on the position of X, Y , and Z:

Lemma 14. Let XY Z be a maximum area embedded isosceles triangle of the

triangle ABC. Then each of m̂AmB , m̂BmC , and m̂CmA contains exactly one vertex

of XY Z.
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A B

C

c

b a

mC

mAmB

Z

X
T1

T2

Y

Fig. 6. Illustration for the proof of Lemma 14.

Proof. By Lemma 13, X,Y, Z lies on the boundary of ABC. Assume, without loss

of generality, that m̂AmC contains X and Z, see Fig. 6.

Let T1 = mAmC ∩ XY and T2 = mAmC ∩ Y Z. Then area(XT1T2Z) ≤
area(BmAmC) and by |T1T2| ≤ |mAmC | we obtain that area(T2T1Y ) ≤
area(mAmBmC). Thus we have

area(XY Z) ≤ area(BmAmC) + area(mAmBmB) =
area(ABC)

2
.

On the other hand, since c ≤ a + b ≤ 2b, the special embedded triangle AB′C

satisfies

area(AB′C) =
b2 sin(^CAB)

2
>
bc sin(^CAB)

4
=

area(ABC)

2
.

Hence, area(XY Z) < area(AB′C), which contradicts the maximality of the area of

XY Z.

Lemmas 13 and 14 imply that a maximum area embedded isosceles triangle of

ABC is either special or its vertex arrangement corresponds to one of the 9 cases

illustrated in Fig. 7.

To complete the proof of Theorem 3(ii), it remains to prove that none of the

arrangements depicted on Fig. 7 can be optimal. We prove this for each of the 9

cases, separately. Note that in some instances, we will refer to special embedded

triangles using their specific labeling introduced in Sec. 2.1.

Case A: The common vertex of ABC and XY Z is A = X.

Subcase A.1: Y ∈ BC and Z ∈ AC.

Observe that since b < c, the orthogonal projection of A onto CB is contained in

CmA, which implies that ^AY B is obtuse. Thus, we can rotate XY Z about X

such that two of its vertices get to the interior of ABC and so, by Lemma 13, XY Z

cannot be of maximum area.

Subcase A.2: Both Y and Z are in BC.

If y = z, then we can increase area(XY Z) by moving Z towards C and Y towards

B while maintaining |XZ| = |XY |, since α = ^CAB < 90◦. If ABC is acute, then
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(C.1)

A B

C = Z
(C.2)

A B

C = Z
(C.3)

A B

C = Z

(B.1)

A B = Y

C
(B.2)

A B = Y

C
(B.3)

A B = Y

C

(A.1)

A = X B

C
(A.2)

A = X B

C
(A.3)

A = X B

C

mC mC mC

mC

mC mC

mC mC

mC

mAmB

mAmB

mB mA

mAmB

mAmB

mAmB

mAmBmAmBmAmB

Y

Z

z

xy

Z

Y
y x

z

Z

Y

y x

z

X

Z

z

y
x X

Z

z

y
x

Z

X

xy

z

X

Y

x

z

y

X Y

y

z

x

X

Y
y

z

x

Fig. 7. The 9 possible arrangements of the vertices X,Y, Z in a given triangle ABC.

we can do this until the vertices Z and C will coincide, and the triangle XY Z will

be the same as the special embedded triangle ABC. If ABC is non-acute, then

y 6= z. Clearly, |AZ| = y > |ZB| > |Y Z| = x. Hence, x 6= y. A similar argument

shows that x 6= z.

Subcase A.3: Y ∈ AB and Z ∈ BC.

Since a < b, the orthogonal projection Ẑ of Z to the line segment AB lies in mCB.

If x = y, then |AY | = 2|AẐ| > 2|AmC | = |AB|, a contradiction to Y ∈ AB.

If x = z, then the altitude with base z in XY Z is smaller than the altitude

with base c in ABC. On the other hand, if ^ZY B ≥ 90◦, we have x = z < a. In

this case, the special embedded triangle A′′BC satisfies area(A′′BC) > area(XY Z).

