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Abstract

It is shown that, for any ε > 0, every graph of maximum degree ∆ permits a conflict-free
coloring with at most log2+ε ∆ colors, that is, a coloring with the property that the neighborhood
N(v) of any vertex v, contains an element whose color differs from the color of any other element
of N(v). We give an efficient deterministic algorithm to find such a coloring, based on an
algorithmic version of the Lovász Local Lemma suggested by Beck, Molloy and Reed. We need
to correct a small error in the Molloy-Reed approach, restate it in a deterministic form, and
re-prove it.

The problem can be extended to arbitrary hypergraphs H: a coloring of the vertices of H is
called conflict-free if each hyperedge E of H contains a vertex whose color does not get repeated
in E. Every hypergraph with fewer than

(
s
2

)
edges permits a conflict-free coloring with fewer

than s colors, and this bound cannot be improved. Moreover, there is a linear time deterministic
algorithm for finding such a coloring. The concept of conflict-free colorings was first raised in a
geometric setting in connection with frequency assignment problems for cellular networks.
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1 Introduction

Let H be a hypergraph with vertex set V (H) and (hyper)edge set E(H), and let c : V (H) →
{1, 2, 3, . . .} be a coloring of its vertex set. A coloring of the vertices of H is called conflict-free if
every edge ∅ 6= E ∈ E(H) contains a vertex whose color does not get repeated in E. The minimum
number of colors in such a coloring is the conflict-free chromatic number, denoted by χCF(H).

The study of this relatively new hypergraph parameter was motivated by a frequency assignment
problem for cellular networks [AHK03]. We think of the base stations that form the backbone of
a network as vertices of a hypergraph H, and of the frequencies used by the base stations as
colors. The range of communication of a mobile agent (client), that is, the set of base stations it
can communicate with, is represented by a hyperedge E ∈ E(H). To avoid interference among
radio signals, we want to assign frequencies to the base stations so that every agent can tune to
a frequency that is used by a unique base station within its range. Frequencies are expensive,
therefore, we want to minimize the number of frequencies used.

The first paper [ELRS03] in the subject, written by Even, Lotker, Ron, and Smorodinsky
(FOCS 2002), as well as the majority of later contributions considered this question in various
geometric settings [PT03], [HS05], [Ch06], [ChFK06], [S07], [AEG07], [BCS08]. In most cases, H is
a hypergraph defined by taking nonempty intersections of a finite point set in Rd with a family of
geometric objects (balls, half-spaces, Jordan regions, boxes). In other cases, H is the dual of such
a hypergraph (e.g., in [AS06]). Various deterministic and randomized static and on-line versions
of the question have been considered; see [C08], for a survey. Here we study the same problem for
arbitrary graphs.

Given a graph G and a vertex x ∈ V (G), the neighborhood NG(x) = N(x) of x is defined as the
set consisting of x and all vertices in G connected to x. The set ṄG(x) = Ṅ(x) = N(x) \ {x} is
called the pointed neighborhood of x. The conflict-free chromatic parameter κCF(G) of G is defined
as χCF(H) for the hypergraph H with

V (H) = V (G),

E(H) = {NG(x) : x ∈ V (G)}.

The pointed version of this parameter, κ̇CF(G), is defined analogously, except that instead of H we
have to consider the hypergraph Ḣ with edge set E(Ḣ) = {ṄG(x) : x ∈ V (G)}.

We start with an example. Let K ′s be the graph obtained from the complete graph Ks on s
vertices by subdividing each edge with a new vertex. Each pair of the s original vertices form the
pointed neighborhood of a new vertex, so all original vertices must receive different colors in any
conflict-free coloring of the corresponding hypergraph Ḣ. Thus, we have κ̇CF(K ′s) ≥ s and it is
easy to see that equality holds here. On the other hand, K ′s is bipartite and any proper coloring
of a graph is a conflict-free coloring of the hypergraph formed by the neighborhoods of its vertices.
This shows that κCF(K ′s) = 2, for any s ≥ 2.

