Geometric Inclusion Orders: A New Direction in Ramsey Theory?

Tom Trotter

trotter@asu.edu trotter@math.gatech.edu

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

Notation and Terminology

Definition. An inclusion representation of a poset P is an assignment of a set S_x to each $x \in P$ so that

 $x \leq y$ in P if and only if $S_x \subseteq S_y$.

Notation and Terminology

Definition. An inclusion representation of a poset P is an assignment of a set S_x to each $x \in P$ so that

 $x \leq y$ in P if and only if $S_x \subseteq S_y$.

Remark. Every poset has an inclusion representation. Just take

 $S_x = \{y : y \le x\}.$

Notation and Terminology

Definition. An inclusion representation of a poset P is an assignment of a set S_x to each $x \in P$ so that

 $x \leq y$ in P if and only if $S_x \subseteq S_y$.

Remark. Every poset has an inclusion representation. Just take

 $S_x = \{y : y \le x\}.$

Definition. When \mathcal{F} is a family of sets and P is a poset having an inclusion representation using sets from \mathcal{F} , we call P an \mathcal{F} inclusion order, or just an \mathcal{F} order.

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

Geometric Inclusion Orders

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

Circle Orders

Definition. A poset P is a circle order if it has an inclusion representation using circles in the plane \mathbb{R}^2 .

Circle Orders

Definition. A poset P is a circle order if it has an inclusion representation using circles in the plane \mathbb{R}^2 .

Dimension of Posets

Definition. The dimension of a poset P, denoted $\dim(P)$, is the least t so that P is the intersection of t linear orders.

Dimension of Posets

Definition. The dimension of a poset P, denoted $\dim(P)$, is the least t so that P is the intersection of t linear orders.

Alternate Definion of Dimension

Definition. dim(P) is also the least t so that P is isomorphic to a subposet of \mathbb{R}^d equipped with the product ordering:

$$(a_1, a_2, \ldots, a_t) \le (b_1, b_2, \ldots, b_t)$$

if and only if

 $a_i \leq b_i \text{ for } i = 1, 2, \dots, t.$

A 3-dimensional poset

Some 3-dimensional Posets are Circle Orders

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

The Standard Examples

 $\frac{S_t}{\dim(\mathbf{S}_t)} = t$

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

The Standard Examples are Circle Orders

Sphere Orders

Definition. A poset P is a sphere order if there is a positive integer d for which P has an inclusion representation using spheres in Euclidean d-space \mathbb{R}^d .

Sphere Orders

Definition. A poset P is a sphere order if there is a positive integer d for which P has an inclusion representation using spheres in Euclidean d-space \mathbb{R}^d .

Remark (?). Every poset is a sphere order.

Incidence Posets of Graphs

Definition. Let G be a graph. The incidence poset of G, denoted P_G , consists of the vertices and edges of G ordered by inclusion.

Incidence Posets of Graphs

Definition. Let G be a graph. The incidence poset of G, denoted P_G , consists of the vertices and edges of G ordered by inclusion.

Theorem. [Schnyder, 1989; Scheinerman, 1991]

Let G be a finite graph and let P_G be its incidence poset. Then the following statements are equivalent:

Theorem. [Schnyder, 1989; Scheinerman, 1991]

Let G be a finite graph and let P_G be its incidence poset. Then the following statements are equivalent:

1. G is a planar graph.

Theorem. [Schnyder, 1989; Scheinerman, 1991] Let G be a finite graph and let P_G be its incidence poset. Then the following statements are equivalent:

1. G is a planar graph.

2. The dimension of P_G is at most 3.

Theorem. [Schnyder, 1989; Scheinerman, 1991] Let G be a finite graph and let P_G be its incidence poset. Then the following statements are equivalent:

1. G is a planar graph.

2. The dimension of P_G is at most 3.

3. P_G is a circle order.

Question. [Fishburn and Trotter, 1984] Is every finite 3-dimensional poset a circle order?

Question. [Fishburn and Trotter, 1984] Is every finite 3-dimensional poset a circle order?