Otherwise, x = z < y (as ^AY Z > 90◦) and y < c. Let Y ′ be the point in AB that

is defined by the equality |AY ′| = |AZ| (the existence of Y ′ ∈ AB is a consequence

of y < c). Then, area(XY ′Z) > area(XY Z). In both cases it follows that the area

of XY Z cannot be optimal.

If y = z, consider the special embedded triangle AB′C, define l to be the line

parallel to B′C going through Y and let Z ′ = l ∩ BC, see Fig. 8. Since Z ′ ∈ CZ,

we have

area(XY Z) < area(XY Z ′) = area(AB′C) · b+ |B′Y |
b

· c− b− |B
′Y |

c− b
.
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BA = X Y

Z
Z ′

B′

C

Fig. 8. Illustration for Subcase A.3.

The inequality follows from the fact that Z ′ ∈ CZ. Therefore, the altitude of XY Z

with base z is greater than the altitude of XY Z ′ with base z. Thus, it is enough to

show that

b+ |B′Y |
b

· c− b− |B
′Y |

c− b
< 1.

As b > 0 and c−b > 0, this is equivalent to |B′Y |(2b−c+ |B′Y |) > 0, which follows

from the triangle inequality c < a+ b < 2b.

Case B: The common vertex of ABC and XY Z is B = Y .

Subcase B.1: X ∈ AC and Z ∈ BC.

Since a < c, we have that ^AXY > 90◦, and hence, we can rotate the triangle

XY Z about Y so that the image of the vertices X,Z will be inside of ABC. As in

Subcase A.1, this implies that the area of XY Z is not optimal.

Subcase B.2: Both X and Z are in AC.

Observe that b < c implies that A and C are on the same side of the perpendicular

bisector of BC. This implies that |XY | = z > |XC| > |XZ| = y. If x = z, we can

‘open’ ^XY Z as in Subcase A.2 and get that area(XY Z) < area(ABC). Hence,

we can assume that x = y.

If the triangle ABC is non-acute, then consider the special embedded triangle

ABC1. Since the altitudes of ABC1 andXY Z from vertex B = Y are equal, and x =

y < |BC1| = |AC1| (as ^BCA ≥ 90◦), we have that area(XY Z) < area(ABC1).

If ABC is acute, let B̂ denote the orthogonal projection of B onto AC. If

Z ∈ AB̂, then we can slightly rotate XY Z about Y (as ^Y XA > ^Y ZA >

90◦). Thus, by Lemma 13(iv), the area of XY Z is not maximal. Thus, we can

assume that Z ∈ CB̂, that is, ^Y ZA ≤ 90◦. Similarly as above, this implies that

x = |Y Z| < a = |BC| and thus the special embedded triangle A′BC satisfies

area(XY Z) < area(A′BC).

Subcase B.3: X ∈ AB and Z ∈ AC.

If y = z, then, since ^CAB < min(^AXZ,^ZXY ), we get that y = |XZ| <
|AZ| < b = |AC|, which immediately implies that the special embedded triangle

AB′C satisfies area(XY Z) < area(AB′C).

Now we assume that x = z. If A and Z lie on the same side of the perpen-

dicular bisector of AB, then we can reflect XY Z to this perpendicular bisector.
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We denote this reflection by X ′Y ′Z ′. Clearly, X ′, Y ′ ∈ AB, and Z ′ is inside of

ABC, which implies that area(XY Z) is not maximal. If Z is on the perpendicular

bisector of AB, then XY Z is strictly contained in the special embedded trian-

gle ABC1, so area(XY Z) < area(ABC1). If Z and C are on the same side of

the perpendicular bisector of AB, then x = z < |AZ| < |AC| = b, and hence

area(XY Z) < area(AB′C).

It remains to handle the case x = y. We show that area(XY Z) < area(ABC1).

The condition x = y implies that Z ∈ C1C. Plainly, z = c − |AX|. Denote the

lengths of the altitudes from C1 in ABC1 and from Z in XY Z by hC1
and hZ ,

respectively. Clearly, we get hZ = hC1

c+|AX|
c , and hence

area(XY Z) = area(ABC1)
c+ |AX|

c
· c− |AX|

c
< area(ABC1).