The above example illustrates that the pointed conflict-free chromatic parameter of a graph
cannot be bounded from above by any function of its non-pointed variant. For many other graphs,
the latter parameter is larger. For instance, let H denote the graph obtained from the complete
graph K4 by subdividing a single edge with a vertex. It is easy to check that κCF(H) = 3, while
κ̇CF(H) = 2. However, it is not difficult to verify that

κCF(G) ≤ 2κ̇CF(G), (1)
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for any graph G. This inequality holds, because in a conflict-free coloring of the pointed neighbor-
hoods, each neighborhood N(x) also has a vertex whose color is not repeated in N(x), unless x
has degree one in the subgraph spanned by one of the color classes. One can fix these offending
neighborhoods by carefully splitting each color class into two.

An elegant argument of Cheilaris [C08] implies that the pointed conflict-free chromatic param-
eter of any graph with n vertices satisfies

κ̇CF(G) ≤ 2
√
n. (2)

As is shown by the graph G = K ′s defined above, with |V (G)| = n =
(
s
2

)
+s, the order of magnitude

of this bound cannot be improved.
It is worth adapting Cheilaris’s proof to arbitrary hypergraphs with n edges, because in this

setting, with a small modification we can obtain an exact bound. In the last section, we establish

Theorem 1 (a) Let s be a positive integer. Then every hypergraph with fewer than
(
s
2

)
edges

admits a conflict-free coloring with fewer than s colors.
(b) Every hypergraph of maximum degree ∆ admits a conflict-free coloring with at most ∆ + 1
colors.

Both bounds are best possible and both colorings can be found in linear deterministic time.

As a consequence, we obtain a slightly stronger version of Cheilaris’s result: the pointed conflict-
free chromatic parameter of any graph with fewer than

(
s
2

)
vertices or any graph of maximum degree

at most s − 2 is smaller than s. This bound is asymptotically tight, as is shown by the graph K ′s
defined above, which has

(
s
2

)
+ s vertices, maximum degree s− 1, and for which κ̇CF(K ′s) = s.

In the case when we have a lower bound on the size of the edges of our hypergraph, Theorem 1
can be substantially strengthened.

Theorem 2 For any positive integers t and m, the conflict-free chromatic number of every hyper-
graph with m edges, each of which has size at least 2t− 1, is O(tm1/t logm).

There are randomized linear time and deterministic polynomial time algorithms to find such a
coloring.

The last theorem gives a better bound than Theorem 1, whenever t ≥ 3, that is, when the size
of each edge is at least five. In particular, we obtain

Corollary 3 The pointed conflict-free chromatic parameter of any graph G with n vertices and
minimum degree at least 5 satisfies κ̇CF(G) = O(n1/3 log n).

It is an interesting open problem to decide whether the last statement remains true for all graphs
with minimum degree at least three. More generally, is it true that the conflict-free chromatic
number of every hypergraph with m edges of size at least three is o(

√
m). The best lower bound

we know is given by the complete 3-uniform hypergraph with s vertices and
(
s
3

)
edges, whose

conflict-free chromatic number is ds/2e = Ω(m1/3).

Cheilaris [C08] proved the same 2
√
n upper bound for the (non-pointed) conflict-free chromatic

parameter of all graphs with n vertices as for its pointed variant (cp. (1) and (2)). Surprisingly (to
us), this bound can be replaced by a polylogarithmic one.
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Theorem 4 The conflict-free chromatic parameter of any graph G with n vertices satisfies κCF(G) =
O(log2+ε n), for any ε > 0. Such a coloring can be found by a deterministic polynomial time algo-
rithm.

Here we show that the last bound is not far from optimal: there exist graphs of n vertices with
conflict-free chromatic parameter Ω(log n).

A graph G is called k-super-universal for some parameter k ≥ 1 if for any set of vertices
A ⊆ V (G) with |A| ≤ k and for any B ⊆ A, there is a vertex x ∈ V (G), x 6∈ A, which is connected
to no element of B, but to all elements of A \B.

We claim that if a graph G is k-super-universal, then κCF(G) > k/2. To see this, let us color
the vertices of G with at most k/2 colors. We will show that there is a neighborhood N(x) in
which no color appears precisely once. Let B be the set of all vertices x that have a “unique” color,
that is, a color not given to any vertex other than x. Further, let A be the set obtained from B
by adding two representative vertices for each “non-unique” color. Clearly, |A| ≤ k and by the
super-universality G has a vertex x not in A which has no neighbor in B and which is connected
to every vertex in A \B. Clearly, each color occurring in N(x) appears at least twice.

