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Abstract. This paper treats the problem of computing the collapse state in limit analysis
for a solid with a quadratic yield condition, such as, for example, the von Mises condition. After
discretization with the finite element method, using divergence-free elements for the plastic flow,
the kinematic formulation reduces to the problem of minimizing a sum of Euclidean vector norms,
subject to a single linear constraint. This is a nonsmooth minimization problem, since many of the
norms in the sum may vanish at the optimal point. Recently an efficient solution algorithm has been
developed for this particular convex optimization problem in large sparse form.

The approach is applied to test problems in limit analysis in two different plane models: plane
strain and plates. In the first case more than 80% of the terms in the objective function are zero
in the optimal solution, causing extreme ill conditioning. In the second case all terms are nonzero.
In both cases the method works very well, and problems are solved which are larger by at least an
order of magnitude than previously reported. The relative accuracy for the solution of the discrete
problems, measured by duality gap and feasibility, is typically of the order 10−8.
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1. Introduction. The problem of limit analysis is the following: given a load
distribution on a rigid plastic solid, what is the maximum multiple of this load that
the solid can sustain without collapsing? And when collapse does occur, what are
the fields of stresses and plastic flow in the collapse state? In particular, it is of
interest to find the plastified region, where the stresses are at the yield surface and
where plastic deformation takes place. It is harder to find the collapse fields than
the collapse multiplier. In typical cases these fields are not uniquely determined, in
contrast to the equilibrium problems within the elastic model.

We shall use the following notation:

V : domain occupied by the solid
S : fixed part of V ’s surface
T : free and possibly loaded part of the surface

f = f(x) : volume force at x ∈ V
g = g(x) : surface force at x ∈ T
σ = (σij) : stress tensor (symmetric)
σ ∈ K : the yield condition

u = (ui) : plastic flow field
ε = (εij) : plastic deformation rate tensor defined by
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εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The work rate for the pair of forces (f , g) and a virtual plastic flow u is

F (u) =
∫
V

f · u+
∫
T

g · u.(1.1)

The work rate for the internal stresses is given by the bilinear form

a(σ,u) =
∫
V

∑
i,j

σijεijdx =
∫
V

∑
i,j

σij
∂ui
∂xj

dx.(1.2)

We assume that the yield condition is of the form

σ ∈ K ⇔ K(σ) ≤ 1,(1.3)

where K is a quadratic function in the components of σ. For example, the von Mises
condition is

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
12 + σ2

23 + σ2
31) ≤ 2σ2

0 ,(1.4)

σ0 being the yield stress in simple tension. The yield condition must be satisfied at
every point in the solid. Note that (1.4) does not bound the diagonal components
of σ.

The limit multiplier λ∗ is given by (Christiansen [12, 16])

λ∗ = max{λ | ∃ σ ∈ K : a(σ,u) = λF (u) ∀ u}(1.5)
= max

σ∈K
min
F (u)=1

a(σ,u)(1.6)

= min
F (u)=1

max
σ∈K

a(σ,u)(1.7)

= min
F (u)=1

D(u),(1.8)

where

D(u) = max
σ∈K

a(σ,u).(1.9)

The expression (1.5) states the existence of an admissible stress tensor σ ∈ K which
is in equilibrium with the external forces (λf , λg). Equation (1.6) follows from simple
linear algebra, while (1.7) is the duality theorem of limit analysis proved in [14] and
[16, section 5]. The expressions (1.5) and (1.8) are traditionally known, respectively,
as the static and kinematic principles of limit analysis.

The solution to the problem of limit analysis consists of the triple (λ∗,σ∗,u∗),
where (σ∗,u∗) is a saddle point for (1.6)–(1.7). The functions σ∗ and u∗ are then
fields of stress and flow in the collapse state. It follows from the kinematic principle
(1.8) that

λ∗ = a(σ∗,u∗) = D(u∗) = max
σ∈K

a(σ,u∗).

Inserting the form (1.2) for a(σ,u) we get∫
V

∑
i,j

σ∗ij εij(u
∗) dx = max

σ∈K

∫
V

∑
i,j

σij εij(u∗) dx,
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which leads to the principle of complementary slackness in limit analysis: at each
point in the material where ε(u∗) is nonzero, the collapse stress tensor σ∗ must be
at the yield surface, i.e., K(σ∗) = 1. Furthermore, ε(u∗) is an outward normal to
the yield surface at σ∗. Regions with ε(u∗) = 0 are rigid. Points where ε(u∗) 6= 0,
implying that σ∗ is at the yield surface, belong to the plastified region. Identification
of these regions is an important part of the solution process.