Case C: The common vertex of ABC and XY Z is C = Z.

Subcase C.1: X ∈ AC and Y ∈ AB.

If Y and B are on the same side of the altitude from C, then we can rotate XY Z

about Z so that X and Y get to the interior of ABC which by Lemma 13(iv) implies

that XY Z is not optimal. If Y and B are on different sides of the altitude from C,

then XY Z is strictly contained in the special embedded triangle AB′C.

Subcase C.2: Both X and Y are contained in AB.

If x = y, then we can ‘open’ ^Y ZX, which increases its area, thus area(XY Z) is

not maximal. Suppose that x = z. If Y and A are on the same side of the altitude

from C, then XY Z is strictly contained in the special embedded triangle AB′C. If

Y and A lie on different sides of the altitude, then the special embedded triangle

A′′BC satisfies area(XY Z) < area(A′′BC). Indeed, their altitudes from C are the

same, and for their bases we have x = z < a. Thus XY Z is not maximal. A similar

argument shows that if y = z, then we have area(XY Z) < area(AB′C).

Subcase C.3: X ∈ AB and Y ∈ BC.

We can rotate XY Z about Z such that the images of X and Y lie in the interior

of ABC, and so, by Lemma 13(iv), we get that area(XY Z) is not maximal.

We have shown that none of the triangles XY Z of the 9 cases in Fig. 7 is a

maximum area embedded isosceles triangle of ABC, which completes the proof of

Theorem Lemma 3(ii). �

4. Maximum Perimeter Embedded Isosceles Triangles

— Proof of Lemma 3(iii)

In this section, we prove that for any triangle ABC, any maximum perimeter isosce-

les triangle XY Z embedded in ABC shares a vertex and the angle at that vertex

with ABC. First we collect the observations in Lemmas 5 and 6 concerning maxi-

mum perimeter embedded isosceles triangles.
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Lemma 15. Let XY Z be a maximum perimeter isosceles triangle embedded in

ABC. Then

(i) each side of ABC contains a vertex of XY Z;

(ii) no vertex of the triangle XY Z lies in the interior of the triangle ABC;

(iii) there is a side of ABC which contains a side of XY Z;

(iv) ABC and XY Z share a vertex.

We will show that an isosceles triangle embedded in ABC which does not share

an angle with ABC cannot be of minimum perimeter. Notice that if ABC and

XY Z share at least two vertices, then, by Lemma 15(ii), they also share an angle,

so we are done. Thus, it is enough to consider those cases where the triangles XY Z

and ABC share exactly one vertex, without loss of generality the common vertex

is A.

Note that in this section, we do not assume a special labeling of ABC, in

particular, we do not necessarily have |BC| < |AC| < |AB|. On the other hand, we

assume that XY Z is labeled so that |XY | = |Y Z|.
We consider the following cases, separately:

Case A: X and Z lie on the same side of ABC.

We can always rotate X or Z (for simplicity, assume it is X) about Y so that

the rotated point X ′ lies in the interior of ABC and ^XY Z < ^X ′Y Z, see

Fig. 9. By the Hinge theorem (which states that if XY Z and X ′Y ′Z ′ are tri-

angles such that XY = X ′Y ′, Y Z = Y ′Z ′, and ^XY Z < ^X ′Y ′Z ′, then

per (XY Z) < per (X ′Y ′Z ′)), we get that per (XY Z) < per (X ′Y Z).

Case B: X and Z lie on different sides of ABC.

We will make use of the following classical lemma on the perimeter of the Minkowski

sum of convex bodies.

Lemma 16 (see e.g.[29, exercise 4–7]). Let K1 and K2 be two convex bodies

in the plane and let K = K1+K2

2 be the Minkowski mean of K1 and K2. Then the

perimeter of K is equal to the arithmetic mean of the perimeters of K1 and K2. If

K1 and K2 are not homothetic triangles, then K is a convex polygon with at least

four sides.