To show the existence of super-universal graphs, consider the random graph G = G(n, 1/2) on
n vertices with edge probability 1/2. It is well known (and easy to show) that G is almost surely
k-super-universal for some k = Ω(log n). This establishes the existence of n-vertex graphs G with
κCF(G) = Ω(log n).

It is an interesting open problem to close the gap between the O(log2+ε n) upper bound and
the Ω(log n) lower bound for the maximum conflict-free chromatic parameter of an n-vertex graph.

Theorems 2 and 4 are proved in Sections 2 and 3, respectively. In fact, we establish a much
stronger version of Theorem 4, which is stated in the abstract: we show that the bound in Theorem 4
holds not only for all graphs with n vertices, but also for all graphs of maximum degree n. (See
Theorem 6.) The proof is based on the Lovász Local Lemma [EL75], [D05].

Turning the existence proof of Theorem 6 and Theorem 4 into a constructive one poses a
challenge. The difficulty lies in making the use of the Lovász Local Lemma efficient. Following
the pioneering work of Beck [Bec91], several algorithmic versions of the Local Lemma have been
developed [A91], [MR98], [CzS00a], [CzS00b], [LLRS01], [MR02]. For our purposes, the version
of Molloy and Reed [MR98] is most suitable, but we have to make several changes in the original
argument to avoid the possible pitfalls. We list the problems we have to deal with.

1. The theorem of Reed and Molloy requires a somewhat stronger assumption than Lovász’
condition dp < e−1 in the original lemma. To satisfy this stronger inequality, we have to modify
the values of our parameters.

2. For the algorithm, we need to be able to compute the probability of the bad events conditioned
on some of the variables being fixed. In Section 4, we give an efficient algorithm for this purpose.

3. The proof of Reed and Molloy [MR98] has a small error. This problem does not effect most
applications of the theorem, where the underlying random variables have a bounded range and take
each of their values with a probability bounded away from 0. We use the geometric distribution,
therefore, in our case these conditions are not satisfied. In Section 4, we outline the Molloy-Reed
result, describe a problem with its original proof, and restate and prove the result in a correct
form (Theorem 7), explicitly dealing with the small probabilities in the distribution of the random
variables.
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4. Finally, the Molloy-Reed theorem claims only the existence of an efficient randomized algo-
rithm and not a deterministic one. They mention that in most applications their algorithm can
be derandomized. To avoid dealing with the derandomization separately, our Theorem 7 was for-
mulated as a general statement which guarantees the existence of a deterministic algorithm. (Of
course, we agree that this algorithm can be best understood as a derandomized version of a more
natural probabilistic one.)

The constructive proof of Theorem 6, based on our Theorem 7, is presented in Section 5.

2 Proof of Theorem 2

The geometric distribution with parameter p (0 < p ≤ 1) is the distribution on positive integers
that assigns probability p(1− p)i−1 to the value i.

We start with an auxiliary result.

Lemma 5 Let us color each element of a set V independently, according to the geometric distribu-
tion with parameter p. If |V | ≥ 2t− 1 for a positive integer t, then the probability that no element
of V receives a unique color (one that is not received by any other element of V ) is at most (11tp)t.

Proof: It will be more convenient to consider the randomized coloring of V as a gradual process.
We order the elements arbitrarily. In the first phase, we process the elements of V one by one in
this order and for each element v we make an independent choice. With probability p we color v
with color 1 and with probability 1 − p we leave it uncolored. In phase i, i ≥ 2, we consider the
uncolored elements in their preassigned order and for each of them we make another independent
choice: with probability p they receive color i and with probability 1 − p they remain uncolored.
This process gets repeated as long as there is an uncolored element. It is easy to verify that at the
end of this process the elements of V are colored independently, each according to the geometric
distribution with parameter p.

Let n = |V |. First we claim that the probability that the above coloring uses at most n/2
colors is at most 2(enp/2)dn/2e. To see this, let σ be a partition of V into k nonempty classes. The
probability that the partition induced by the coloring is σ is at most pn−k. Indeed, in order to
obtain the partition σ, we have to choose to color at the right phase for each of the n− k elements
that are not the first ones in their equivalence classes. Since the total number of k-partitions of
n elements is S(n, k) ≤ kn/k! ≤ (e/k)kkn, the probability of using precisely k colors is at most
Xk = ek(kp)n−k. We can assume that p < 1/n, otherwise the claimed bound is meaningless. This
implies that the sequence Xk is exponentially increasing for k ≤ n/2. The total probability of using
at most n/2 colors is at most

∑bn/2c
k=1 Xk < 2Xbn/2c ≤ 2(enp/2)dn/2e, as claimed.