The von Mises yield condition (1.4) is insensitive to the addition of any tensor of
the form ϕI, where I = (δij) is the unit tensor. This reflects the property that purely
hydrostatic pressure (or underpressure) does not affect plastic collapse. We assume
that the set K of admissible tensors in condition (1.3) either (a) is bounded (the easy
case) or (b) has the property that

σ ∈ K ⇔ (σ − ϕI) ∈ K for any function ϕ.(1.10)

The case where K is bounded occurs in the plane stress model and in the plate model.
The unbounded case occurs in three-dimensional problems and in the plane strain
model. We concentrate on the unbounded case, although we shall report computa-
tional results for the plate model as well.

Assume now that the yield condition satisfies (1.10). Then it is easy to see that
the so-called energy dissipation rate D(u) defined by (1.9) is finite if and only if u
is divergence free, ∇ · u = 0; i.e., the plastic flow is incompressible. This condition
is an infinite set of linear constraints on u in the minimization problem (1.8). For
this reason the standard approach in limit analysis with unbounded yield set has
been to solve the discrete form of the static principle (1.5). This problem is large,
sparse, and ill-conditioned, partially due to the unbounded feasible set. Since efficient
convex programming methods for such problems were not available, the quadratic
yield condition was linearized, and the resulting linear program (LP) was solved with
the simplex method (see, e.g., [2, 9, 12]).

In [17] and [18], it was demonstrated that interior-point methods are very effec-
tive for solving the LPs arising in limit analysis, making it possible to obtain solu-
tions on finer grids. Furthermore it was noted that interior-point methods give more
“physically correct” collapse fields than the simplex method. This is because in the
typical case of nonunique or poorly determined solutions, the simplex method gen-
erates extreme-point solutions which may oscillate from node to node. By contrast,
an interior-point method tends to generate solutions which are better centered in the
optimal faces. A new and very efficient infeasible interior-point method for LPs [3]
was applied to limit analysis in [5] (see also [16]). Problems one order of magnitude
larger than before were solved.

In [15] and [16] further advances were made by abandoning the linearization of
the quadratic yield condition, instead solving the discrete form of (1.5), which is
a quadratically constrained optimization problem. This was done using the convex
programming feature of MINOS [25]. The limit multiplier was more accurately deter-
mined than when using LP methods, but the collapse fields again displayed unphysical
fluctuations due to the extreme point nature of the algorithm used by MINOS.

In the present paper, we report results obtained by direct minimization of the
discrete analogue of (1.8), i.e., using the discrete kinematic principle. The objective
function is convex but nondifferentiable. We solve this problem with the method de-
veloped in [4] and obtain results that are far more accurate than previously published.

The paper is organized as follows. In section 2, we introduce the discretization we
use for limit analysis with an unbounded yield condition, approximating the plastic
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flow u and the stresses σ simultaneously by different finite element functions, for
reasons which we shall explain. In section 3, we discuss the technique we use for
solving the discrete optimization problem corresponding to (1.8). In section 4, we
turn our attention to a plate bending problem with quite different characteristics
but which nonetheless leads to a discrete optimization problem of the same type. In
section 5 we give computational results.

2. The discretization. We assume that the yield condition is of the form (1.10)
and impose the implicit constraint ∇ · u = 0. Then

a(ϕI,u) =
∫
V

ϕ(∇ · u)dx = 0

for all scalar functions ϕ. Hence we need only consider stress tensors satisfying
∑
σii =

0 in the duality problem (1.5)–(1.8). With this restriction the set of admissible tensors
is bounded, and hence the objective function D(u) in the minimization problem (1.8)
is finite for all u satisfying ∇ ·u = 0. The details are given in [14] and in [16, section
5.4].

Using standard finite element spaces, it is straightforward to find a discrete rep-
resentation for stresses satisfying

∑
σii = 0 and thus reduce the problem size. The

constraint ∇·u = 0 is a complication known from finite element computations in fluid
mechanics, discussed in, e.g., Temam [28, sections 4.4–4.5]. The trick is to represent
the flow u as a curl, u = ∇×Ψ, which implies ∇·u = 0. Instead of choosing finite ele-
ments for the flow u itself we discretize the vector Ψ to a finite element representation
Ψh, such that the discrete flow uh is given by

uh = ∇×Ψh.(2.1)

(h is a linear measure of the element size in the discretization.) Care must be taken
to ensure that uh satisfies the boundary conditions.

This way we obtain not only a finite and computable objective function D(u) for
the minimization problem (1.8); we also get a reduction in problem size by removing
compressible flow and purely hydrostatic pressure from the duality problem. There
is a price to pay, though: the discrete flow uh must be continuous because of the
boundary condition and the derivatives in the expression (1.2). Hence Ψh must be
of class C1. In two space dimensions this implies the use of elements like the Argyris
triangle or the Bell triangle. If the geometry permits a triangulation into rectangles
(in two or three space dimensions), then the tensor product of the standard cubic
C1-elements (Bogner–Fox–Schmit rectangle) is a convenient choice. (All these finite
elements are described in Ciarlet [21, section 2.2] and [22, section 9].)