The idea is to show that the triangle XY Z is strictly contained in the Minkowski

mean M of two other non-homothetic isosceles triangles embedded in ABC, thus,

C = Y

A Z

X 0

BX A = Z X B

Y
C

X
0

Fig. 9. Illustration for Case A.
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by Lemma 16, one of these two must have a strictly larger perimeter (by the fact

that if C1, C2 are two convex planar sets such that C1 ⊆ C2, then per (C1) ≤ per (C2)

[2, 12.10.2]). We proceed by defining 3 subcases and finding such a pair of iscosceles

triangles in each subcase separately.

Subcase B.1: The common vertex of ABC and XY Z is A = Y .

If none of X and Z is on the side opposite to Y , then XY Z and ABC have a

common angle at Y . Thus, we can assume that either X or Z is on the side opposite

to Y , say it is X.

Let δ be a constant satisfying δ < min{|XB|, |XC|}. Define the points X1 and

X2 by translating X by δ towards C and B, respectively. Let Z1 and Z2 be such

that they are contained on the side AB with |Y Z1| = |Y X1| and |Y Z2| = |Y X2|,
see Fig. 10. Let M be the Minkowski mean of X1Y Z1 and X2Y Z2. The vertex Y is

contained in both triangles, thus it is also contained in M . It is also easy to see that

X ∈M since X = 1
2 (X1+X2). We show that Z is contained in the segment between

Y and 1
2 (Z1+Z2), which implies Z ∈M . To this end, observe that the segment Y X

is a median of the triangle X1Y X2 and thus |Y X| < 1
2

(
|Y X1|+ |Y X2|

)
, which

directly gives that |Y Z| < 1
2

(
|Y Z1|+ |Y Z2|

)
.

Subcase B.2: The common vertex of ABC and XY Z is A = Z and both X and

Y are in the interior of the side of ABC opposite to Z.

Define the points X1 and X2 by translating X by δ towards C and B, respectively.

We choose δ to be small enough such that there are points Y 1, Y 2 in the segment BC

with |Y 1Z| = |Y 1X1| and |Y 2Z| = |Y 2X2|, see Fig. 11. Let M be the Minkowski

mean of X1Y Z1 and X2Y Z2. As before, it is clear that the vertices X and Z are

contained in M .

C

X

A = Y Z B

X1

X2

Z1 Z2

Fig. 10. Illustration for Subcase B.1.

C

BA = Z

Y

X
X1

Y1

Y

Fig. 11. Illustration for Subcase B.2.
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A = Z (0; 1)

(x; 0)

f(x)

Yx

Px

Xx
C

(c; 0)

B

(b; 0) (0; 0)

O

Fig. 12. Embedding the instance of Subcase B.2 in R2.

To argue that Y ∈M , we shall show that Y is contained in the segment between

X and 1
2 (Y 1 + Y 2). To simplify the calculations, we move and scale the triangle

so that A = (0, 1), B = (b, 0), C = (c, 0) and X = (x′, 0) with b < x′ < c. Note

that since ^ZXY is acute, x′ < 0. For each b < x < 0, let Xx = (x, 0) and Yx be

the point in BC such that |ZYx| = |YxXx| and define f(x) = |XxYx|, see Fig. 12.

Observe that Y is contained in the segment between X and 1
2 (Y 1 +Y 2) if and only

if 1
2 (f(x′−δ)+f(x′+δ)) > f(x′). Thus, it is sufficient to show that f(x) is a convex

function on (b, 0).

To find an analytic formula for f(x), we introduce some auxiliary points. Let

O = (0, 0) and Px be the orthogonal projection of Yx to the segment XxZ. Note

that Px is the midpoint of XZ. Then the triangles XxPxYx and XxOZ are similar,

which yields

f(x) = |YxXx| = |XxZ| ·
|XxPx|
|XxO|

=
√

1 + x2 ·
√

1 + x2/2

−x
=

1 + x2

−2x
.

The second derivative of f is f ′′(x) = −1/x3, thus f(x) is convex on the interval

(b, 0), which implies that Y is contained in the segment between X and 1
2 (Y 1 +Y 2).

Subcase B.3: The common vertex of ABC and XY Z is A = Z and X, Y lie in

the interior of different sides of ABC.