Obviously, if no color is unique in V , then there are at most n/2 colors, so the above bound
applies. This implies that, for n = 2t or n = 2t− 1, the probability that there is no unique color is
at most 2(etp)t. If n is large, then the above bound is trivial, so we use the following observation
instead. For 1 ≤ j ≤ n, let Vj consist of the j elements of V that receive their colors last during
the multi-phase coloring process described above. Suppose n ≥ 2t. If no element of V receives a
unique color, then either all colors appearing in V2t are repeated in V2t or all colors in V2t−1 are
repeated in V2t−1. We can bound the probability of either of these events by 2(etp)t, as at any
point during the coloring process, the distribution of the partition induced by the coloring of the
set of yet uncolored vertices is the same as if the whole procedure was performed for that set only.
The claimed bound follows. 2
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Proof of Theorem 2: Our randomized algorithm finding a suitable coloring assigns a random color to
each vertex of the hypergraph independently according to the geometric distribution with parameter
p = m−1/t/(2tt). Clearly, this distribution can be sampled in O(nm) time (here n is the number of
vertices) and this time is also enough to check if the coloring is conflict-free and does not use too
many colors.

By Lemma 5, the probability that an edge does not have a unique color is at most 1/(2m). We
obtain a conflict-free coloring with probability at least 1/2. If n is polynomially bounded in m,
then with high probability the random coloring uses O(p−1 logm) colors. This completes the proof
for this case.

It remains to reduce the general case to the case when the number of vertices is polynomial in
the number of edges. We can assume that t ≤ m, as for larger values of t the bound claimed in
the theorem becomes worse. Select 2t − 1 vertices from each edge of the hypergraph and restrict
the hypergraph to the selected vertices. That is, remove all vertices that are not selected for any
edge of the hypergraph. The resulting hypergraph has fewer than 2m2 vertices, so there exists a
conflict-free coloring with the required number of colors. Introducing a new color for all previously
removed vertices, we obtain a conflict-free coloring of the original hypergraph.

Finally, to derandomize this algorithm we simply set the color of the vertices one by one making
sure that the expected number of edges with no unique color does not increase. The expectation is
for the setting the remaining colors randomly, according to the geometric distribution with param-
eter p truncated at a threshold T = O(p−1 logm). This expectation is computable in polynomial
time, see Lemma 10. 2

3 Proof of existence for Theorem 4

We prove the following stronger statement.

Theorem 6 The conflict-free chromatic parameter of any graphs G with maximum degree ∆ sat-
isfies κCF(G) = O(log2+ε ∆), for any ε > 0.

Proof: Let f(∆) denote the maximum of κCF(G) over all graphs G with maximum degree at most
∆. As the chromatic numbers of any such graph is at most ∆ + 1, we have f(∆) ≤ ∆ + 1.

In what follows, we establish a recursive bound on f(∆), which is better than the trivial bound
f(∆) ≤ ∆ + 1, for large values of ∆.

Let G be a graph with maximum degree at most ∆ ≥ 6. We color the vertices of G indepen-
dently, according to the geometric distribution with parameter q = 1/(66 log ∆). We use the Lovász
Local Lemma [AS00] with the following two types of “bad” events.

1. For any vertex v of degree at least 2t− 1, where t = 3 log ∆, let Bv denote the event that the
neighborhood of v has no unique color.

2. For any vertex v, let B′v denote the event that the color of v is larger than 200 log2 ∆.

The probability of each of these events is at most p = 1/(6∆2). For the events Bv, this follows by
Lemma 5.

Since the vertices were colored independently, the events Bv and B′v are independent of the
collection of events Bx and B′y, whenever x is at distance at least 3 from v and y is at distance at
least 2 from v. As the maximum degree in G is ∆, each bad event is independent from all but fewer
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than d = 2∆2 other bad events. We have dp < e−1. In view of the Local Lemma, this implies that
there exists a coloring that avoids all bad events. Let us fix such a coloring χ. This is a coloring
with at most 200 log2 ∆ colors, for which the neighborhood of any vertex of degree at least 2t− 1
has a unique color.

