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The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is widely used for large-
scale unconstrained optimization, but its behavior on nonsmooth problems has received little attention.
L-BFGS (limited memory BFGS) can be used with or without ‘scaling’; the use of scaling is normally
recommended. A simple special case, when just one BFGS update is stored and used at every iteration,
is sometimes also known as memoryless BFGS. We analyze memoryless BFGS with scaling, using any
Armijo–Wolfe line search, on the function f (x) = a|x(1)| + ∑n

i=2 x(i), initiated at any point x0 with

x(1)
0 �= 0. We show that if a ≥ 2

√
n − 1, the absolute value of the normalized search direction generated

by this method converges to a constant vector, and if, in addition, a is larger than a quantity that depends
on the Armijo parameter, then the iterates converge to a nonoptimal point x̄ with x̄(1) = 0, although f
is unbounded below. As we showed in previous work, the gradient method with any Armijo–Wolfe line
search also fails on the same function if a ≥ √

n − 1 and a is larger than another quantity depending
on the Armijo parameter, but scaled memoryless BFGS fails under a weaker condition relating a to the
Armijo parameter than that implying failure of the gradient method. Furthermore, in sharp contrast to the
gradient method, if a specific standard Armijo–Wolfe bracketing line search is used, scaled memoryless
BFGS fails when a ≥ 2

√
n − 1 regardless of the Armijo parameter. Finally, numerical experiments

indicate that the results may extend to scaled L-BFGS with any fixed number of updates m, and to more
general piecewise linear functions.
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1. Introduction

The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is widely used for large-scale
unconstrained optimization, but its behavior on nonsmooth problems has received little attention. In this
paper we give the first analysis of an instance of the method, sometimes known as memoryless BFGS
with scaling, on a specific class of nonsmooth convex problems, showing that under given conditions
the method generates iterates whose function values are bounded below, although the function itself is
unbounded below.

The ‘full’ BFGS method (Nocedal & Wright, 2006, Sec. 6.1), independently derived by Broyden,
Fletcher, Goldfarb and Shanno in 1970, is remarkably effective for unconstrained optimization, but
even when the minimization objective f : Rn → R is assumed to be twice continuously differentiable
and convex, with bounded level sets, the analysis of the method is nontrivial. Powell (1976) gave the
first convergence analysis for full BFGS using an Armijo–Wolfe line search for this class of functions,
establishing convergence to the minimal function value. In the smooth, nonconvex case it is generally
accepted that the method is very reliable for finding stationary points (usually local minimizers),
although pathological counterexamples exist (Dai, 2002; Mascarenhas, 2004).
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2 A. ASL AND M. L. OVERTON

At first glance, it might appear that, since BFGS uses gradient differences to approximate
information about the Hessian of f , the use of BFGS for nonsmooth optimization makes little sense.
Firstly, because at minimizers where f is not differentiable, neither the gradient nor the Hessian exists;
and secondly, even at other points where f is twice differentiable, the Hessian might appear to be
meaningless. For example, for a piecewise linear function such as studied in this paper, the Hessian
is zero everywhere that it is defined. However, the way to make sense of the applicability of BFGS
to a nonsmooth function is to consider its approximation by a very ill-conditioned smooth function.
For example, the function f (x) = ‖x‖2 can be arbitrarily well approximated by the smooth function

f (x) =
√

‖x‖2
2 + ε2, where ε > 0. As ε ↓ 0, the approximation becomes arbitrarily good—but also