In plane strain this approach is particularly attractive: Ψh only has one nonzero
component which we shall denote Ψh, and (2.1) reduces to

uh =
(
∂Ψh

∂x2
, − ∂Ψh

∂x1

)
.(2.2)

The corresponding stress tensor of trace zero satisfies σ22 = −σ11 and may be identi-
fied with the vector (σ1, σ2), where

σh =
[
σ1 σ2
σ2 −σ1

]
.(2.3)
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With this notation the von Mises yield condition in plane strain becomes

σ2
1 + σ2

2 ≤
1
3
σ2

0 .(2.4)

In order to be specific we briefly describe the discretization of the plane strain
case with bicubic C1-elements over rectangles (the Bogner–Fox–Schmit rectangle) for
Ψh. The nodes for this finite element space are the vertices of the rectangles. There
are four basis functions associated with each vertex µ, corresponding to the following
nodal values of Ψh [22, p. 92]:

Ψ ,
∂Ψ
∂x1

,
∂Ψ
∂x2

,
∂2Ψ

∂x1∂x2
.

According to (2.2) two of these nodal values correspond to the components of uh at
the vertex.

For the stress components σ1 and σ2 in (2.3) there are no boundary conditions
imposed, and no derivatives occur in the expression (1.2) for a(σ,u), so the discrete
stresses need not even be continuous. However, as we shall explain below, the di-
mension of the space of discrete stresses σh must satisfy a compatibility condition
with the dimension of the space for Ψh which in this case has four degrees of freedom
per vertex. The space of piecewise bilinear functions is too small, but the space of
piecewise biquadratic element functions satisfies this condition. The nodes are the
vertices of the rectangles, the midpoints of the sides, and the midpoint of the rectan-
gles (see [22, p. 77]). Associated with each node Nν there is a scalar basis function
ϕν characterized completely by being equal to one at this node and equal to zero at
all other nodes. Consequently, there are the following basis functions for the space of
discrete stresses σh given by (2.3):

ϕ1
ν =

[
ϕν 0
0 −ϕν

]
, ϕ2

ν =
[

0 ϕν
ϕν 0

]
.

The discrete stress tensor may be written

σh =
∑
ν

(
ξ1
νϕ

1
ν + ξ1

νϕ
2
ν

)
.(2.5)

The yield condition (2.4) is imposed on the nodal values as follows:(
ξ1
ν

)2
+
(
ξ2
ν

)2 ≤ 1
3
σ2

0 for all nodes ν.(2.6)

The expressions (1.1) for F (uh) and (1.2) for a(σh,uh) may be expressed in the
nodal values for uh and σh. For the details we refer to [6, pp. 7–8] (also to appear in
[16, section 9]). With a suitable numbering of the nodal values, x = (xn) ∈ RN for σ
and y = (ym) ∈ RM for u, we get

F (uh) =
M∑
m=1

ymbm = bTy(2.7)

and

a (σh,uh) =
M∑
m=1

N∑
n=1

ymxnamn = yTAx = xT
(
ATy

)
.(2.8)
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Let Kd denote the set of x ∈ RN for which the corresponding (ξkν ) satisfies the
yield condition (2.6), and define

Dd(y) = max
x∈Kd

xT (ATy).(2.9)

With this notation we get

λ∗h = max{λ | ∃ x ∈ Kd : Ax = λb}(2.10)
= max
x∈Kd

min
bT y=1

yTAx

= min
bT y=1

max
x∈Kd

xT (ATy)

= min
bT y=1

Dd(y).(2.11)

The duality between (2.10) and (2.11) follows immediately from [11, Theorem 2.1]
but is standard in the finite-dimensional case.

From the discrete static form (2.10) it follows that λ∗h = 0, if b does not belong
to the range of A, RA = {Ax | x ∈ RN}. In order to handle general external forces
we must impose the consistency condition RA = RM or, in other words, the matrix
A must have full row rank M . In particular, it is necessary that N > M . This is
the compatibility condition on the space of discrete stresses σh mentioned above, and
this is the reason why we must use piecewise biquadratic element functions for the
components of σh instead of, e.g., piecewise bilinear elements.