We use recursion to fix the potential problems with the neighborhoods of small degree vertices.
Let G′ be the subgraph of G induced by the vertices, whose degrees in G are smaller than 2t− 1.
Clearly, the maximum degree of G′ is at most ∆′ = 2t − 2. Let χ′ be a (not necessarily proper)
vertex coloring establishing κCF(G′) ≤ f(∆′). This coloring uses at most f(∆′) colors and the
neighborhood of any vertex has a unique color.

First, extend χ′ to a vertex coloring χ′′ of G by adding a new color to all vertices of G that do
not belong to G′. Then we combine χ and χ′′ by assigning to a vertex v of G the pair (χ(v), χ′′(v)).
This combined coloring uses at most 200 log2 ∆(f(∆′) + 1) colors. In view of the properties of
χ, the neighborhood of each vertex v with degree larger than ∆′ has a unique color. Because of
the properties of χ′′, the same is true for the remaining (low degree) vertices. Thus, we obtain
κCF(G) ≤ 200 log2 ∆(f(∆′) + 1), and, since G was an arbitrary graph with maximum degree at
most ∆, we have

f(∆) ≤ 200 log2 ∆(f(6 log ∆− 2) + 1).

This recursion solves to f(∆) = O(log2 ∆ log2+ε log ∆) = O(log2+ε ∆), for any ε > 0. 2

4 Algorithmic Local Lemma

Before fixing the problems related to the Molloy-Reed algorithm, listed at the end of the Introduc-
tion, we give a brief overview of this algorithm and the algorithm of Beck it is based on.

Both algorithms assume that the probability space under consideration is determined by mutu-
ally independent random variables and each of the bad events Bi is determined by a subset Ai of
the variables. Let p be an upper bound on the probability of any one bad event and d be an upper
bound on the number of sets Aj intersected by a single set Ai. The algorithm finds an assignment
of values to the random variables that makes none of the bad events occur if d9p < 1/8 (or if a
similar other inequality holds).

The simplest form of the algorithm consists of two sweeps. In the first sweep, we fix the values
of the random variables one by one in an arbitrary order. Each variable is assigned a random value
according to its distribution. While doing so, we keep track of the conditional probability of each
bad event (that is, the probability that it occurs if we finish the first sweep by keeping the values
of all variables already fixed and choosing the values of the remaining variables according to their
probabilities). We also choose a threshold p < T < 1 and proclaim a bad event dangerous if its
probability gets T or higher.

The algorithms of Beck and Molloy-Reed differ in their treatment of the dangerous events. If
the bad event Bi becomes dangerous, Beck freezes all the variables in Ai, that is, the variables in
Ai that have not yet been fixed will not get fixed during the first sweep. Clearly, the conditional
probability of a bad event will not change during the first sweep, after it becomes dangerous.
Beck’s algorithm is designed for the case when all the elementary random variables are uniform 0-1
variables. Fixing one of them to any value will increase the probability of any event by a factor
of at most 2. Thus, dangerous events have a probability between T and 2T at the end of the first
sweep, while the probability of all other bad events clearly remain below T . It is not hard to show
that no bad event gets dangerous with probability larger than p/T .
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Molloy and Reed, however, allow arbitrary random variables. Therefore, they cannot bound
the “jump” in the conditional probability caused by fixing a single random variable. Hence, they
“undo” the fixing of the random variable that caused some bad event to turn dangerous. They
still label the offending bad event as dangerous and freeze all its variables not fixed earlier, among
them they freeze the last variable that they tried to fix but could not. This guarantees that all bad
events, dangerous or otherwise, have probability at most T at the end of the first sweep. They fail
to notice, however, that the innocent looking act of “undoing” does increase the probability of a
bad event if we tend to do it in cases when the conditional probability would decrease. For a toy
example to illustrate this phenomenon, consider s log s independent and identically distributed 0-1
random variables Fi, for some large real s, such that P [Fi = 1] = 1/s. For every i, let Bi denote
the event that Fi = 1 and let B0 denote the event that Fi = 0 for all i. The probability of each
of these events is around 1/s. If we try and fix the values of these random variables, most will
be fixed to 0, but those Fi whose values we try to fix to 1 make the corresponding Bi dangerous.
Thus, the value of none of the variables will be fixed to 1 during the first sweep. This makes B0

become dangerous with overwhelming probability.
In what follows, we restate the result of Beck, Molloy, and Reed in a correct form, taking care

of small probabilities in the distribution and constructing a deterministic algorithm.