arbitrarily ill-conditioned. For any fixed ε > 0, the BFGS convergence theory applies. As ε ↓ 0, it is
not at all clear what impact the property of good approximation via badly conditioned functions has on
the convergence theory, which, of course, does not apply when ε = 0. Nonetheless, even for ε = 0,
the method remains well defined, as the gradient is defined everywhere except at the minimizer (the
origin). In fact, it was established recently by Guo & Lewis (2018) that Powell’s result for smooth
functions mentioned above can be extended, in a nontrivial way, to show that the iterates generated by
BFGS with an Armijo–Wolfe line search, when applied to f (x) = ‖x‖2, converge to the origin. Even
the case n = 1, where f is the absolute value function, is surprisingly complex; it turns out that in this
case the sequence of iterates is defined by a certain binary expansion of the starting point (Lewis &
Overton, 2013). However, in this simple example it is easy to see intuitively why BFGS works well.
The line search ensures that the iterates oscillate back and forth across the origin, giving a gradient
difference equal to 2 at every iteration. As the iterates converge to the origin, the result is that the
‘inverse Hessian approximation’ generated by BFGS converges to zero, resulting in quasi-Newton steps
that also converge to zero. An important consequence is that the line search never requires many function
evaluations. In contrast, when gradient descent with the same line search is applied to the absolute
value function, the iterates converge to the origin, but each line search requires a number of function
evaluations that increases with the iteration number.

More generally, if f is locally Lipschitz, BFGS is still typically well defined, because such
functions are differentiable almost everywhere by Rademacher’s theorem (Clarke, 1990), and hence
f is differentiable at a randomly generated point with probability one. Furthermore, substantial
computational experience (Lewis & Overton, 2013) shows that even when f is nonsmooth, the method
is remarkably reliable for finding Clarke stationary points (again, typically local minimizers), and
furthermore, this property extends in a certain sense to constrained problems (Curtis et al., 2017).
Indeed, no nonpathological counterexamples showing convergence to nonstationary values, meaning
in particular examples where the starting point is not predetermined but generated randomly, are
known. The superlinear convergence rate that holds generically for smooth functions is not attained
in the nonsmooth case; instead, full BFGS is observed to converge linearly, in a sense described in
Lewis & Overton (2013), on nonsmooth functions. Furthermore, in general one does not observe the
inverse Hessian approximation converging to zero; instead, what seems to be typical is that some of its
eigenvalues converge to zero, with corresponding eigenvectors identifying directions along which f is
nonsmooth at the minimizer. See Lewis & Overton (2013, Sec. 6.2) for details.

The full BFGS method maintains and updates an approximation to the inverse (or a factorization) of
the Hessian matrix ∇2f (x) at every iteration, defined by current known gradient difference information
yk−1 = ∇f (xk) − ∇f (xk−1) along with sk−1 = xk − xk−1. The use of the Wolfe condition in the line
search, requiring an increase in the directional derivative of f along the descent direction generated by
BFGS, ensures that the updated inverse Hessian approximation is positive definite. Since the update has
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 3

rank two, the cost of full BFGS is O(n2) operations per iteration. While this was a great advance over
the cost of Newton’s method in the 1970s, already in the 1980s it was realized that the cost was too high
for problems where n is large, and hence the limited-memory version, L-BFGS, became popular, and is
widely used today (see Le et al., 2011, Mokhtari & Ribeiro, 2015 and Lin et al., 2016, for example). The
standard version of L-BFGS was introduced by Liu & Nocedal (1989) and is also discussed in detail in
Nocedal & Wright (2006, Sec. 7.2). Let m 
 n be given. Instead of maintaining an approximation to
the inverse Hessian, at the kth iteration a proxy for this matrix is implicitly defined by application of
the most recent m BFGS updates (which are defined by saving yj and sj from the past m iterations) to a

given sparse matrix H0
k . One possible choice for H0

k is the identity matrix I, but a popular choice is to
instead use scaling, defining

H0
k = sT

k−1yk−1

yT
k−1yk−1

I. (1)

Analysis of L-BFGS is more straightforward than analysis of full BFGS in the case that f is
smooth and strongly convex, and is given in Liu & Nocedal (1989, Theorem 7.1), where linear
convergence to minimizers is established, regardless of whether scaling is used or not. Further-
more, it is stated in Liu & Nocedal (1989) that scaling greatly accelerates L-BFGS, and this
seems to be the currently accepted wisdom. However, we show in this paper that it is exactly
the choice of scaling that may result in failure of L-BFGS on a specific class of nonsmooth
functions. This situation is in sharp contrast to our experience with full BFGS on nonsmooth
functions, where the same algorithm that is normally used for smooth functions works well also on
nonsmooth functions.