The use of piecewise biquadratic elements for σh introduces an error in connection
with the yield condition. The inequality (2.6) imposes the yield condition (2.4) for
σh only at the nodes. With biquadratic element functions it may be violated between
nodes. The maximum pointwise violation of the quadratic condition (2.4) may be as
large as approximately 28% of the variation of a component of σh over the element.
With a similar change of sign in the corresponding component of ε(uh) this may result
in a value of (2.9) which is larger than the correct value D(uh) defined by (1.9). In
applications σ∗h will approximate an exact σ∗ which may have a jump discontinuity.
In this case the total area of elements across which σ∗h has maximum variation will
decrease as O(h) as h tends to zero, and the influence of the constraint violation on
the discrete collapse multiplier λ∗h can be considered part of the discretization error.
In limit analysis we cannot expect faster convergence than O(h) [12, 13, 16, 18].
We do not know to what extent this constraint violation actually contributes to the
discretization error in λ∗h.

3. Solution of the discrete problem. We approach the discrete problem in
the kinematic form (2.11). There is only one linear equality constraint, but the
objective function (2.9) is not differentiable. The matrix A is sparse with the usual
finite element structure for problems in two space dimensions. Using the notation
(2.5) for the x-variables we have

xT
(
ATy

)
=
∑
ν

2∑
k=1

ξkν

(
ATy

)k
ν
.

Substituting for x ∈ Kd in (2.9) the normalized yield condition (2.6), i.e.,(
ξ1
ν

)2
+
(
ξ2
ν

)2 ≤ 1 for all nodes ν,
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we get

Dd(y) =
∑
ν

(((
ATy

)1

ν

)2

+
((
ATy

)2

ν

)2
) 1

2

,

a sum of Euclidean norms of two-dimensional vectors. Each term only involves two
rows of AT , i.e., two columns of A. These are precisely the two columns associated
with the node ν, and they correspond to the value of the two components of σh at
that node. Now let Aν denote the M × 2 matrix consisting of these two columns,
i.e., the two columns corresponding to the primal variables ξ1

ν and ξ2
ν . Then we get

the following expression for the objective function (2.9):

Dd(y) =
∑
ν

((
AT
ν y
)2

1
+
(
AT
ν y
)2

2

) 1
2

=
∑
ν

∥∥∥AT
ν y
∥∥∥ .(3.1)

The discrete problem (2.11) may now be written

λ∗h = min
bT y=1

∑
ν

∥∥∥AT
ν y
∥∥∥ ,(3.2)

where the sum is over the nodes for the discrete stresses as explained above. This is a
problem of minimizing a sum of Euclidean norms subject to one linear constraint. In
the optimal solution we typically expect a large number (in some applications more
than 90%) of the terms in (3.2) to vanish and hence be nondifferentiable. The quantity
Dd(y) defined by (2.9) is the discrete analogue of D(u) defined by (1.9). Hence the
nodes for which AT

ν y = 0 correspond to points where ε(u) = 0, i.e., to points in the
rigid region where there is no local deformation.

Calamai and Conn [7, 8] and Overton [26] have developed second-order methods
for problems like (3.2). The idea is to identify dynamically the zero-terms and then
replace them by constraints of the type AT

ν y = 0. Specialized versions of Overton’s
method were applied to test problems in limit analysis in [27] (antiplane shear) and [23]
(plane stress), respectively. In these applications, limited to bounded yield sets, only
the plastic flow u, and not the stresses, was discretized by finite elements, leading to
a so-called lower bound method (see [12]). Our initial experiments minimizing (3.2)
directly used the code of [26], but these were limited to coarse grids. The results
presented in section 5 were obtained with a much more efficient algorithm developed
by Andersen [4], extending the ideas of interior-point methods for LP to the sum-
of-norms objective in (3.2). The interior-point method eliminates difficulties with
degenerate solutions discussed in [7, 8, 23, 26, 27]. The algorithm is designed for
unconstrained problems, but an efficient technique which is used to handle the single
constraint bTy = 1 is discussed in [4, Appendix A].

4. The plate problem. Limit analysis for plastic plates is described in [10]. The
variables are the three components of the bending moments m11, m22, and m12 = m21
and the transversal displacement rate u. The problem of limit analysis is formally the
same as above with the following modifications:

a(m, u) = −
∫
A

2∑
i,j=1

mij
∂2u

∂xi∂xj
da

=
∫
A

(
∂u

∂x1

(
∂m11

∂x1
+
∂m12

∂x2

)
+

∂u

∂x2

(
∂m12

∂x1
+
∂m22

∂x2

))
da(4.1)
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= −
∫
A

u

(
∂2m11

∂x2
1

+ 2
∂2m12

∂x1∂x2
+
∂2m2

∂x2
2

)
da,

F (u) =
∫
A

f u da,(4.2)

where A denotes the area of the plate and f is the transversal force. For computational
purposes we always use the form (4.1) with one derivative on both m and u, so that
standard finite element functions can be applied.