Fact. Every 2-dimensional poset is a circle order.

Question. [Fishburn and Trotter, 1984] Is every finite 3-dimensional poset a circle order?

Fact. Every 2-dimensional poset is a circle order.

Theorem. For every $t \ge 3$, the standard example S_t is a t-dimensional poset which is also a circle order.

Question. [Fishburn and Trotter, 1984] Is every finite 3-dimensional poset a circle order?

Fact. Every 2-dimensional poset is a circle order.

Theorem. For every $t \ge 3$, the standard example S_t is a t-dimensional poset which is also a circle order. On the other hand, almost all 4-dimensional posets are NOT circle orders.

The Answer Should be YES!!

Remark. For every $n \ge 3$, every finite 3-dimensional poset has an inclusion representation using regular n-gons.

The Answer Should be YES!!

Remark. For every $n \ge 3$, every finite 3-dimensional poset has an inclusion representation using regular n-gons.

Remark. Every finite 3-dimensional poset has an inclusion representation using ellipses.

When n is LARGE??

Doesn't a regular n-gon turn into a circle as n increases?

The Answer Should be NO!!

Theorem. [Scheinerman and Wierman, 1988] The countably infinite poset \mathbb{Z}^3 is not a circle order.

The Answer Should be NO!!

Theorem. [Scheinerman and Wierman, 1988] The countably infinite poset \mathbb{Z}^3 is not a circle order.

Theorem. [Fon-der-Flaass, 1993] The countably infinite poset $2 \times 3 \times \mathbb{N}$ is not a sphere order.

A Strange Conjecture on Sphere Orders

Theorem. [Maehara, 1984] If G is a graph, then there exists an integer k for which G is the intersection graph of a family of spheres in \mathbb{R}^k .

A Strange Conjecture on Sphere Orders

Theorem. [Maehara, 1984] If G is a graph, then there exists an integer k for which G is the intersection graph of a family of spheres in \mathbb{R}^k .

Remark (?). Every poset is a sphere order, i.e., if P is a poset, then there exists an integer d for which P has an inclusion representation using spheres in \mathbb{R}^d .

A Strange Conjecture on Sphere Orders

Theorem. [Maehara, 1984] If G is a graph, then there exists an integer k for which G is the intersection graph of a family of spheres in \mathbb{R}^k .

Remark (?). Every poset is a sphere order, i.e., if P is a poset, then there exists an integer d for which P has an inclusion representation using spheres in \mathbb{R}^d .

Conjecture. [Brightwell and Winkler, 1989] To the contrary, there exists a finite poset which is not a sphere order.

The Surprising (?) Answer!!!

Theorem. [Felsner, Fishburn and Trotter, 1997]

There exists a positive integer n_0 so that if $n > n_0$, the finite 3-dimensional poset $\mathbf{n} \times \mathbf{n} \times \mathbf{n}$ is NOT a sphere order.

The Surprising (?) Answer!!!

Theorem. [Felsner, Fishburn and Trotter, 1997]

There exists a positive integer n_0 so that if $n > n_0$, the finite 3-dimensional poset $\mathbf{n} \times \mathbf{n} \times \mathbf{n}$ is NOT a sphere order.

Remark. The integer n_0 in the preceding theorem is very large!

The Surprising (?) Answer!!!

Theorem. [Felsner, Fishburn and Trotter, 1997]

There exists a positive integer n_0 so that if $n > n_0$, the finite 3-dimensional poset $\mathbf{n} \times \mathbf{n} \times \mathbf{n}$ is NOT a sphere order.

Remark. The integer n_0 in the preceding theorem is very large!

Remark. If P is a t-dimensional poset, then P has an inclusion representation using cubes in \mathbb{R}^{t+1} . This result is best possible.

Part II: Sketch of the Proof

Change Patterns for Increasing Sequences

Definition. Let N be a fixed (large) positive integer. Then consider an increasing sequence of positive real numbers:

 $0 < a_1 < a_2 < a_3 < a_4 < \dots < a_n.$

The sequence advances conservatively in magnitude (ACM) if

i < j implies $a_j > Na_i$.