We consider the convex function

f (x) = a|x(1)| +
n∑

i=2

x(i), (2)

where a ≥ √
n − 1. Note that although f is unbounded below, it is bounded below along the line defined

by the negative gradient direction from any point x with x(1) �= 0. In Asl & Overton (2019) we analyzed
the gradient method with any Armijo–Wolfe line search applied to (2). We showed that if

a >

√(
1

c1
− 1

)
(n − 1), (3)

where c1 is the Armijo parameter, the gradient method, initiated at any point x0 with x(1)
0 �= 0, fails

in the sense that it generates a sequence converging to a nonoptimal point x̄ with x̄(1) = 0, although f
is unbounded below. In the present paper, we analyze scaled L-BFGS with m = 1, i.e., with just one
update—a method sometimes known as memoryless BFGS (Nocedal & Wright, 2006, p. 180)—applied
to the function (2), and identify conditions under which the method converges to nonoptimal points
(more details are given in the next paragraph). In contrast, it is known that when full BFGS is applied to
the same function, eventually the method generates a search direction on which f is unbounded below
(Xie & Waechter, 2017); see also Lewis & Zhang (2015). The specific choice of objective function f
offers two advantages: one is its simplicity, but another is that there is little difficulty distinguishing in
practice whether the method ‘succeeds’ or ‘fails’ from a given starting point; success is associated with
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4 A. ASL AND M. L. OVERTON

a sequence of function values that is unbounded below, while convergence of the sequence to a finite
value implies failure.

The paper is organized as follows. In Section 2, we define the scaled memoryless BFGS method,
using any line search satisfying the Armijo and Wolfe conditions, and derive some properties of the
method applied to the function f in (2), initiated at any point x0 with x(1)

0 �= 0. In Section 2.1,
we show that if a ≥ √

3(n − 1), the algorithm is well defined in the sense that Armijo–Wolfe
steplengths always exist, deferring the technical details to Appendix A. Then in Section 3, we give
our main theoretical results. First, in Section 3.1, we show that if a ≥ 2

√
n − 1, in the limit the

absolute value of the normalized search direction generated by the method converges to a constant
vector, deferring the most technical parts of the proof to Appendix B. Then, in Section 3.2, we show
that if a further satisfies a condition depending on the Armijo parameter, the method converges to
a nonoptimal point x̄ with x̄(1) = 0. Furthermore, this condition is weaker than the corresponding
condition (3) for the gradient method. Then, in Section 3.3, we show that, if a specific standard
Armijo–Wolfe bracketing line search is used, scaled memoryless BFGS converges to a nonoptimal
point when a ≥ 2

√
n − 1 regardless of the Armijo parameter. This is in sharp contrast to the gradient

method using the same line search, for which success or failure on the function f depends on the
Armijo parameter. In Section 4 we present some numerical experiments which support our theoretical
results, and which indicate that the results may extend to scaled L-BFGS with any fixed number of
updates m, and to more general piecewise linear functions. We make some concluding remarks in
Section 5.

2. The memoryless BFGS method

First let f denote any locally Lipschitz function mapping Rn to R, and let xk−1 ∈ Rn denote the (k − 1)th
iterate of an optimization algorithm where f is differentiable at xk−1 with gradient ∇f (xk−1). Let dk−1 ∈
Rn denote a descent direction, i.e., satisfying ∇f (xk−1)

Tdk−1 < 0. Let parameters c1 and c2, known as
the Armijo and Wolfe parameters, satisfy 0 < c1 < c2 < 1. We say that the steplength t satisfies the
Armijo condition at iteration k − 1 if

f (xk−1 + tdk−1) ≤ f (xk−1) + c1t∇f (xk−1)
Tdk−1 (4)

and that it satisfies the Wolfe condition if

∇f (xk−1 + tdk−1) exists with ∇f (xk−1 + tdk−1)
Tdk−1 ≥ c2∇f (xk−1)

Tdk−1. (5)

It is known that if f is smooth or convex, and bounded below along the direction dk−1, a point
satisfying these conditions must exist (see Lewis & Overton, 2013, Theorem 4.5, for weaker conditions
on f for which this holds). Note that as long as f is differentiable at the initial iterate, defining
subsequent iterates by xk = xk−1 + tk−1dk−1, where (5) holds for t = tk−1, ensures that f is
differentiable at xk.