In the plate model the set of admissible moment tensors m is bounded. For
example, the von Mises condition is in normalized form:

m2
11 −m11m22 +m2

22 + 3m2
12 ≤ 1.(4.3)

Consequently, D(u) defined by

D(u) = max
m∈K

a(m, u)(4.4)

is always finite.
With the substitutions (4.1), (4.2), and (4.3) the problem of limit analysis is

formally the same as discussed above. The discretization is much simpler in the plate
model because the energy dissipation rateD(u) is finite for all u, so that standard finite
element spaces may be used. As in [19] we use piecewise bilinear element functions for
both u and the components of m, but piecewise linear elements over triangles would
do just as well. The nodes are the vertices of the rectangles, and the nodal values are
the values of m11, m22, m12, and u at the vertices.

The discrete moment tensor may be written

mh =
∑
ν

(
ξ11
ν ϕ

11
ν + ξ22

ν ϕ
22
ν + ξ12

ν ϕ
12
ν

)
,(4.5)

where

ϕ11
ν =

 ϕν 0

0 0

 , ϕ22
ν =

 0 0

0 ϕν

 , ϕ12
ν =

 0 ϕν

ϕν 0

 ;(4.6)

ϕν denotes the scalar bilinear element function equal to one at the node ν and zero
at all other nodes. The yield condition is again imposed through the nodal values:(

ξ11
ν

)2 − ξ11
ν ξ

22
ν +

(
ξ22
ν

)2
+ 3

(
ξ12
ν

)2 ≤ 1,

or equivalently,

ξTνQξν ≤ 1 for all nodes ν,(4.7)

where

Q =


1 − 1

2 0

− 1
2 1 0

0 0 3

 , ξν =


ξ11
ν

ξ22
ν

ξ12
ν

 .(4.8)

With piecewise bilinear elements the yield condition will be satisfied at every point if
it is satisfied at the nodal points.
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In analogy with (3.1) we get (for details we refer to [19])

Dd(y) = max
ξTν Qξν≤1

∑
ν

ξTν

(
AT
ν y
)

=
∑
ν

∥∥∥CT
(
AT
ν y
)∥∥∥ .(4.9)

Aν are now M × 3 matrices and C is the Cholesky factor of Q−1 :

C =
1√
3


2 0 0

1
√

3 0

0 0 1

 .
The discrete problem for plates analogous to (3.2) is then

λ∗h = min
bT y=1

∑
ν

∥∥∥(AνC)T y
∥∥∥ .(4.10)

This is again the minimization of a sum of norms subject to one linear constraint,
and we use the same algorithm as in the previous section.

In general, quadratic yield conditions give rise to problems of the form (4.10).
The Aν are columns of the equilibrium matrix A, while C depends only on the yield
condition.

5. Computational results. The new approach is applied to two collapse load
problems in plane models: plane strain and plates. They give rise to two families
of discrete optimization problems with different characteristics. The coarse mesh
solutions, i.e., for small discrete problems, can be compared with known solutions
and provide verification of the correctness of our implementation. The fine mesh
solutions have not been computed previously and serve to demonstrate efficiency of
the method. These solutions are of independent interest as they provide details in
the exact solutions of the infinite-dimensional problems not seen before. In addition,
they give new insight into the convergence of the computed collapse multipliers λ∗h.

When comparing with other results we focus on the obtainable mesh size, which
determines the discretization error, and on the quality of the computed collapse fields
for stresses and flow. These fields are in general not uniquely determined. The
computed fields may depend both on the finite element spaces and on the solution
algorithm for the discrete problem. The degree of nonuniqueness depends on the finite
element discretization, and, as mentioned in the introduction, interior-point methods
typically give solution fields that are in better agreement with continuum mechanics
than extreme-point methods.

In the computations reported here uniform grids are used. Adaptive mesh gen-
eration can and should be used, but our main goal is to demonstrate the strength of
the discretization (step one) and the optimization algorithm (step two).

5.1. Plane strain example. The test problem in plane strain is described in
[5, 12, 18] and [16, Example 11.1]. A rectangular block with thin symmetric cuts is
being pulled by a uniform tensile force at the end faces. Figure 1 shows a cross section
of the block and the reduction of the problem size by symmetry.

In [16, section 14] computed values for the collapse multiplier λ∗h are reported for
grids coarser than 15 × 15. Our results are in perfect agreement. We are not aware
of any other computations with the divergence-free elements used here, but we can
compare with results obtained with piecewise constant elements for the stresses and
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x2

1

a

u1 = 0

u2 = 0

L x1

a

g(−L, y) = (−1, 0)

x1

w = 1

x2

L

g(L, y) = (1, 0)

f = 0

FIG. 1. Geometry of the test problem in plane strain.

