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Abstract: HIFOO is a public-domain Matlab package initially designed for H∞ fixed-order
controller synthesis, using nonsmooth nonconvex optimization techniques. It was later on
extended to multi-objective synthesis, including strong and simultaneous stabilization under
H∞ constraints. In this paper we describe a further extension of HIFOO to H2 performance
criteria, making it possible to address mixed H2/H∞ synthesis. We give implementation details
and report our extensive benchmark results.
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1. INTRODUCTION

HIFOO is a public-domain Matlab package originally con-
ceived during a stay of Michael Overton at the Czech
Technical University in Prague, Czech Republic, in the
summer of 2005. HIFOO relies upon HANSO, a gen-
eral purpose implementation of an hybrid algorithm for
nonsmooth optimization, mixing standard quasi-Newton
(BFGS) and gradient sampling techniques. The acronym
HIFOO (pronounce [haıfu:]) stands for H-infinity Fixed-
Order Optimization, and the package is aimed at designing
a stabilizing linear controller of fixed-order for a linear
plant in standard state-space configuration while minimiz-
ing the H∞ norm of the closed-loop transfer function.

The first version of HIFOO was released and presented
during the IFAC Symposium on Robust Control Design in
Toulouse, France in the summer of 2006, see Burke et al.
(2006b), based on the theoretical achievements reported
in Burke et al. (2006a). HIFOO was later on extended
to cope with multiple plant stabilization and multiple
conflicting objectives and the second major release of
HIFOO was announced during the IFAC Symposium on
Robust Control Design in Haifa, Israel, in the summer of
2009, see Gumussoy et al. (2009).

Since then HIFOO has been used by various scholars
and engineers. Benefiting from feedback from users, we
feel that it is now timely to extend HIFOO to H2 norm
specifications. Indeed, H2 optimal design, a generalization
of the well-known linear quadratic regulator design, is

traditionally used in modern control theory jointly with
H∞ optimal design, see Zhou et al. (1996). In particular,
the versatile framework of mixed H2/H∞ design described
e.g. in Scherer (1995) is frequently used when designing
high-performance control laws for example in aerospace
systems, see Arzelier et al. (2006). See also Vanbiervliet
et al. (2009) for an application of the H2 norm for
smoothening H∞ optimization.

The objective is this paper is to describe the extension of
HIFOO to H2 norm specifications in such a way that users
understand the basic mechanisms underlying the package,
and may be able to implement their own extensions to
fit their needs for their target applications. For example,
the algorithms of HIFOO can also be extended to cope
with discrete-time systems, pole placement specifications
or time-delay systems. On the HIFOO webpage

www.cs.nyu.edu/overton/software/hifoo

we are maintaining a list of publications reporting such
extensions and applications in engineering. The HIFOO
and HANSO packages can also be downloaded there.

2. H2 AND H2/H∞ SYNTHESIS

2.1 H2 synthesis

We use the standard state-space setup

ẋ = Ax+B1w +B2u
z = C1x+D11w +D12u
y = C2x+D21w +D22u



where x contains the states, u the physical (control) inputs,
y the physical (measured) outputs, w the performance
inputs and z the performance outputs. Without loss of
generality, we assume that

D22 = 0

otherwise we can use a linear change of variables on the
system inputs and outputs, see e.g. Zhou et al. (1996).

We want to design a controller with state-space represen-
tation

ẋK = AKxK +BKy
u = CKxK +DKy

so that the closed-loop system equations become

ẋ = A(k)x + B(k)w
z = C(k)x + D(k)w

in the extended state vector x = [xT xTK ]T with matrices

A(k) =

[
A+B2DKC2 B2CK

BKC2 AK

]
B(k) =

[
B1 +B2DKD21

BKD21

]
C(k) = [C1 +D12DKC2 D12CK ]

D(k) = D11 +D12DKD21

depending affinely on the vector k containing all parame-
ters in the controller matrices.

The H2 norm of the closed-loop transfer function T (s)
between input w and output z is finite only if matrix
A is asymptotically stable and if D is zero (no direct
feedthrough). This enforces the following affine constraint
on the DK controller matrix:

D11 +D12DKD21 = 0. (1)

We use the singular value decomposition to rewrite this
affine constraint in an explicit parametric vector form,
therefore reducing the number of parameters in controller
vector k. If the above system of equations has no solution,
then there is no controller achieving a finite H2 norm.