We are now ready to define the memoryless BFGS method (L-BFGS with m = 1), also known as
L-BFGS-1, with scaling, i.e., with H0

k defined by (1). The algorithm is defined for any f , but its analysis
will be specifically for (2).
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 5

Algorithm 1 (Memoryless BFGS with scaling), with input x0

d0 = −∇f (x0) (6)

for k = 1, 2, 3, . . . , define

tk−1 = t satisfying (4) and (5)

xk = xk−1 + tk−1dk−1 (7)

sk−1 = xk − xk−1 (8)

yk−1 = ∇f (xk) − ∇f (xk−1) (9)

Vk−1 = I − yk−1sT
k−1

yT
k−1sk−1

(10)

Hk = sT
k−1yk−1

yT
k−1yk−1

VT
k−1Vk−1 + sk−1sT

k−1

sT
k−1yk−1

(11)

dk = −Hk∇f (xk) (12)

end

Let us adopt the convention that if no steplength t exists satisfying the Armijo and Wolfe conditions (4)
and (5), the algorithm is terminated. Hence, for any smooth or convex function, termination implies that
a direction dk−1 has been identified along which f (xk−1 + tdk−1) is unbounded below.

Now let us restrict our attention to the convex function f given in (2). The question we address in
this paper is whether memoryless BFGS will succeed in identifying the fact that f is unbounded below,
either because it generates a direction d for which no steplength t satisfying the Armijo and Wolfe
conditions exists (in which case the algorithm terminates), or, alternatively, that it generates a sequence
{xk} for which Armijo–Wolfe steps always exist, with f (xk) ↓ −∞. If neither event takes place, {f (xk)}
is bounded below, which is regarded as failure, since f is unbounded below.

For the function (2), requiring tk−1 to satisfy (5), regardless of the value of the Wolfe parameter
c2 ∈ (0, 1), implies, via (7), the condition

sgn(x(1)
k ) = −sgn(x(1)

k−1). (13)

Via (8) we see that (13) is equivalent to the condition

|s(1)
k−1| = |x(1)

k−1| + |x(1)
k |. (14)

Without loss of generality, we assume that the initial point x0 has a positive first component,

i.e., x(1)
0 > 0, so that

∇f (xk) =
[

(−1)ka
1

]
, (15)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drz052/5706038 by Serials D
epartm

ent user on 14 August 2020



6 A. ASL AND M. L. OVERTON

where 1 ∈ Rn−1 is the column vector of all ones. Via (13) and (15), (9) is simply

yk−1 =
[

(−1)k2a
0

]
, (16)

where 0 ∈ Rn−1 is the column vector of all zeros. Note that from (7) and (8) it is immediate that for
any k ≥ 1

sk−1 = tk−1dk−1. (17)

For i = 2, . . . , n, let

θ
(i)
k−1 = arctan

(
d(i)

k−1

d(1)
k−1

)
,

with θ
(i)
k−1 ∈ [−π/2, π/2]. Note that |θ(i)

k−1| is the acute angle between dk−1 and the x(1) axis when it is
projected onto the (x(1), x(i)) plane. From (6) and (15) we have

1

a
= tan θ

(2)
0 = tan θ

(3)
0 = . . . = tan θ

(n)
0 . (18)

The assumption of the initial inverse Hessian approximation being a multiple of the identity is embedded
in the definition (11), and therefore we know that dk−1 (and consequently sk−1) is in the subspace
spanned by the two gradients in (15) (see Gill & Leonard, 2003, Lemma 2.1). Since both gradients
are symmetric w.r.t. the components x(2), . . . , x(n), it follows that dk−1 has the same property. The same
symmetry holds in the definition of the objective function (2). Since (18) holds, we conclude inductively
that, for k > 1, tan θ

(2)
k−1 = tan θ

(3)
k−1 = . . . = tan θ

(n)
k−1. So, let us simply write

bk−1 = tan θk−1 = d(i)
k−1

d(1)
k−1

= s(i)
k−1

s(1)
k−1

, for all i = 2, . . . , n. (19)

From (16) we have

sT
k−1yk−1 = (−1)k2as(1)

k−1, (20)

so we can rewrite Vk−1 in (10) in terms of bk−1 as

Vk−1 =
[

0 −bk−11
T

0 In−1

]
. (21)
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 7

This leads us to write Hk in (11) as

Hk = sT
k−1yk−1

yT
k−1yk−1

[
0 0T

0 b2
k−111T + In−1

]
+ (s(1)

k−1)
2

sT
k−1yk−1

[
1 bk−11

T

bk−11 b2
k−111T

]
.