Firstly, since X and Z lie on different sides of ABC, we get that X is on the side

opposite to Z, see Fig. 13. If ^AXB is obtuse, then we can rotate the triangle XY Z

about Z and obtain a copy of XY Z which has two vertices in the interior of ABC,

thus by Lemma 15, XY Z cannot be of maximum perimeter. Therefore, ^AXB and

consequently ^ACB are acute.

Define the points X1 and X2 by translating X by δ towards C and B, respec-

tively. We choose an increment δ ∈ (0, 1/c) which is small enough that there are

points Y 1, Y 2 in the segment AC with |Y 1Z| = |Y 1X1| and |Y 2Z| = |Y 2X2|. Let

M be the Minkowski mean of X1Y Z1 and X2Y Z2. The vertices X and Z are clearly

contained in M .
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C

BA = Z

Y 2

Y

Y 1

X

X1

X2

Fig. 13. Illustration for Subcase B.3.

A = Z
(0; 1)

(x; 0)

f(x)

Px

C

(c; 0)

Fig. 14. Embedding the instance of Subcase B.3 in R2.

To prove that Y ∈M , we shall show that Y is contained in the segment between

Z and 1
2 (Y 1 + Y 2). Again, we translate and scale of the triangle so that A = (0, 1),

B = (b, 0), C = (c, 0) and X = (x′, 0) with b < x′ < c. Since ^AXB is acute, we

have x′ ≥ 0. For each x ∈ [x′ − δ, x′ + δ], let Xx = (x, 0) and Yx be the point in

ZC such that |ZYx| = |YxXx| and define f(x) = |ZYx|, see Fig. 14. Note that since

x′ ≥ 0 and δ is smaller than 1/c, each x ∈ [x′ − δ, x′ + δ] satisfies −1/c < x. We

want to show that the function f(x) is convex, which then directly implies that Y

is contained in the segment between Z and 1
2 (Y 1 + Y 2).

Let Px = (p1(x), p2(x)) be a point on AC such that the segment PxXx is orthog-

onal to AXx. Note that Px satisfies |ZPx| = 2f(x).

Let γ denote the angle ^ACXx, then p2(x) = 1−2 sin(γ) ·f(x) which is concave

if and only if f(x) is convex. Since XxPx is orthogonal to AXx and Px is contained

in AC, we get the following equations on p1(x) and p2(x)

p1(x) · x− p2(x) = x2, p1(x) + cp2(x) = c,

which gives p2(x) = cx−x2

cx+1 . Taking the second derivative, we get

p′′2(x) = − 2(1 + c2)

(1 + cx)3
< 0 for all x ∈

(
−1

c
,∞
)
.

We showed that none of the triangles of types A and B.1–B.3 can be a maxi-

mum perimeter embedded isosceles triangle of ABC, which completes the proof of

Theorem 3(iii). �
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5. Minimum Perimeter Enclosing Triangles

— Proof of Theorem 4

In this section, we prove that any smallest perimeter isosceles container of a triangle

is either a special container or one of two non-special containers defined in the

next subsection. We also show that this is the shortest possible characterization

of isosceles containers, that is, any of the five examples is realized as a minimum

perimeter isosceles container for some triangle ABC. Now, we define two non-special

isosceles containers that can be optimal.

Note that in this section, we do not assume a special labeling of ABC, in particular,

we do not necessarily have |BC| < |AC| < |AB|. Furthermore, we assume that the

isosceles containers of ABC are labelled with PRS satisfying |PR| = |RS|.

5.1. Two examples for non-special minimum perimeter

containers of a triangle

Let P be a point in R2 and l a line such that P 6∈ l and let m denote the distance

of P from l. Define an isosceles triangle PRγSγ such that Sγ and Rγ lie on l and

its apex angle γ is in Rγ , see Fig. 15.