Theorem 7 Let F = {F1, . . . , Fm} be a collection of mutually independent discrete random vari-
ables. For 1 ≤ i ≤ n, let Ai be a subset of F and Bi an event determined by the values of the
variables Fj ∈ Ai. Assume that

1. for each Bi, we have P [Bi] ≤ p;

2. each Ai intersects at most d other Aj;

3. the range of a variable Fi contains at most k values and the probability of each of them is at
least δ;

4. |Ai| ≤ s, for each i;

5. pd9 < δ2/200;

6. for each 1 ≤ i ≤ n, Fj1 , . . . , Fjl
∈ Ai, and for any values wu in the range of Fju (1 ≤ u ≤ l),

one can compute the conditional probability P [Bi|Fj1 = w1, . . . , Fjl
= wl] in time t.

Then we have a deterministic O(dkmt+ kmn4 +mtks(d2+1) log log n) time algorithm that finds eval-
uations of the variables Fj such that none of the events Bi occur. In case pd10 log log n < δ2/64
holds, the running time can be reduced to O(dkmt+ kmn4).

As mentioned above, the proof is based on sweeps fixing the values of some but not all random
variables. First we establish the properties of a single sweep. Let Fj , Ai, Bi, p, d, k, and δ be
as in Theorem 7, and assume that they satisfy the conditions 1, 2, 3, and 6 there. Let G be the
graph defined on the n vertices B1, . . . , Bn, connecting Bi and Bj by an edge if Ai and Aj intersect.
Recall that, by condition 2, this graph has maximum degree at most d.

Lemma 8 For p < T < 1 and for any positive integer r satisfying (T/(4pd3))r > n, one can find
suitable values of some of the variables Fj in O(km(t+n(4d3)r−1)) deterministic time, which satisfy
the following two conditions:
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(i) The conditional probability of all events Bi remain below T/δ.

(ii) Let G′ be the subgraph of G spanned by the vertices Bi that are not fully evaluated, that is,
for which Ai contains unevaluated variables. All connected components of G′ have at most
(d2 + 1)(r − 1) vertices.

Proof: Following Beck’s approach, we evaluate the variables Fj one by one, always recomputing the
probabilities of the events Bi conditioned on the variables evaluated so far. If the probability of an
event Bi becomes at least T , we declare this event dangerous, and freeze all variables in Ai that
have not been evaluated yet. We never evaluate frozen variables and continue until there exists a
variable Fj that is neither frozen nor evaluated. This procedure and condition (3) guarantee that
at the end of the procedure (i) is true. For satisfying condition (ii), we need to specify how the
individual variables are evaluated.

A set of exactly r events Bi that form an independent set in G but span a connected subgraph
in G3, is called a (2,3)-tree. Elementary calculations show that there are at most n(4d3)r−1 (2,3)-
trees and they can be efficiently enumerated. We call a (2,3)-tree dangerous if all of its vertices are
dangerous. The probability of a (2,3)-tree at a given moment is the probability that all its elements
will hold, conditioned on the values of the variables already evaluated. This is simply the product
of the conditional probabilities of the elements of the (2,3)-tree. We maintain the sum S of the
probabilities of all (2,3)-trees throughout the algorithm. When evaluating a variable Fj , we choose
a value that does not lead to an increase of S. As S is the expected number of (2,3)-trees with all
their elements satisfied, the linearity of expectations ensures that such a choice is possible.

The probability of a (2,3)-tree at the start of the algorithm is at most pr, by condition 1. Thus,
the inequality S ≤ n(4pd3)r < T r holds at the start of the algorithm, and, by our choice of the
evaluations, it also holds at the end. The probability of a dangerous (2,3)-tree is at least T r, so no
dangerous (2,3)-tree is created during the algorithm.