The sequence is nearly constant (NC) if

 $i < j \text{ implies } a_j < (1 + 1/N)a_i.$

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

Nearly Constant Sequences

Definition. A NC sequence advances conservatively (AC) if

$$i < j < k$$
 implies $a_k - a_j > N(a_j - a_i)$.

An NC sequence advances agressively (AA) if

$$i < j < k \text{ implies } a_j - a_i > N(a_k - a_j).$$

Nearly Constant Sequences

Definition. A NC sequence advances conservatively (AC) if

$$i < j < k$$
 implies $a_k - a_j > N(a_j - a_i)$.

An NC sequence advances agressively (AA) if

$$i < j < k$$
 implies $a_j - a_i > N(a_k - a_j)$.

Proposition. For every m, there exists n_0 so that if $0 < a_1 < a_2 < a_3 < a_4 < \cdots < a_n$ is an increasing sequence of positive real numbers and $n > n_0$, then there is a subsequence of length m which is either (1) ACM; (2) AC, or (3) AA.

Decreasing Sequences

Definition. For decreasing sequences, the analogous terms are:

- 1. Retreating Agressively in Magnitude (RAM).
- 2. Retreating Agressively (RA).
- 3. Retreating Conservatively (RC).

Decreasing Sequences

Definition. For decreasing sequences, the analogous terms are:

- 1. Retreating Agressively in Magnitude (RAM).
- 2. Retreating Agressively (RA).
- 3. Retreating Conservatively (RC).

Proposition. For every m, there is an n_0 so that if $n > n_0$, then for any sequence of n distinct positive real numbers, there is a subsequence of length m satisfying one of the six change patterns: ACM, AC, AC, RAM, RA and RC.

The Product Ramsey Theorem

Definition. For positive integers n, k and t, a \mathbf{k}^t grid in \mathbf{n}^t is a set of the form $S_1 \times S_2 \times \ldots S_t$ where each S_i is a k-element subset of $\{0, 1, \ldots, n-1\}$.

The Product Ramsey Theorem

Definition. For positive integers n, k and t, a \mathbf{k}^{t} grid in \mathbf{n}^{t} is a set of the form $S_{1} \times S_{2} \times \ldots S_{t}$ where each S_{i} is a k-element subset of $\{0, 1, \ldots, n-1\}$.

Theorem. [Product Ramsey Theorem] Given positive integers m, k, r and t, there exists an integer n_0 so that if $n \ge n_0$ and f is any map which assigns to each \mathbf{k}^t grid of \mathbf{n}^t a color from $\{1, 2, \ldots, r\}$, then there exists a subposet P isomorphic to \mathbf{m}^t and a color $\alpha \in \{1, 2, \ldots, r\}$ so that $f(g) = \alpha$ for every \mathbf{k}^t grid g from P.

Monotonic Functions

Definition. A function f mapping \mathbf{n}^t to the positive reals is

- 1. order-preserving if x < y implies $f(x) \leq f(y)$.
- 2. order-reversing if x < y implies $f(x) \ge f(y)$.
- 3. monotonic if f is either order preserving or order reversing.

Monotonic Functions

Definition. A function f mapping \mathbf{n}^t to the positive reals is

- 1. order-preserving if x < y implies $f(x) \leq f(y)$.
- 2. order-reversing if x < y implies $f(x) \ge f(y)$.
- 3. monotonic if f is either order preserving or order reversing.

Corollary. For every m, t, there exists n_0 so that if $n > n_0$ and f is any injective function mapping \mathbf{n}^t to the positive reals, then there is a subposet isomorphic to \mathbf{m}^t such that the restriction of f is monotonic.

Coordinate Domination

Definition. Let f be an injective order preserving function mapping \mathbf{n}^t to the positive reals. f is dominated by coordinate α if

f(x) < f(y) whenever $x(\alpha) < y(\alpha)$.