FIG. 2. Computed values of the collapse multiplier for the test problem in Figure 1 for three
values of the parameter a. + : Exact yield condition, divergence-free elements (new results). × :
Exact yield condition, constant-bilinear elements (from [16, section 13]). O : Linearized yield con-
dition, constant-bilinear elements (from [5]). For the mesh size h tending to zero the two sets of
values for the exact yield condition but different finite elements should converge to the same limit.
The values corresponding to the linearized yield condition is an upper bound, also in the limit.

piecewise bilinear elements for the flow: in [5] the yield condition was linearized and
the resulting LP was solved for grids up to 200 × 200, and in [16, section 13] the
convex problem was solved on a 30×30 grid but with poorly determined stresses (the
x-variables). Figure 2 shows these results in comparison to the results obtained here
for several values of the mesh size h and three values of the parameter a indicated in
Figure 1. The values corresponding to the exact yield condition, but different finite
element discretizations (+ and ×), converge to the same limit, as h tends to zero,
while the values corresponding to the linearized yield condition are upper bounds,
exceeding the values indicated by × by less than 2%.

The largest problem solved with our new method is for a 120×120 grid. However,
since the elements of higher degree used here have four times as many degrees of



1056 K. ANDERSEN, E. CHRISTIANSEN, AND M. OVERTON

TABLE 1
Results and convergence analysis for the test problem in Figure 1, L = 1, a = 1

3 , a = 1
2 , and

a = 2
3 . k(h) is the computed convergence order, and R(h) is the Richardson extrapolation to order 1.

a = 1/3 a = 1/2 a = 2/3
h−1 λ∗(h) k(h) R(h) λ∗(h) k(h) R(h) λ∗(h) k(h) R(h)

6 0.9898 1.2193 1.4775
12 0.9560 0.9221 1.1751 1.1308 1.4336 1.3896
18 0.9450 1.05 0.9230 1.1603 1.00 1.1309 1.4172 0.80 1.3844
24 0.9396 1.06 0.9235 1.1530 1.02 1.1311 1.4088 0.95 1.3838
30 0.9364 1.05 0.9237 1.1487 1.03 1.1313 1.4038 0.95 1.3835
36 0.9343 1.05 0.9238 1.1458 1.02 1.1314 1.4003 0.97 1.3833
42 0.9328 1.05 0.9239 1.1437 1.02 1.1314 1.3979 0.97 1.3832
48 0.9317 1.04 0.9239 1.1422 1.02 1.1314 1.3961 0.98 1.3832
54 0.9308 1.05 0.9240 1.1410 1.01 1.1315 1.3946 0.99 1.3832
60 0.9302 1.04 0.9240 1.1401 1.02 1.1315 1.3935 0.99 1.3831
90 0.9281 1.04 0.9241 1.1372 1.01 1.1315 1.3900 0.99 1.3831
99 0.9278 1.03 0.9241 1.3894 0.99 1.3831

100 1.1366 1.01 1.1315
120 0.9271 1.03 0.9241

freedom per node, a 120 × 120 grid corresponds in accuracy and problem size to a
240× 240 grid for the two other methods in the comparison.

A selection of our results is shown in Table 1. We can solve the convex problem
(2.11) at least as accurately as the LP solved in [5]. Table 1 shows, for L = 1 and
the cases a = 1

3 , a = 1
2 , and a = 2

3 (see Figure 1), some computed values for λ∗h,
the estimated convergence order based on these values (as described in [20]), and the
estimate of λ∗ obtained by Richardson extrapolation to order k = 1. These values are
computed from the expression

R(hi) =
αkλ∗(hi)− λ∗(hi−1)

αk − 1
, α =

hi−1

hi
,

where hi < hi−1 are two successive h-values in the table. The convergence analysis
shows that the collapse multiplier λ∗h converges in h with order 1, in the sense that
the limit

lim
h→0

1
h

(λ∗h − λ∗)(5.1)

exists. This was found not to be the case in [5], where the expression in (5.1) was
bounded, but not convergent, as h → 0. The explanation is that the finite element
functions of higher degree used here approximate even the nonsmooth collapse fields
in limit analysis better than piecewise linear or bilinear elements, although the conver-
gence order is still k = 1. This makes it possible to estimate the discretization error
and extrapolate to obtain an accuracy not seen before in limit analysis. For example,
we claim that in the case L = 1 and a = 1

3 we have λ∗ = 0.9241 with all digits correct;
i.e., the exact value of the infinite-dimensional problem (1.5) is determined to four
decimal digits.