To prove condition (ii), consider a component C of G′, and let C ′ be a maximal independent
set of dangerous vertices in C. It is easy to see that C ′ is connected in G3. If |C ′| ≥ r holds,
one can find a subset of C ′ of size exactly r that is still connected in G3. That subset would be
a dangerous (2,3)-tree, a contradiction. Thus |C ′| < r. But every vertex of C is connected to a
dangerous vertex of C and every dangerous vertex of G is connected to an element of C ′. So the
degree bound on G implies the bound on |C| claimed in (ii). 2

Proof of Theorem 7: Setting T = 8pd4 and r = blog n/log(2d)c+1, Lemma 8 gives us an O(dkmt+
kmn4)) algorithm for evaluating some of the variables in such a way that the conditional probability
of no event Bi is more than p′ = 8d4p/δ. For some of the events Bj , all variables in Aj will be
evaluated in this first sweep, and, as p′ < 1, these events Bi do not occur. The remaining events
Bi span the subgraph G′ of G. By Lemma 8, all connected components of G′ have fewer than
n′ = (d2 + 1)r vertices.

As the events in different components do not share variables, we can apply Lemma 8 to each
component separately. For this second sweep we set T ′ = 8d4p′/δ and r = blog n′/ log(2d)c + 1.
Without increasing the bound on the running time, we evaluate some more random variables such
that the conditional probability of all events Bi are at most p′′ = 8p′d4/δ and the components
of the subgraph G′′ of G spanned by the events Bi still not fully evaluated have size at most
n′′ = (d2 + 1) log n′/ log(2d). By condition 5, we have p′′ < 1, so the fully evaluated events Bi do
not hold.
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Finally, we evaluate the remaining variables in each component separately, by exhaustive search.
By condition 4, each component contains at most n′′s variables, and, by condition 3, each of those
variables has at most k possible values. We can test in time t if an event Bi occurs under a given
evaluation. To prove that the exhaustive search will actually find a solution for which none of the
events Bi occur, we use the Local Lemma. The setting of our parameters and condition 5 ensures
that the condition (d+ 1)p′′ < e−1 of the Local Lemma is satisfied.

In the case when pd10 log logn < δ2/64, the expected number of the events Bi satisfied in any
single component of G′′ is at most p′′n′′ < 1. Therefore, we can replace the costly exhaustive search
by a sequential evaluation of the remaining random variables, each time making sure that this
expected number does not grow. 2

5 Efficient algorithm for conflict-free coloring

To complete the proof of Theorem 6, we apply Theorem 7 to the existence proof given in Section 3.

Theorem 9 For any ε > 0, there exists a polynomial time deterministic algorithm for finding a
vertex coloring of any graph G with maximum degree ∆, which shows that κCF(G) = O(log2+ε ∆).

Proof: As in the proof of Theorem 6, we use recursion. If ∆ is small enough, we properly color G
with ∆ + 1 colors and this vertex coloring serves as our conflict-free coloring of the neighborhoods.
For every sufficiently large ∆, we define a threshold ∆′ = Θ(log ∆) and find a vertex coloring χ with
O(log2 ∆) colors, for which the neighborhood of any vertex of degree at least ∆′ has an element of
unique color. Then we use recursion on the subgraph of G spanned by the vertices of degree less
than ∆′ to obtain a coloring χ′ that is conflict-free on the neighborhoods. Finally, we extend χ′ by
a single new color given to the high degree vertices and obtain our final coloring as the product of
this extended coloring and χ.

The challenge is to turn the probabilistic existence proof for the coloring χ based on the Local
Lemma into an efficient algorithm for finding χ.

We set t = 30 log ∆, ∆′ = 2t−1, and q = 1/(22t). Consider a random variable F with geometric
distribution of parameter q, and let k be the smallest integer with P [F > k] ≤ 1/(2∆ + 2). Note
that k < log ∆/q = O(log2 ∆). Let F ′ be the distribution of F conditioned on F ≤ k. This
distribution has a range of k possible values, and the least likely value, k, is taken with probability
at least δ = q/(2∆ + 2).

Let us take independent random variables χ(v) distributed as F ′, for each vertex v of G. The
value of χ(v) is the color of the vertex v. For any vertex v of degree at least ∆′, let Bv be the
event that no unique color appears in the neighborhood of v. Clearly, Bv is determined by χ(w) for
w ∈ N(v). As G has maximum degree ∆, any neighborhood N(v) has at most s = ∆ + 1 elements
and intersects at most d = ∆2 other neighborhoods N(w).