Similarly, if f is order reversing, then we require

f(x) > f(y) whenever $x(\alpha) < y(\alpha)$.

Coordinate Domination

Definition. Let f be an injective order preserving function mapping \mathbf{n}^t to the positive reals. f is dominated by coordinate α if

f(x) < f(y) whenever $x(\alpha) < y(\alpha)$.

Similarly, if f is order reversing, then we require

f(x) > f(y) whenever $x(\alpha) < y(\alpha)$.

Theorem. [Fishburn and Graham, 1993]

For every m, t, there exists n_0 so that if $n > n_0$ and f is any injective function mapping \mathbf{n}^t to the positive reals, then there is a subposet isomorphic to \mathbf{m}^t and an integer α such that the restriction of f is monotonic and dominated by coordinate α .

N-Uniform Functions

Definition. Let f be an injective function mapping \mathbf{n}^t to the positive reals. f is N-uniform if

- 1. f is monotonic.
- 2. There is a coordinate α dominating f.
- 3. There is a change label from ACM, AC, AA, RAM, RA, RC which f satisfies.

N-Uniform Functions

Definition. Let f be an injective function mapping \mathbf{n}^t to the positive reals. f is N-uniform if

- 1. f is monotonic.
- 2. There is a coordinate α dominating f.
- 3. There is a change label from ACM, AC, AA, RAM, RA, RC which f satisfies.

Theorem. [Felsner, Fishburn and Trotter, 1997]

For every m, t, N, there exists n_0 so that if $n > n_0$ and f is any injective function mapping \mathbf{n}^t to the positive reals, then there is a subposet isomorphic to \mathbf{m}^t and an integer α such that the restriction of f is N-uniform and dominated by coordinate α .

Induced Functions

Definition. Let $\mathbf{s} \in \mathbf{k}^t$ and let A be a function which maps \mathbf{k}^t grids to \mathbb{R} . Then each $(\mathbf{k} - \mathbf{1})^t$ grid g induces a function $A_{g,\mathbf{s}}$ defined on points from the products of chains. For each i = 1, 2, ..., t, the points from the i^{th} factor are those between the s_{i-1}^{st} and s_i^{th} point of the i^{th} factor set of g. The different functions are called by \mathbf{s}_i^{st} .

Uniformizing Induced Functions

Theorem. [Felsner, Fishburn and Trotter, 1997]

For every m, k, t, N, there exists n_0 so that if $n > n_0$ and A is any injective function mapping the k^t grids of \mathbf{n}^t to the positive reals, then there is a subposet Q isomorphic to \mathbf{m}^t and an a collection of change patterns, one for each of the k^t functions induced by a $(k-1)^t$ grid, so that all induced functions on Q are N-uniform and satisfy a change pattern which depends only on the type—and not on the grid.

Assume $\mathbf{n}\times\mathbf{n}\times\mathbf{n}$ is a Sphere Order

Functions on Grids

Definition. With each 3^3 grid g, we associate a 3-element chain x < y < z. We then set:

- 1. $\overline{A(g)} = \phi(\overline{x, y, z)}$.
- 2. B(g) = h(x, y, z).
- 3. $C(g) = h(x, y, z)\phi(x, y, z)/2.$

Basic Notation

Definition. 1. r(x) is the radius of x.

- 2. $\rho(x,y)$ is the distance between c(x) and c(y). $c(x)\overline{c(y)}$ and c(x)c(z).
- 3. More stuff

Remark. We consider the following induced functions:

- 1. $\Phi(y) = \phi(x, y, z)$.
- 2. $\Theta(z) = \phi(x, y, z)$.
- 3. H(y) = h(x, y, z).
- 4. K(x) = h(x, y, z).
- 5. $G(y) = h(x, y, z)\phi(x, y, z)/2$.

Some Details of the Proof

Remark. We may assume that the radius function is ACM and dominated by coordinate 1. If it is AA, we invert and use the fact that the dual of a sphere order is a sphere order. With this change, the radius function is AC.