Figure 3 visualizes the computed collapse fields u∗h and σ∗h for the case L = 1, a =
1
3 , h = 1

120 . The vector field u∗h in the solution is a displacement rate and could be
plotted as a velocity field. However, it is standard to multiply the displacement rate
by a suitable time scale and plot the resulting deformation. We have also chosen to do
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FIG. 3. Collapse fields for the test problem in Figure 1: L = 1, a = 1
3 , h = 1

120 .

this. It must be realized that deformations as large as those shown in the plots may
never be observed and would in fact violate the model. The solution is a “snapshot”
of the moment of collapse, and the plots only serve to visualize it. The deformed
grid is not necessarily linear between nodes due to the higher order element functions.
Rigid regions separated by a narrow slip zone are clearly recognizable. The nodes
in the rigid region correspond to zero-norms in the sum (3.2). The nodes where the
stress tensor satisfies the yield condition without slack are indicated by a small line
segment indicating the direction of the vector (σ1, σ2) in (2.3). These nodes make up
the plastified region. On this fine grid the direction can hardly be recognized, but the
plastified region is clearly visible. In Figures 3 and 4, a node is considered plastified
if the slack in the yield condition is less than 10−8, but the picture is almost the same
for all tolerances between 10−10 and 10−6. The collapse fields are in agreement with
those found in [5].

Figure 4 shows the collapse solution for the case L = 2, a = 1
3 , h = 1

60 . We
see that the plastified region does not penetrate to the side x = L, suggesting that
the collapse solution, in particular the limit multiplier λ∗, should remain the same
if material is added to the rightmost rigid block. This was confirmed by actually
computing the collapse solution for L = 3. For h = 1

3 the values of λ∗h for L = 2 and
L = 3 are 1.258833 and 1.259579, respectively, but for h ≤ 1

12 the values of λ∗h for
L = 2 and L = 3 are identical. Through the same analysis as in Table 1 we find that
for L ≥ 2 and a = 1

3 the limit multiplier is λ∗ = 1.130± 0.001.
The discrete problem corresponding to Figure 3 (the largest case solved) has

M = 58240 variables (u-components) and N = 116162 dual variables (σ-components).
There are 58081 terms in the sum (3.2), out of which more than 80% are zero in the
optimal solution. The matrix A has 2, 092, 843 nonzero elements. The computation
used 79 hours of CPU-time on the CONVEX C3240 vector computer at Odense Uni-
versity. The accuracy measured in duality gap and lack of feasibility is about 10−8.
The CPU-time is considerable, but we have tried to test the limits of the method. In
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FIG. 4. Collapse fields for the test problem in Figure 1: L = 2, a = 1
3 , h = 1

60 .

our experience the bottleneck in limit analysis has not been the CPU-time or storage,
but the deterioration of accuracy due to ill conditioning.

5.2. Plate bending example. The second application is the plate bending
problem described in [19]: various combinations of simply supported/clamped and
square/rectangular plates loaded by a uniform load or a point load at the center. In
[19] results are reported for meshes up to 40× 40 grids on the square plate (reduced
to 20× 20 by symmetry). We have results for 800× 800 grids (reduced to 400× 400
by symmetry). As in [19] piecewise bilinear finite element functions are used both for
u and for the components of m.

The largest case solved has M = 160000 variables, N = 482403 dual variables,
and 160801 terms in the sum (4.10), and the matrix A has 3,390,400 nonzero entries.
The computation used 5.7 hours of CPU-time (same computer as above). The duality
gap was less than 10−8, while infeasibilities (primal and dual) were less than 10−10.
This problem can be solved very efficiently because all terms in the sum of norms
(4.10) are nonzero in the optimal solution. (This is in strong contrast to the first
application in plane strain.) This was also essential for the results in [19] which were
obtained using the smooth optimization algorithm by Goldfarb [24].

Our results agree with earlier results, but the fact that we are able to solve
for much finer grids makes a better convergence analysis possible. This is done as
described in [20]. Table 2 shows the value of λ∗h for the simply supported square plate
with uniform load. The computed convergence orders k1(h) in column 3 confirm that
the error is of order 2. Column 4 shows the result R1(h) of Richardson extrapolation to
order 2. We then estimate the order k2(h) of the error after extrapolation (column 5)
and find the order 3. We expect the orders 2 and 3 for the two lowest order terms in
the error for smooth solutions u∗ and m∗ with piecewise bilinear element functions.
Finally, column 6 shows the result R2(h) of a second extrapolation, this time to
order 3. We find the collapse multiplier for the continuous problem to be λ∗ =
25.019066, correct to all digits.

For the uniformly loaded clamped plate the results are shown in Table 3. In the
clamped case u∗ has a singularity in the form of a so-called hinge along the boundary,
resulting in a slower convergence. An analysis similar to the one for Table 2 indicates
that the lowest two orders in the error are 1.5 and 2. For this case we find the value
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TABLE 2
Results and convergence analysis for the simply supported, uniformly loaded square plate.

h−1 λ(h) k1(h) R1(h) k2(h) R2(h)

12 24.86336954
24 24.97645373 25.01414846
36 24.99948059 1.84 25.01790208 25.01884048
48 25.00787151 1.89 25.01865984 2.56 25.01908081
60 25.01183455 1.92 25.01887995 3.06 25.01907256
72 25.01401352 1.94 25.01896572 3.09 25.01906865
84 25.01533804 1.95 25.01900594 3.06 25.01906738
96 25.01620269 1.96 25.01902721 3.07 25.01906672