From (20) we can see that the fractions in front of the first and second matrices are the same, i.e.,

sT
k−1yk−1

yT
k−1yk−1

= (s(1)
k−1)

2

sT
k−1yk−1

= |s(1)
k−1|
2a

. (22)

Hence, we obtain the following much more compact form

Hk = γk

[
1 bk−11

T

bk−11 2b2
k−111T + In−1

]
, (23)

where

γk = |s(1)
k−1|
2a

(24)

is the scale factor in (1). Finally, with the gradient defined in (15) we can compute the direction generated
by Algorithm 1 in (12) as

dk = −|s(1)
k−1|
2a

[
(−1)ka + (n − 1)bk−1(

(−1)kabk−1 + 2(n − 1)b2
k−1 + 1

)
1

]
. (25)

So, from definition (19) we can write bk recursively as

bk = (−1)kabk−1 + 2(n − 1)b2
k−1 + 1

(−1)ka + (n − 1)bk−1
. (26)

2.1 Existence of Armijo–Wolfe steps when
√

3(n − 1) ≤ a

In the next lemma we prove that if
√

3(n − 1) ≤ a, then the {bk} alternate in sign with |bk| ≤ 1/a.

Lemma 2.1 Suppose
√

3(n − 1) ≤ a. Define bk as in (26) with b0 = 1/a. Then |bk| ≤ 1/a and
furthermore {bk} alternates in sign with

|bk| = 1 + (n − 1)b2
k−1

a − (n − 1)|bk−1|
− |bk−1|. (27)

Proof. See Appendix A for the proof. �
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8 A. ASL AND M. L. OVERTON

Putting (26) and (27) together we can rewrite (25) as

dk = −|s(1)
k−1|
2a

(a − (n − 1)|bk−1|)
[

(−1)k

|bk|1
]

. (28)

Before stating the main result of this section we give the following simple lemma.

Lemma 2.2 Let x ∈ Rn be given, define

d+ = −
[

1
β1

]
and d− = −

[ −1
β1

]
, (29)

where β > 0, and define f by (2). Let d be either d+ or d−. Then h(t) = f (x + td) − f (x) is unbounded

below if and only if
a

n − 1
< β.

Proof. We have

h(t) = a|x(1) ± t| − a|x(1)| − (n − 1)βt.

So,

(a − (n − 1)β) t − 2a|x(1)| < h(t) < (a − (n − 1)β) t.

The result follows. �
Note that stating that h is unbounded below is not equivalent to saying that Armijo–Wolfe points do

not exist along the direction d emanating from x. Such points may exist if the sign of d(1) is opposite to
the sign of x(1).

Theorem 2.3 When Algorithm 1 is applied to (2) with
√

3(n − 1) ≤ a, using any Armijo–Wolfe
line search, with any starting point x0 such that x(1)

0 �= 0, the method generates directions dk that are
nonnegative scalar multiples of d+ or d−, defined in (29), with β < a/(n − 1). It follows that the
steplength tk satisfying the Armijo and Wolfe conditions (4) and (5) always exist and hence the method
never terminates.