Some Details of the Proof

Remark. We may assume that the radius function is ACM and dominated by coordinate 1. If it is AA, we invert and use the fact that the dual of a sphere order is a sphere order. With this change, the radius function is AC.

If the radius function is AC, then we subtract an appropriate quantity to make it ACM.

Completing the Proof

Remark. The remainder of the argument is by case analysis, depending on the change labels for the induced functions determined by Φ , Θ , H, K and G. Surprisingly, we are able to argue that there are essentially only three cases. Furthermores, two of these three cases are dual—using a weak form of the triangle inequality.

Completing the Proof

Remark. The remainder of the argument is by case analysis, depending on the change labels for the induced functions determined by Φ , Θ , H, K and G. Surprisingly, we are able to argue that there are essentially only three cases. Furthermores, two of these three cases are dual—using a weak form of the triangle inequality.

For example, we show:

- 1. The function Φ cannot be ACM.
- 2. The function H cannot be RAM.
- 3. If Φ is NC, then H is ACM and dominated by coordinate 1.
- 4. If H is NC, then Φ is RAM and dominated by coordinate 1.

The Geometric Part of the Proof

Definition. For distinct points x and y from \mathbf{n}^3 ,

$$\operatorname{Cap}(x,y) = r(y) - r(x) - \rho(x,y).$$

Remark. When x < y, Gap(x, y) > 0, and when x is incomparable to y, Gap(x, y) < 0.

Definition. For three distinct points x, y and z, let

$$\Delta(x, y, z) = \rho(x, y) + \rho(y, z) - \rho(x, z).$$

Remark. $\Delta(x, y, z) \ge 0$, and $\Delta(x, y, z) > 0$ when the centers are not collinear.

The Geometric Part of the Proof (2)

Consider a 2-element chain x < z and a point v incomparable to both. Then

$$r(z) - r(x) = (r(v) - r(x)) + (r(z) - r(v))$$

< $\rho(x, v) + \rho(v, z),$

so that

$$\operatorname{Gap}(x,z) < \Delta(x,v,z).$$

Since this bound holds for any point incomparable to both x and z, we may consider several candidate points and take the best bound they produce. As a result, we have an upper bound on Gap(x, z).

The Geometric Part of the Proof (3)

Let
$$C = \{x = u_1 < u_2 < \dots < u_{2k+1} = z\}$$
 be a chain. Then

r

$$z) - r(x) = r(u_{2k+1}) - r(u_1)$$

$$= \sum_{i=1}^{2k} [r(u_{i+1}) - r(u_i)]$$

$$> \sum_{i=1}^{2k} \rho(u_{i+1}, u_i)$$

$$= \sum_{i=1}^{k} [\rho(u_{2i+1}, u_{2i-1}) + \Delta(u_{2i-1}, u_{2i}, u_{2i+1})]$$

$$\ge \rho(u_1, u_{2k+1}) + \sum_{i=1}^{k} \Delta(u_{2i-1}, u_{2i}, u_{2i+1}).$$

$$= \rho(x, z) + \sum_{i=1}^{k} \Delta(u_{2i-1}, u_{2i}, u_{2i+1}).$$

NSF/CMBS Conference on Geometric Graph Theory, May 28–June1, 2002

The Geometric Part of the Proof (4)

Setting

$$\Delta(x, C, z) = \sum_{i=1}^{k} \Delta(u_{2i-1}, u_{2i}, u_{2i+1}),$$

we conclude that

$$\operatorname{Gap}(x,z) > \Delta(x,C,z).$$

Now we have a lower bound on Gap(x, z).

We obtain a contradiction by carefully choosing the point \boldsymbol{v} and the chain C so that

 $\Delta(x, v, z) < \Delta(x, C, z).$

The Geometric Part of the Proof (5)

As indicated previously, there are three cases:

Case 1. Φ is RAM; *H* is ACM.

Case 2. Φ is NC; *H* is ACM.

Case 3. H is NC; Φ is RAM.

Furthermore, Case 2 and Case 3 are dual.