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Notation and Terminology

Definition. An inclusion representation of a poset P is an assignment of a set Sx

to each x ∈ P so that

x ≤ y in P if and only if Sx ⊆ Sy.

Remark. Every poset has an inclusion representation. Just take

Sx = {y : y ≤ x}.

Definition. When F is a family of sets and P is a poset having an inclusion
representation using sets from F , we call P an F inclusion order, or just an F
order.
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Geometric Inclusion Orders
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Circle Orders

Definition. A poset P is a circle order if it has an inclusion representation using
circles in the plane R2.



Circle Orders

Definition. A poset P is a circle order if it has an inclusion representation using
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Dimension of Posets

Definition. The dimension of a poset P , denoted dim(P ), is the least t so that
P is the intersection of t linear orders.
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Definition. The dimension of a poset P , denoted dim(P ), is the least t so that
P is the intersection of t linear orders.
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Alternate Definion of Dimension

Definition. dim(P ) is also the least t so that P is isomorphic to a subposet of
Rd equipped with the product ordering:

(a1, a2, . . . , at) ≤ (b1, b2, . . . , bt)

if and only if

ai ≤ bi for i = 1, 2, . . . , t.
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A 3-dimensional poset

(7,6,6)

(2,4,5)

(4,7,7)

(3,1,3)(1,2,1)

(6,5,2)(5,3,4)

P

dim(P)  =  3
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Some 3-dimensional Posets are Circle Orders
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The Standard Examples

1 2 3 ... t

  St

dim(St)  =  t
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The Standard Examples are Circle Orders
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Sphere Orders

Definition. A poset P is a sphere order if there is a positive integer d for which
P has an inclusion representation using spheres in Euclidean d-space Rd.



Sphere Orders

Definition. A poset P is a sphere order if there is a positive integer d for which
P has an inclusion representation using spheres in Euclidean d-space Rd.

Remark (?). Every poset is a sphere order.
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Incidence Posets of Graphs

Definition. Let G be a graph. The incidence poset of G, denoted PG, consists
of the vertices and edges of G ordered by inclusion.
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Definition. Let G be a graph. The incidence poset of G, denoted PG, consists
of the vertices and edges of G ordered by inclusion.

a

b

c d

a b c d

ab bc ac cd

G PG

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002



Planar Graphs
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Planar Graphs

Theorem. [Schnyder, 1989; Scheinerman, 1991]
Let G be a finite graph and let PG be its incidence poset. Then the following
statements are equivalent:

1. G is a planar graph.

2. The dimension of PG is at most 3.

3. PG is a circle order.
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Fundamental Question for Circle Orders

Question. [Fishburn and Trotter, 1984] Is every finite 3-dimensional poset a
circle order?

Fact. Every 2-dimensional poset is a circle order.

Theorem. For every t ≥ 3, the standard example St is a t-dimensional poset
which is also a circle order. On the other hand, almost all 4-dimensional posets are
NOT circle orders.
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The Answer Should be YES!!

Remark. For every n ≥ 3, every finite 3-dimensional poset has an inclusion
representation using regular n-gons.



The Answer Should be YES!!

Remark. For every n ≥ 3, every finite 3-dimensional poset has an inclusion
representation using regular n-gons.

Remark. Every finite 3-dimensional poset has an inclusion representation using
ellipses.
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When n is LARGE??

Doesn’t a regular n-gon turn into a circle as n increases?
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The Answer Should be NO!!

Theorem. [Scheinerman and Wierman, 1988] The countably infinite poset Z3

is not a circle order.



The Answer Should be NO!!

Theorem. [Scheinerman and Wierman, 1988] The countably infinite poset Z3

is not a circle order.

Theorem. [Fon-der-Flaass, 1993] The countably infinite poset 2×3×N is not
a sphere order.
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A Strange Conjecture on Sphere Orders
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A Strange Conjecture on Sphere Orders

Theorem. [Maehara, 1984] If G is a graph, then there exists an integer k for
which G is the intersection graph of a family of spheres in Rk.

Remark (?). Every poset is a sphere order, i.e., if P is a poset, then there exists
an integer d for which P has an inclusion representation using spheres in Rd.

Conjecture. [Brightwell and Winkler, 1989]
To the contrary, there exists a finite poset which is not a sphere order.
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The Surprising (?) Answer!!!

Theorem. [Felsner,Fishburn and Trotter, 1997]
There exists a positive integer n0 so that if n > n0, the finite 3-dimensional poset
n× n× n is NOT a sphere order.
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The Surprising (?) Answer!!!

Theorem. [Felsner,Fishburn and Trotter, 1997]
There exists a positive integer n0 so that if n > n0, the finite 3-dimensional poset
n× n× n is NOT a sphere order.

Remark. The integer n0 in the preceding theorem is very large!

Remark. If P is a t-dimensional poset, then P has an inclusion representation
using cubes in Rt+1. This result is best possible.
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Part II: Sketch of the Proof
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Change Patterns for Increasing Sequences

Definition. Let N be a fixed (large) positive integer. Then consider an increasing
sequence of positive real numbers:

0 < a1 < a2 < a3 < a4 < · · · < an.