In order to use the quasi-Newton optimization algorithms
of HANSO, we must provide a function evaluating the
H2 norm in closed-loop and its gradient, given controller
parameters. Formulas can already be found in the tech-
nical literature Rautert and Sachs (1997), but they are
reproduced here for the reader’s convenience. The (square
of the) norm of the transfer function T (s) is given by

f(k) = ‖T (s)‖22 = trace (CX(k)CT ) = trace (BTY (k)B)

where matrices X(k) and Y (k) solve the Lyapunov equa-
tions

AT (k)Y (k) + Y (k)A(k) + CT (k)C(k) = 0,
A(k)X(k) + AT (k)X(k) + B(k)BT (k) = 0

(2)

and hence depend rationally on K. The gradient of the H2

norm with respect to controller parameters K is given by:

∇Kf(k) = 2(BT
2X(k) + DT

12C(k))Y (k)CT
2

+2BT
2X(k)B(k)DT

21

upon defining the augmented system matrices

B2 =

[
0 B2

1 0

]
, C2 =

[
0 1
C2 0

]
,

D12 = [0 D12], D21 =

[
0
D21

]
.

As an academic example for which the H2 optimal con-
troller can be computed analytically, consider the system

ẋ = −x+ w + u

z =

[
1
0

]
x+

[
0
1

]
u

y = x

with a static controller

u = ky

with k a real scalar to be found. Closed-loop system
matrices are

A = −1 + k, B = 1, C =

[
1
k

]
.

The first Lyapunov equation in (2) reads

2(−1 + k)Y (k) + 1 + k2 = 0

so the square of the H2 norm is equal to

f(k) =
1 + k2

2(1− k)
.

For the gradient computation, we have to solve the first
Lyapunov equation in (2)

2(−1 + k)Y (k) + 1 = 0

and hence

∇f(k) =
1 + 2k − k2

2(1− k)2
.

This gradient vanishes at two points, one of which violating
the closed-loop stability condition −1 + k < 0. The other
point yields the optimal feedback gain

k∗ = 1−
√

2 ≈ −0.4142

see Figure 1.
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Fig. 1. H2 norm as a function of feedback gain.

Using HIFOO with the input sequence

P=struct(’A’,-1,’B1’,1,’B2’,1,...
’C1’,[1;0],’C2’,1,’D11’,[0;0],...
’D12’,[0;1],’D21’,0,’D22’,0);
options.prtlevel=2;
K=hifoo(P,’t’,options)

we generate the 3 sequences of optimized H2 norms dis-
played on Figure 2, yielding an optimal H2 norm of 0.6436



consistent with the analytic global minimum
√√

2− 1.
Note the use of the optional third input parameter speci-
fying a verbose printing level. Note also that the sequences
generated on your own computer may differ since random
starting points are used.
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Fig. 2. H2 norm sequences optimized within HIFOO.

2.2 Mixed H2/H∞ synthesis

One interesting feature of adding H2 performance in the
HIFOO package is the possibility to address the general
mixed H2/H∞ synthesis problem depicted on Figure 3
where the open-loop plant is denoted by P and the
controller is denoted by K.

oo oo

z

w

w

K

2 2

P

u y

z

Fig. 3. Standard feedback configuration for mixed H2/H∞
synthesis.

A minimal state-space realization of the plant is given by

P (s) :=

 A B∞ B2 B
C∞ D∞ 0 D∞u

C2 0 0 D2u

C Dy∞ 0 0

 .
The optimization problem reads

min
K
‖P2(s)‖2

s.t. ‖P∞(s)‖∞ ≤ γ∞
where P2(s) is the transfer function between H2 per-
formance signals w2 and z2, and P∞(s) is the transfer
function between H∞ signals w∞ and z∞.

P2(s) :=

 A B2 B
C2 0 D2u

C 0 0


P∞(s) :=

 A B∞ B
C∞ D∞ D∞u

C Dy∞ 0

 . (3)

An academic example for which the global optimal solution
has been calculated in Arzelier and Peaucelle (2002) is
used as an illustration for the mixed H2/H∞ synthesis
problem. Data for the model are given by

A =

[
0 1
−1 0

]
B =

[
0
1

]
C = [ 0 1 ]

C2 =

[
1 0
0 0

]
B2 = 12 D2u =

[
0
1

]

C∞ = [ 0 1 ] B∞ =

[
1
0

]
D∞u = 0

D∞ = 0 Dy∞ = 0 Dy2 = 01×2.