We could bound the probability of Bv by (11qt)t = 2−t = ∆−30, using Lemma 5, if the distri-
butions of the colors χ(v) were according to the geometric distribution with parameter q. The true
distribution is obtained by conditioning on the value being at most k. With probability at least
1/2, the colors of the vertices in N(v) would still not exceed k, even if we allowed the unbounded
geometric distribution, so the probability of Bv is at most twice of what it would be with the
geometric distribution: p = 2∆−30 ≥ P [Bv].

We can now apply Theorem 7 to the random variables χ(v) and to the events Bv. Conditions
1–4 are satisfied. Condition 5 is satisfied for large enough ∆. Condition 6 is also satisfied for some
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t polynomial in the size of G; see Lemma 10 below. By Theorem 7, we find the required vertex
coloring χ. The running time of the algorithm is polynomial, provided that d = O(log log n). In
the case when d > 1000 log log n, the stronger inequality pd10 log logn < δ2/64 also holds. So we
obtain a polynomial time algorithm in every case. 2

It remains to prove that the conditional probability of a unique color is efficiently computable.

Lemma 10 Let a discrete distribution D be given by specifying the probabilities of all values in
its range, let s and t be nonnegative integers, x1, . . . , xs, constants, y1, . . . , yt independent random
variables distributed according to D. The probability of having no value that appears exactly once
in the sequence x1, . . . , xs, y1, . . . , yt can be computed in deterministic polynomial time in s, t and
the size of the range of D.

Proof: We assume without loss of generality that the range of D is 1, . . . , u, and that the con-
stants xi belong to this range, for 1 ≤ i ≤ s. We use dynamic programming to compute the
probability P (v, w) that there is no value z with z ≥ v that appears exactly once in the sequence
x1, . . . , xs, y

′
1, . . . , y

′
w, where y′1, . . . , y

′
w are independent random variables distributed according to

the distribution D conditioned on y′i ≥ v.
We compute P (v, w), for 1 ≤ v ≤ u and 0 ≤ w ≤ t. It is easy to compute P (u,w), as the

distribution is deterministic there. For P (v, w) with v < u, one computes the probability Pv,w,i that
exactly i of the w random variables take the value v and calculates P (v, w) =

∑
Pv,w,iP (v+1, w−i)

where the summation extends over all 0 ≤ i ≤ w with the possible exception of the (at most one)
value of i that makes v appear exactly once in the sequence. Finally, P (1, t) is the probability we
had to compute. 2

6 Proof of Theorem 1

This proof is an adaptation of the proof of 2 from [C08].
We start with proving (b). Consider a hypergraph H with maximum degree at most ∆. We

order the vertices of H arbitrarily, and one by one we assign colors to the vertices from an ∆ + 1
element set of colors. We make sure that the color of the first vertex of any edge E does not get
repeated in E. When we reach a vertex v of degree d, this requirement may exclude at most d
colors, but as we have d ≤ ∆, we can still assign a suitable color to v.

To prove (a), consider a hypergraph with fewer than
(
s
2

)
edges. We give a coloring algorithm

that finds a conflict-free coloring of H with at most s − 1 colors. The algorithm consists of steps
starting with step 1. At step i, we find a vertex vi of degree at least s− i if such a vertex exists. We
color vi with a new color and remove it with from H, together with all edges containing vi. This
concludes step i and we proceed to step i+ 1. As no other vertex will be colored to the color of vi,
all edges removed at step i will end up having a vertex of unique color – namely, vi. If we do not
find a suitable vertex vi, the remaining hypergraph has maximum degree less than s − i, and we
can find a conflict-free coloring with s− i colors not used earlier using the algorithm for part (a).

This algorithm must terminate in step s − 1 or before. Otherwise, the total number of edges
removed during the first s − 1 steps would be at least

∑s−1
i=1 (s − i) =

(
s
2

)
, but H had fewer edges

to begin with. If the algorithm terminates in step i, then i− 1 colors were used in the earlier steps
and at most s− i colors in the last step, so the coloring uses fewer than s colors altogether.

Clearly, the above proofs are algorithmic. Furthermore, they can be implemented in time
O(nm) for any hypergraph with n vertices and m edges. To see that the bounds in parts (a) and
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(b) cannot be improved, consider the complete graph Ks as a 2-uniform hypergraph. It has
(
s
2

)
edges and maximum degree s − 1, yet all conflict-free colorings must assign different colors to all
of its s vertices. 2

Acknowledgment. We are grateful to Panagiotis Cheilaris, Andreas Holmsen, and Radoš Radoičić
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