The sequence advances conservatively in magnitude (ACM) if

i < j implies aj > Nai.

The sequence is nearly constant (NC) if

i < j implies aj < (1 + 1/N)ai.
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Nearly Constant Sequences

Definition. A NC sequence advances conservatively (AC) if

i < j < k implies ak − aj > N(aj − ai).

An NC sequence advances agressively (AA) if

i < j < k implies aj − ai > N(ak − aj).



Nearly Constant Sequences

Definition. A NC sequence advances conservatively (AC) if

i < j < k implies ak − aj > N(aj − ai).

An NC sequence advances agressively (AA) if

i < j < k implies aj − ai > N(ak − aj).

Proposition. For every m, there exists n0 so that if 0 < a1 < a2 < a3 < a4 <
· · · < an is an increasing sequence of positive real numbers and n > n0, then there
is a subsequence of length m which is either (1) ACM; (2) AC, or (3) AA.
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Decreasing Sequences

Definition. For decreasing sequences, the analogous terms are:

1. Retreating Agressively in Magnitude (RAM).

2. Retreating Agressively (RA).

3. Retreating Conservatively (RC).



Decreasing Sequences

Definition. For decreasing sequences, the analogous terms are:

1. Retreating Agressively in Magnitude (RAM).

2. Retreating Agressively (RA).

3. Retreating Conservatively (RC).

Proposition. For every m, there is an n0 so that if n > n0, then for any sequence
of n distinct positive real numbers, there is a subsequence of length m satisfying
one of the six change patterns: ACM, AC, AC, RAM, RA and RC.
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The Product Ramsey Theorem

Definition. For positive integers n, k and t, a kt grid in nt is a set of the form
S1 × S2 × . . . St where each Si is a k-element subset of {0, 1, . . . , n− 1}.



The Product Ramsey Theorem

Definition. For positive integers n, k and t, a kt grid in nt is a set of the form
S1 × S2 × . . . St where each Si is a k-element subset of {0, 1, . . . , n− 1}.

Theorem. [Product Ramsey Theorem] Given positive integers m, k, r and t,
there exists an integer n0 so that if n ≥ n0 and f is any map which assigns to each
kt grid of nt a color from {1, 2, . . . , r}, then there exists a subposet P isomorphic
to mt and a color α ∈ {1, 2, . . . , r} so that f(g) = α for every kt grid g from P .
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Monotonic Functions

Definition. A function f mapping nt to the positive reals is

1. order-preserving if x < y implies f(x) ≤ f(y).

2. order-reversing if x < y implies f(x) ≥ f(y).

3. monotonic if f is either order preserving or order reversing.



Monotonic Functions

Definition. A function f mapping nt to the positive reals is

1. order-preserving if x < y implies f(x) ≤ f(y).

2. order-reversing if x < y implies f(x) ≥ f(y).

3. monotonic if f is either order preserving or order reversing.

Corollary. For every m, t, there exists n0 so that if n > n0 and f is any injective
function mapping nt to the positive reals, then there is a subposet isomorphic to
mt such that the restriction of f is monotonic.
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Coordinate Domination

Definition. Let f be an injective order preserving function mapping nt to the
positive reals. f is dominated by coordinate α if

f(x) < f(y) whenever x(α) < y(α).

Similarly, if f is order reversing, then we require

f(x) > f(y) whenever x(α) < y(α).



Coordinate Domination

Definition. Let f be an injective order preserving function mapping nt to the
positive reals. f is dominated by coordinate α if

f(x) < f(y) whenever x(α) < y(α).

Similarly, if f is order reversing, then we require

f(x) > f(y) whenever x(α) < y(α).

Theorem. [Fishburn and Graham, 1993]
For every m, t, there exists n0 so that if n > n0 and f is any injective function
mapping nt to the positive reals, then there is a subposet isomorphic to mt and an
integer α such that the restriction of f is monotonic and dominated by coordinate
α.
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N-Uniform Functions

Definition. Let f be an injective function mapping nt to the positive reals. f is
N -uniform if

1. f is monotonic.

2. There is a coordinate α dominating f .

3. There is a change label from ACM, AC, AA, RAM, RA, RC which f satisfies.



N-Uniform Functions

Definition. Let f be an injective function mapping nt to the positive reals. f is
N -uniform if

1. f is monotonic.