The analytical solution may be found by solving the fol-
lowing mathematical programming problem as in Arzelier
and Peaucelle (2002)

min
k

J(k)

s.t.
k < 0
f(k) ≤ γ∞.

(4)

For a non redundant mixed H2/H∞ (1 < γ∞ <
3√
5

), the

global optimal solution is

k∗ = −
√

2− 2
√

1− 1/γ2

‖P2‖2 = α∗ =

√√√√ 4− 3
√

1− 1/γ2√
2− 2

√
1− 1/γ2

.

(5)

For γ = 1.2, HIFOO gives the global optimal solution

k∗ = −0.9458
‖P2‖2 = 1.5735 ‖P∞‖∞ = 1.2

(6)

with the input sequence

P2=struct(’A’,[0 1;-1 0],’B1’,eye(2),’B2’,[0;1],...
’C1’,[1 0;0 0],’C2’,[0 1],’D11’,zeros(2,2),...
’D12’,[0;1],’D21’,[0 0],’D22’,0);

Pinf = struct(’A’,[0 1;-1 0],’B1’,[1;0],...
’B2’,[0;1],’C1’,[0 1],’C2’,[0 1],’D11’,0,...
’D12’,0,’D21’,0,’D22’,0);

K=hifoo({P2,Pinf},’th’,[Inf,1.2])

3. IMPLEMENTATION DETAILS

3.1 Implementing H2 norm into HIFOO

In the main HIFOO function hifoomain.m, we added an
option ’t’ for H2 norm specification, without affecting the
existing features. Proceeding this way, the H2 norm can
enter the objective function or a performance constraint.



TheH2 synthesis works in the same way as theH∞ synthe-
sis, using a stabilization phase followed by an optimization
phase.

A typical call of HIFOO for H2 static output feedback
design is as follows:

K = hifoo(’AC1’,’t’)

where AC1 refers to a problem of the COMPlib database,
see Burke et al. (2006b); Gumussoy et al. (2009).

We added the function htwo.m computing the H2 norm
and its gradient, given the controller parameters. We had
to pay special attention to the linear system of equations
arising from constraint (1). When the user also specifies
the controller structure, we have added this constraint to
the existing H2 constraints. To do this we had to change
the way the controller structure was treated by HIFOO.

The above formulae for the computation of the H2 norm
and its gradient are given forD22 = 0, i.e. zero feedthrough
matrix. When this matrix is nonzero we can use the
same functions for synthesis, with some precautions. By
considering the shifted output ỹ = y − D22u, we recover
the initial case with zero feedthrough matrix. We compute
the controller matrices ÂK , B̂K , ĈK , D̂K based on the
shifted output and then we apply a transformation on the
controller matrix. We obtain the final solution:

AK = ÂK − B̂KD22(1 + D̂KD22)−1ĈK

BK = B̂K(1−D22(1 + D̂KD22)−1D̂K)

CK = (1 + D̂KD22)−1ĈK

DK = (1 + D̂KD22)−1D̂K .

(7)

Given the way this case is treated, multiple plant optimiza-
tion only works if the plants have the same feedthrough
matrix. Note however that the case of nonzero feedthrough
matrix and imposed controller structure cannot be treated
by the current version of the program but could be the
object of further development.

3.2 Numerical linear algebra

For H∞ norm optimization, HIFOO calls Matlab’s func-
tion eig to check stability, returns inf if unstable, and
otherwise calls the Control System Toolbox function norm,
which proceeds by bisection on successive computations
of spectra of Hamiltonian matrices. This latter function
relies heavily on system matrix scaling, on SLICOT rou-
tines, and its is regularly updated and improved by The
MathWorks Inc. We observe experimentally that calling
eig once before calling norm is negligible (less than 5%)
in terms of total computational cost.

For H2 norm optimization, HIFOO calls eig to check
stability, returns inf if unstable, and otherwise calls Mat-
lab’s lyap function to compute the norm and its gradient.
Experimentally, we observe that the time spent by eig to
check stability is approximately 20% of the time spent to
solve the two Lyapunov functions.