Proposition 17. The perimeter function p(γ) = per (PRγSγ) has a unique min-

imum at

γ∗ = 4 tan−1
(

1

2
(1 +

√
5−

√
2(1 +

√
5))

)
≈ 76.3466◦. (1)

Proof outline. It is easy to see that |PRγ | = |RγSγ | = m
sin γ and |PSγ | =

m
sin(90◦−γ/2) = m

cos(γ/2) . Hence per (PRγSγ) = m
(

2
sin γ + 1

cos(γ/2)

)
. Elementary

analysis shows that the function f(x) = 2
sin x + 1

cos(x/2) is strictly decreasing in

(0◦, γ∗] and strictly increasing in [γ∗, 180◦). Thus it has a unique minimum in

0 ≤ x ≤ 180◦ that is taken at the value specified in Eq. (1).

Example 18. Let PRS = PRγ
∗
Sγ

∗
be an isosceles triangle with apex angle γ∗

which is defined as in Proposition 17. Let ABC be an acute triangle in PRS such

that ABC and PRS have exactly one common vertex at A = P and B,C ∈ SR (see

Fig. 16). Furthermore, ABC is such that the largest angle γ of ABC is at C with

γ < γ∗ being close to γ∗ (e.g., 76◦) and ABC is almost isosceles (|AC| ≈ |BC|).

Rγ

P

Sγ

m

γ
l

Fig. 15. Illustration for Proposition 17.
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Fig. 16. Illustration for Example 18.

Claim 1. The perimeter of PRS is strictly smaller than the perimeter of any

special container of ABC.

Proof outline. By Corollary 11, it is enough to show that the special con-

tainers AB′C, ABC ′, and ABC have larger perimeter than PRS. First observe

that, since a ≈ b < c, ABC is an ‘almost’ isosceles triangle, thus the perimeter

per (AB′C) ≈ per (ABC) and per (ABC ′) > d · per (ABC), for a fixed d > 1. This

implies that per (AB′C) < per (ABC ′). Now we show that PRS has perimeter

smaller than per (AB′C) and per
(
ABC

)
. Note that, each of PRS, AB′C and ABC

are isosceles triangles with base vertex A = P and legs on the line RS. By Propo-

sition 17, the smallest perimeter isosceles triangle under these conditions is PRS.

Thus, it is enough to guarantee that the triangles AB′C and ABC do not coincide

with PRS which follows from the fact that ABC and PRS has exactly one common

vertex.

Now we turn to our second example. We start by taking the points A = P =

(0, 0), C = (1, v) and Sx = (x, 0) and define Rx to be the point on the ~SxC ray so

that |PRx| = |RxSx|. The next claim follows by elementary calculations, its proof

is omitted.

Proposition 19. For any x ∈ (1, 2), the perimeter of PRxSx can be expressed as

per (PRxSx) = fv(x) = x

(
1 +

√
1 +

v2

(1− x)2

)
. (2)

and for any v ∈ [0.56,
√

3), the function fv has a unique minimum in (1, 2) denoted

by x∗v.a

Example 20. Consider a triangle ABC that can be embedded in R2 as A =

(0, 0), C = (1, v) and B = (xb, 0) with 1 < xb < x∗v (the value x∗v is defined in

aThe formula for x∗v is given in [1].
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Fig. 17. Illustration for Example 20.

Proposition 19; see also Fig. 17). Let PRS be the an isosceles triangle with P = A,

S = (x∗v, 0), and R defined as the point on the ~SxC ray with |PR| = |RS|. By

definition, SPR is an isosceles container of ABC.

Claim 2. The perimeter of PRS is smaller than the perimeter of any special

container of ABC.

Proof outline. By Corollary 11, we only need to show that PRS has a smaller

perimeter than the special containers AB′C,ABC ′, and ABC. Observe that by the

choices of x∗v and xb, we have per
(
ABC

)
= fv(xb) < fv(x

∗
v) = per (PRS).

We verify the remaining cases only for the fixed value v = 0.7. The function

f0.7(x) takes its minimum at x∗0.7 ≈ 1.57517, and thus per (PRS) = f0.7(x∗0.7) ≈
4.056333. On the other hand, if we set e.g. xb = 1.57, we have per (AB′C) ≈
4.229145 and per (ABC ′) ≈ 4.084007.