2. There is a coordinate α dominating f .

3. There is a change label from ACM, AC, AA, RAM, RA, RC which f satisfies.

Theorem. [Felsner, Fishburn and Trotter, 1997]
For every m, t, N , there exists n0 so that if n > n0 and f is any injective function
mapping nt to the positive reals, then there is a subposet isomorphic to mt and an
integer α such that the restriction of f is N -uniform and dominated by coordinate
α.
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Induced Functions

Definition. Let s ∈ kt and let A be a function which maps kt grids to R. Then
each (k− 1)t grid g induces a function Ag,s defined on points from the products
of chains. For each i = 1, 2, . . . , t, the points from the ith factor are those between
the sst

i−1 and sth
i point of the ith factor set of g. The different functions are called

types.
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Uniformizing Induced Functions

Theorem. [Felsner,Fishburn and Trotter, 1997]
For every m, k, t, N , there exists n0 so that if n > n0 and A is any injective
function mapping the kt grids of nt to the positive reals, then there is a subposet
Q isomorphic to mt and an a collection of change patterns, one for each of the
kt functions induced by a (k − 1)t grid, so that all induced functions on Q are
N -uniform and satisfy a change pattern which depends only on the type—and not
on the grid.
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Assume n× n× n is a Sphere Order

s1

s2

s3

h(s1,s2,s3)

φ(s1,s2,s3) γ(s1,s2,s3)
p(s1,s2,s3)
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Functions on Grids

Definition. With each 33 grid g, we associate a 3-element chain x < y < z. We
then set:

1. A(g) = φ(x, y, z).

2. B(g) = h(x, y, z).

3. C(g) = h(x, y, z)φ(x, y, z)/2.
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Basic Notation

Definition. 1. r(x) is the radius of x.

2. ρ(x, y) is the distance between c(x) and c(y). c(x)c(y) and c(x)c(z).

3. More stuff

Remark. We consider the following induced functions:

1. Φ(y) = φ(x, y, z).

2. Θ(z) = φ(x, y, z).

3. H(y) = h(x, y, z).

4. K(x) = h(x, y, z).

5. G(y) = h(x, y, z)φ(x, y, z)/2.
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Some Details of the Proof

Remark. We may assume that the radius function is ACM and dominated by
coordinate 1. If it is AA, we invert and use the fact that the dual of a sphere order
is a sphere order. With this change, the radius function is AC.



Some Details of the Proof

Remark. We may assume that the radius function is ACM and dominated by
coordinate 1. If it is AA, we invert and use the fact that the dual of a sphere order
is a sphere order. With this change, the radius function is AC.

If the radius function is AC, then we subtract an appropriate quantity to make
it ACM.
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Completing the Proof

Remark. The remainder of the argument is by case analysis, depending on the
change labels for the induced functions determined by Φ, Θ, H, K and G.
Surprisingly, we are able to argue that there are essentially only three cases.
Furthermores, two of these three cases are dual—using a weak form of the triangle
inequality.



Completing the Proof

Remark. The remainder of the argument is by case analysis, depending on the
change labels for the induced functions determined by Φ, Θ, H, K and G.
Surprisingly, we are able to argue that there are essentially only three cases.
Furthermores, two of these three cases are dual—using a weak form of the triangle
inequality.

For example, we show:

1. The function Φ cannot be ACM.

2. The function H cannot be RAM.

3. If Φ is NC, then H is ACM and dominated by coordinate 1.

4. If H is NC, then Φ is RAM and dominated by coordinate 1.
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The Geometric Part of the Proof

Definition. For distinct points x and y from n3,

Gap(x, y) = r(y)− r(x)− ρ(x, y).

Remark. When x < y, Gap(x, y) > 0, and when x is incomparable to y,
Gap(x, y) < 0.

Definition. For three distinct points x, y and z, let

∆(x, y, z) = ρ(x, y) + ρ(y, z)− ρ(x, z).

Remark. ∆(x, y, z) ≥ 0, and ∆(x, y, z) > 0 when the centers are not collinear.
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The Geometric Part of the Proof (2)

Consider a 2-element chain x < z and a point v incomparable to both. Then

r(z)− r(x) =
(
r(v)− r(x)

)
+

(
r(z)− r(v)

)
< ρ(x, v) + ρ(v, z),

so that
Gap(x, z) < ∆(x, v, z).

Since this bound holds for any point incomparable to both x and z, we may consider
several candidate points and take the best bound they produce. As a result, we
have an upper bound on Gap(x, z).
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The Geometric Part of the Proof (3)
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Let C = {x = u1 < u2 < · · · < u2k+1 = z} be a chain. Then

r(z)− r(x) = r(u2k+1)− r(u1)

=
2k∑
i=1

[
r(ui+1)− r(ui)

]
>

2k∑
i=1

ρ(ui+1, ui)

=
k∑

i=1

[
ρ(u2i+1, u2i−1) + ∆(u2i−1, u2i, u2i+1)

]
≥ ρ(u1, u2k+1) +

k∑
i=1

∆(u2i−1, u2i, u2i+1).

= ρ(x, z) +
k∑

i=1

∆(u2i−1, u2i, u2i+1).
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The Geometric Part of the Proof (4)

Setting

∆(x,C, z) =
k∑

i=1

∆(u2i−1, u2i, u2i+1),

we conclude that
Gap(x, z) > ∆(x,C, z).

Now we have a lower bound on Gap(x, z).

We obtain a contradiction by carefully choosing the point v and the chain C so
that

∆(x, v, z) < ∆(x,C, z).

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002



The Geometric Part of the Proof (5)

As indicated previously, there are three cases:

Case 1. Φ is RAM; H is ACM.

Case 2. Φ is NC; H is ACM.

Case 3. H is NC; Φ is RAM.

Furthermore, Case 2 and Case 3 are dual.
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