So a priori stability check is negligible for H∞ optimiza-
tion and comparatively small but not negligible for H2

optimization. In this latter case there is some room for
improvement, but since the overall objective of the HIFOO
project is not performance and speed but reliability, we
decided to keep the stability check for H2 optimization.

4. BENCHMARKING

4.1 H2 synthesis

We have extensively benchmarked HIFOO on problem
instances studied already in Arzelier et al. (2009) with an
LMI/randomized algorithm. Since random starting points
are used in HIFOO we kept the best results over 10
attempts each with 3 starting points, with no computation
time limit. We ran the algorithms only on systems which
are not open-loop stable. For comparison, we took the best
results obtained in Arzelier et al. (2009). In Table 1, we
use the following notations:

?: linear system (1) has a unique solution which is not
stabilizing
•: linear system (1) has no solution
+: algorithm initialized with a stabilizing controller
†: no stabilizing controller was found
r: rank assumptions on problem data are violated.

Also nx, nu, ny denote the number of states, inputs and
outputs. In addition to H2 norms obtained by the LMI
algorithm and HIFOO, we also report for information the
H2 norm achievable by full-order controller design with
HIFOO. Numerical values are reported to three significant
digits for space reasons.

In some cases (e.g. IH and CSE2) we observe that the norms
achieved with a full-order controller are greater than the
norms achieved with a static output feedback controller.
This is due to the difficulty of finding a good initial point
in the full-order case. A more practical approach, not
pursued here, consists in gradually increasing the order
of the controller, using the lower order controller found at
the previous step.

For the considered examples, HIFOO generally gives bet-
ter results than the randomized/LMI method of Arzelier
et al. (2009). We also report the performance achievable
with a full-order controller designed with HIFOO. We
could not use the H2 optimal synthesis functions of the
Control System Toolbox for Matlab as the technical as-
sumptions (rank conditions on systems data) under which
these functions are guaranteed to work are most of the
time violated.

4.2 H2 synthesis for larger order systems

For larger order systems, we compared our results with
those of Apkarian et al. (2008) which are also based on
nonsmooth optimization (labeled NSO). In Table 2 the
column nk indicates the order of the designed controller.
We observe that HIFOO yields better results, except for
example CM4 in the static output feedback case.

4.3 Mixed H2/H∞ synthesis

In this section we compare the results achieved with
HIFOO with those of Apkarian et al. (2008) in the case of
the mixed H2/H∞ synthesis problem, depicted on Figure
3.

In Table 3 nk is the order of the controller and γ∞ is
the level of H∞ performance (a constraint). For problem
dimensions refer to Table 2.



We observe that HIFOO returns better or similar results
than the non-smooth optimization (NSO) method of Ap-
karian et al. (2008), except for problem CM4 in the static
output feedback case. Based on the CPU times of the
NSO method gracefully provided to us by Aude Ronde-
pierre (not reported here), we must however mention that
HIFOO is typically much slower. This is not surprising
however since HIFOO is Matlab interpreted, contrary to
the NSO method which is compiled.

Table 1. H2 norm achieved for SOF controller
design with LMI/randomized methods and HI-
FOO, and full-order controller design with HI-

FOO.

nx nu ny SOF LMI SOF HIFOO full HIFOO

AC1 5 3 3 3.41e-7 1.46e-9 1.81e-15
AC2 5 3 3 0.0503 0.0503 0.0491
AC5 4 2 2 1470 1470 1340
AC9 10 4 5 r 1.44 1.41
AC10 55 2 2 r 27.8 (+) †
AC11 5 2 4 3.94 3.94 3.64
AC12 4 3 4 r 0.0202 5.00e-5
AC13 28 3 4 132 132 106
AC14 40 3 4 r ? 7.00
AC18 10 2 2 19.7 19.7 18.6
HE1 4 2 1 0.0954 0.0954 0.0857
HE3 8 4 6 r 0.812 0.812
HE4 8 4 6 21.7 20.8 18.6
HE5 4 2 2 r ? 1.59
HE6 20 4 6 r • •
HE7 20 4 6 r • •
DIS2 3 2 2 1.42 1.42 1.40
DIS4 6 4 6 1.69 1.69 1.69
DIS5 4 2 2 r ? 1280
JE2 21 3 3 1010 961 623
JE3 24 3 6 r • •
REA1 4 2 3 1.82 1.82 1.50
REA2 4 2 2 1.86 1.86 1.65
REA3 12 1 3 12.1 12.1 9.91
WEC1 10 3 4 7.36 7.36 5.69
BDT2 82 4 4 r 0.795 0.655
IH 21 11 10 1.66 1.54e-4 0.203