108 25.01679808 1.97 25.01903955 3.03 25.01906653
120 25.01722540 1.97 25.01904713 3.09 25.01906623
200 25.01839885 1.98 25.01905892 2.99 25.01906628
300 25.01876857 1.98 25.01906435 3.03 25.01906621
400 25.01889849 1.99 25.01906553 3.03 25.01906619

TABLE 3
Results and convergence analysis for the clamped, uniformly loaded square plate.

h−1 λ(h) k1(h) R1(h) k2(h) R2(h)

24 43.73575159
36 43.91239918 44.12341810
48 43.98660561 1.49 44.12412661 44.12484481
60 44.02590034 1.48 44.12474444 -0.52 44.12567757
72 44.04966063 1.48 44.12520184 0.33 44.12612043
96 44.07627631 1.48 44.12560108 1.38 44.12625923

120 44.09041730 1.47 44.12598832 0.31 44.12657317
200 44.10973000 1.46 44.12649948 0.49 44.12695585
400 44.12076200 1.47 44.12679560 2.20 44.12691930
800 44.12471300 1.48 44.12687387 2.28 44.12689996

λ∗ = 44.1269 with uncertainty in the last digit only. This confirms the value found
in [19, p. 180] but is in conflict with a conjecture in [1, p. 135], which implies a lower
bound of 44.46. This discrepancy cannot possibly be explained by the discretization
error. The computer programs used in the present work and in [19] were prepared
completely independently, although both are based on the same conceptual method for
discretizing the clamped plate by the finite element method. In [1, p. 135] the authors
agree that “the computed results throw doubt on the validity of the conjecture.” From
our results we draw the conclusion that the conjecture is incorrect.

The collapse multiplier λ∗h for a discrete point load is shown in Figure 5 for
the following four cases: simply supported/clamped and square (1 × 1)/rectangular
(1 × 2) plate. In the clamped case the values for the square and rectangular plate
(white and black diamonds in Figure 5) overlap almost completely, and the difference
tends to zero with h. In the plastic plate model a point load is only admissible as a
limit of concentrated loads and may be approximated by a sequence of discrete loads
“shrinking” with h as well as by discrete point loads (for details see [19, p. 181]).
Since the error in the simply supported case is quite large (white and black circles
in Figure 5), we have also approximated the point load by a sequence of unit loads
distributed uniformly on a central square of side h (white squares in Figure 5). As
mentioned in [19] this approximation must yield the same limit as the discrete point
loads if the concept of a point load is valid. This appears to be the case.
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FIG. 5. Computed values of the collapse multiplier for various approximations of a point load:
◦ : Simply supported square plate; discrete point load. • : Simply supported rectangular plate; discrete
point load. ♦ : Clamped square plate; discrete point load. � : Clamped rectangular plate; discrete
point load (almost hidden by ♦). � : Simply supported square plate; load concentrated uniformly at
a central square of side h.

Our results confirm (although not beyond any doubt) a claim made in [19]: the
five sequences of discrete values λ∗h in Figure 5 converge to the same limit. This means
that the limit multiplier for a point load does not depend on shape or support of the
plate. We find this value to be λ∗ = 6.82± 0.01.

Convergence analysis of the results shows that, for all the above-mentioned dis-
cretizations of a point load, λ∗h converges more slowly than hk for any power k > 0,
as h → 0. The collapse solutions in Figure 6 (simply supported plate) and Figure
7 (clamped plate) clearly indicate why: the deformation is singular. On the other
hand, our results indicate that the deformation converges as h → 0, which means
that the peak at the center is finite. Solutions for coarser grids could not show this.
The solutions shown in Figures 6 and 7 are for a 200 × 200 grid (by symmetry the
computation is reduced to a 100×100 grid). The largest case solved is for an 800×800
grid, but this is too fine to plot.

6. Conclusion. We have developed an efficient method for the computation of
collapse states in limit analysis with the von Mises yield criterion. The method can
be used with standard finite element functions in applications with bounded yield
set, such as plate bending and plane stress. In applications with unbounded yield
set, such as plane strain or the general problem in three space dimensions where the
plastic flow is incompressible, we use finite element functions that are differentiable
across element boundaries.

An alternative approach, avoiding the use of differentiable element functions, is to
impose the condition of incompressibility as a large set of constraints in the minimum-
sum-of-norms problem. The resulting constrained problem must then be solved with
an efficiency that is comparable to the efficiency obtained here. In future work we
shall pursue this direction.
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FIG. 6. Simply supported square plate with point load.

FIG. 7. Clamped square plate with point load.
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