5.2. Proof of Theorem 4

We start by proving that every smallest perimeter isosceles container of a triangle

∆ = ABC is either a special container or one of the two triangles constructed in the

Examples 18 and 20. Later, we will show that each of these five containers is realized

as the unique minimum perimeter isosceles container for some triangle ABC. By

Lemmas 5 and 6, we have the following statements on minimum perimeter isosceles

containers.

Lemma 21. Let PRS be any minimum area isosceles triangle enclosing ABC.

Then

(i) a side of PRS contains a side of ABC;

(ii) each side of PRS contains a vertex of ABC;

(iii) ABC and PRS share a common vertex;

(iv) no vertex of ABC lies in the interior of PRS.

If PRS shares the vertex R with ABC, but it does not share the angle at R,

then we can get a smaller perimeter container by decreasing ^SRP (while keeping
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Fig. 18. Illustration for Case 1 (left and middle) and Case 2 (right).

|PR| = |RS| unchanged). Thus without loss of generality, we can assume that PRS

shares the vertex P with ABC. The above restrictions allow only the following two

types of minimum perimeter isosceles containers that do not share an angle with

ABC (see also Fig. 18):

Case 1: If two vertices of ABC lie in the interior of RS, or one of the vertices of

ABC lies in the interior of the side RS and one lies in the interior of PS.

The smallest perimeter isosceles containers of these types are precisely the non-

special optimal containers shown in Examples 18 and 20.

Case 2: One vertex of ABC is in the interior of PR and one is in the interior

of RS.

Let T denote the base of the altitude perpendicular to RS and let B denote the

vertex in RS. If |SB| ≤ |ST | , then ^SBP ≥ 90◦, hence we can rotate ABC about

A = P such that the triangle remains in PRS and hence PRS was not minimal,

see Fig. 19. Note that this happens if PRS is not acute. From now on, we assume

that ^SBP < 90◦, which implies |AB| < |AR| if B 6= R.

If |AC| < |AB|, then we take C ′ ∈ AR such that |AB| = |AC ′| < |AR| so

AC ′ ⊂ AR (Fig. 19). Thus, ABC ′ is an isosceles container of ABC and ABC ′ (
PRS. Hence, PRS was not minimal. Therefore, we may assume that |AC| > |AB|,
as |AC| = |AB| would imply that ABC was isosceles.

If ^RAB < ^BRA holds, let B′ be the point on the line AB such that

|AC| = |AB′| then we have |AB′| = |AC| < |AR| = |RS|, and hence per (AB′C) <

Fig. 19. Simple configurations of Case 2.
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Fig. 20. Case 2 embedded in R2.

per (PRS), thus PRS was not minimal. Thus, assume that ^BRA ≤ ^RAB and

as ^RAB + ^BRA = ^SBP < 90◦, we get that ^BRA = ^PRS < 45◦.

For the remaining part, we embed the configuration in R2 such that P = A =

(0, 0), R = (x, 0) and B = (1, h), where x > 1 and h > 0, see Fig. 20. Under

the assumptions that |AC| > |AB| and ^PRS < min(^RAB, 45◦), we show that

per (PRS) as a function of x is increasing. Thus, as B 6= R,C 6= R there exists a

smaller perimeter isosceles container of ABC than PRS (e.g., PR′S′ in Fig. 20).

The condition ^PRS < ^RAB implies that |PT ′| < |RT ′|, where T ′ is the base of

the altitude of PR, hence x > 2.

Clearly, |BR| =
√
h2 + (x− 1)2 and sin(^PRS) = h√

h2+(x−1)2
. Hence

per (PRS) = 2x(1 + sin(^PRS
2 )). As sin δ = 2 sin( δ2 )

√
1− sin2( δ2 ), we get

sin

(
^PRS

2

)
=

1√
2

√√√√1± x− 1

h

√
1

1 +
(
x−1
h

)2 ,
where the ± is taken to be a − sign, since ^PRS < 45◦. Therefore,

per (PRS) = 2x+
√

2x

√√√√1− x− 1

h

√
1

1 + (x−1h )2
.