CSE2 60 2 30 0.00890 0.00950 0.0133
PAS 5 1 3 0.00920 0.00380 0.00197
TF1 7 2 4 r 0.164 0.136
TF2 7 2 3 r † 10.9
TF3 7 2 3 r 13.6 0.136
NN1 3 1 2 41.8 41.8 35.0
NN2 2 1 1 1.57 1.57 1.54
NN5 7 1 2 142 142 82.4
NN6 9 1 4 1350 1310 314
NN7 9 1 4 133 133 84.2
NN9 5 3 2 r 29.7 20.9
NN12 6 2 2 18.9 18.9 10.9
NN13 6 2 2 r • •
NN14 6 2 2 r ? †
NN15 3 2 2 0.0485 0.0486 0.0480
NN16 8 4 4 0.298 0.291 0.342
NN17 3 2 1 9.46 9.46 3.87

HF2D10 5 2 3 7.12e4 7.12e4 7.06e4
HF2D11 5 2 3 8.51e4 8.51e4 8.51e4
HF2D14 5 2 4 3.74e5 3.74e5 3.73e5
HF2D15 5 2 4 2.97e5 2.97e5 2.84e5
HF2D16 5 2 4 2.85e5 2.85e5 2.84e5
HF2D17 5 2 4 3.76e5 3.76e5 3.75e5
HF2D18 5 2 2 27.8 27.8 24.3
TMD 6 2 4 r 1.36 1.32
FS 5 1 3 1.69e4 1.69e4 1.83e4

5. CONCLUSION

This paper documents the extension of HIFOO to H2

performance. The resulting new version 3.0 of HIFOO
has been extensively benchmarked on H2 and H2/H∞
minimization problems. We illustrated that HIFOO gives
better results than alternative methods for most of the
considered benchmark problems.

HIFOO is an open-source public-domain software that can
be downloaded at

www.cs.nyu.edu/overton/software/hifoo

Feedback from users is welcome and significantly helps us
improve the software and our understanding of nonsmooth
nonconvex optimization methods applied to systems con-
trol.

Just before the completion of this work, Pierre Apkarian
informed us that several algorithms of nonsmooth opti-
mization have now been implemented by The MathWorks
Inc. and will be released in the next version of the Robust
Control Toolbox for Matlab. Extensive comparison with
HIFOO will therefore be an interesting further research
topic.

Table 2. H2 norm achieved with HIFOO
compared with the nonsmooth optimization

method of Apkarian et al. (2008).

nx nu ny nk HIFOO NSO

AC14 40 4 3 1 21.4 21.4
10 7.00 8.10
20 7.00 7.56

BDT2 82 4 4 0 0.791 0.794
10 0.598 0.789
41 0.585 0.779

HF1 130 1 2 0 0.0582 0.0582
10 0.0581 0.0582
25 0.0581 0.0581

CM4 240 1 2 0 61.0 0.926
50 0.933 0.938

Table 3. Mixed H2/H∞ design with HIFOO
compared with the nonsmooth optimization

method of Apkarian et al. (2008).

nk γ∞ H2 HIFOO H2 NSO H∞ HIFOO H∞ NSO

AC14 1 1000 21.4 21.4 230 231
10 1000 7.01 8.78 100 101
1 200 21.7 21.5 200 200
20 200 7.08 7.99 100 100

BDT2 0 10 0.790 0.804 0.908 1.06
10 10 0.608 0.765 0.867 1.11
0 0.8 0.919 0.791 0.943 0.800
10 0.8 1.16 0.772 1.23 0.800
41 0.8 1.24 0.789 2.32 0.800

HF1 0 10 0.0582 0.0582 0.460 0.461
0 0.45 0.0588 0.0588 0.450 0.450
10 0.45 0.0586 0.0587 0.450 0.450
25 0.45 0.0586 0.0587 0.450 0.450

CM4 0 10 0.927 0.927 1.66 1.66
0 1 0.986 0.984 1.00 1.00
25 1 1.25 0.953 10.4 1.00
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