Let y = x−1
h and let fh(y) = (1 + hy)(1 +

√
1−y
2

√
1

1+y2 ). It follows from our

assumptions that y > 1/h. We show that fh(y) is strictly increasing in y, which

implies that PRS is not a minimum perimeter isosceles container of ABC. For

g(y) := 1 +

√
1−y
2

√
1

1+y2 , we show that f ′h(y) = ((1 + hy)g(y))′ > 0, equivalently

−g′(y) < hg(y)
1+hy . Simple calculation shows that

−g′(y) =
1

2
√

2(1 + y2)

√√√√1 +

√
y2

1 + y2
<

1

2(1 + y2)
,
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where the last inequality holds as y2

1+y2 < 1 for all y ∈ R. Note that g(y) > 1, hence

hg(y) > h. Thus, it is enough to show that

1

2(1 + y2)
<

h

1 + hy
if y =

x− 1

h
>

1

h
.

This is true if and only if 0 < 2hy2 − hy + 2h − 1, which holds if its roots satisfy

y1 < y2 = h+
√
−15h2+8h
2h ≤ 1

h . The last inequality is equivalent to 0 ≤ 4h2−3h+1 =

(2h− 1)2 + h, which is true for h > 0. Therefore, the argument above verifies that

in this case PRS is not minimal. This concludes the proof in Case 2.

Note on realizability. Now we briefly discuss that each of the special containers

AB′C, ABC ′, ABC, and triangles constructed in Examples 18 and 20 can occur

as a minimum perimeter container for some ABC. It is easy to find triangles for

which one of the special containers is the best among the five options.

To see that the container of Example 20 is optimal for some triangles, note that

the construction presented in Example 18 works only if the special containers of

ABC satisfy γ∗ ∈ (^AB′C,^ABC). Now consider the example from the proof of

Claim 2. It can be easily calculated that under these choices ^(BCA) ≈ 78, 310868◦.

This (together with Claim 2) implies that for the example presented in the proof

of Claim 2, the container described in Example 20 is better than the one given in

Example 18 and than any special container.

Finally, we show that the container presented in Example 18 is optimal for

some triangles. Following the construction in the proof of Claim 2, consider the

triangle ABC with A = (0, 0), and C = (1, 0.8) and B = (0, x∗0.8) such that

f0.8(x) takes its minimum at x∗0.8 ≈ 1.62474. We get that the container con-

structed in Example 20 coincides with the special container ABC and per
(
ABC

)
=

f0.8(x∗0.8) ≈ 4.264511. Simple calculation shows that per (ABC ′) ≈ 4.3250804,

thus per
(
ABC

)
< per (ABC ′). Since ^(BCA) ≈ 75.974334◦ < γ∗ < ^(BCA) =

^(B′CA) ≈ 89.327359◦, the construction of Example 18 provides smaller perimeter

than any of the special containers, indeed if we let SPR to be the container con-

structed in Example 18 for out choice of ABC, then we get per (PRS) ≈ 4.264431.

This concludes the proof of Theorem 4. �
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Gábor Somlai https://orcid.org/0000-0001-5761-7579

References

[1] A. Ambrus, M. Csikós, G. Kiss, J. Pach and G. Somlai, Optimal Embedded and
Enclosing Isosceles Triangles, arXiv, https://arxiv.org/abs/2205.11637 (2022).

[2] M. Berger, M. Cole and S. Levy, Geometry II, Universitext (Springer, Berlin, Heidel-
berg, 2009).

[3] P. Bose and J. De Carufel, Minimum-area enclosing triangle with a fixed angle,
Computational Geometry 47 (2014) 90–109.

[4] J. Boyce, D. Dobkin, R. Drysdale III and L. Guibas, Finding extremal polygons,
SIAM Journal on Computing 14 (1985) 134–147.

[5] H. Debrunner and P. Mani-Levitska, Can you cover your shadows?, Discrete & Com-
putational Geometry 1 (1986) 45–58.

[6] C. Dowker, On minimum circumscribed polygons, Bulletin of the American Mathe-
matical Society 50 (1944) 120–122.

[7] H. Eggleston, On triangles circumscribing plane convex sets, Journal of the London
Mathematical Society 1 (1953) 36–46.
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