Proof. The proof is by induction on k. Without loss of generality assume x(1)
0 > 0, so d0 = −∇f (x0) =

ad+ with β = 1/a. Since
√

3(n − 1) ≤ a, we have 1/a < a/(n − 1) and hence the initial Armijo–Wolfe
steplength t0 exists by Lemma 2.2. Now, suppose that the result holds for all j < k, so dk in (28) is well
defined. Since by Lemma 2.1 we know that |bk−1| ≤ 1/a ≤ a/(n − 1), the leading scalar in (28) is
negative and therefore dk is a nonnegative scalar multiple of d+ or d− with β = |bk| ≤ 1/a < a/(n−1).
Hence, f is bounded below along the direction dk emanating from xk and so there exists tk satisfying
the Armijo and Wolfe conditions at iteration k, which implies that the algorithm does not terminate at
iteration k. �
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 9

Fig. 1. Angles of search directions. Let n = 2, let ∇f+ = [a1]T and let ∇f− = [−a1]T , so, since x(1)
0 > 0 by assumption, we

have d0 = −∇f+. It follows from Lemma 2.1 that bk = d(2)
k /d(1)

k alternates in sign for k = 1, 2, . . ., with absolute value bounded

above by 1/a, and hence that θk = arctan(bk) alternates in sign for k = 1, 2, . . ., with |θk|, the acute angle between the x(1) axis
and the search direction dk , bounded above by θ0. Furthermore, Lemma 2.2 states that the function f is unbounded below along all
directions in the open cones K− and K+, and bounded below along all other directions (except the vertical axis). Note, however,
that points satisfying the Wolfe condition may exist along directions d ∈ K+ emanating from iterates on the left side of the x(2)

axis, but not along directions d ∈ K− emanating from the left side, because the former cross the x(2) axis and the latter do not,
and vice versa. Finally, Theorem 2.3 implies that, under the assumption a ≥ √

3, we have |θk| ≤ θ0 ≤ π/6, for all k > 0 (see the
discussion after the theorem), so dk does not lie in K− or in K+ and hence the algorithm does not terminate.

Using Fig. 1 we can provide an alternative informal geometrical proof for Theorem 2.3. We have

1

a
≤ 1√

3
⇒ θ0 = arctan

1

a
≤ arctan

1√
3

= π

6
.

According to Lemma 2.1, we have |bk| ≤ 1/a, and so, |θk| ≤ θ0 and hence,

2θ0 + |θk| ≤ π

2
.

It follows (see Fig. 1) that dk /∈ K+ ∪ K−. This means that the method never generates a direction along
which f is unbounded below.
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10 A. ASL AND M. L. OVERTON

However, Theorem 2.3 does not imply that Algorithm 1 converges to a nonoptimal point under the
assumption that

√
3(n − 1) ≤ a, because the existence of Armijo–Wolfe steps tk for all k does not imply

that the sequence {f (xk)} is bounded below. This issue is addressed in the next section.

3. Failure of scaled memoryless BFGS

3.1 Convergence of the absolute value of the normalized search direction when 2
√

n − 1 ≤ a

Define

b = a − √
a2 − 3(n − 1)

3(n − 1)
(30)

and note that when
√

3(n − 1) ≤ a, then

1

2a
≤ b ≤ 1

a
.

Next we show the sequence {|bk|} converges to b under a slightly stronger assumption.

Theorem 3.1 For 2
√

n − 1 ≤ a the sequence defined by (27) converges and moreover

lim
k→∞ |bk| = b.

Proof. See Appendix B for the proof. �
Note that the convergence result established in this theorem does not require any assumption of

symmetry with respect to variables 2, 3, . . . , n in the initial point x0. The only assumption on x0 is that

x(1)
0 > 0. We need x(1)

0 �= 0 so that f is differentiable at x0; the assumption on the sign is purely for
convenience.

Assumption 3.2 For the subsequent theoretical analysis we assume that

2
√

n − 1 ≤ a.

With this assumption, as a direct implication of Theorem 3.1, for any given positive ε there exists K
such that for k ≥ K we have

||bk| − b| <
ε

n − 1
. (31)

As we showed in Lemma 2.1, for k ≥ 0 we have |bk| ≤ 1/a and therefore

3(n − 1)

a
≤ a − n − 1

a
≤ a − (n − 1)|bk|. (32)

Thus, a − (n − 1)|bk| is positive and bounded away from zero.
Since |bk| converges by Theorem 3.1, we see that in the limit the normalized direction dk/‖dk‖2

alternates between two limiting directions. It is this property that allows us to establish, under some
subsequent assumptions, that scaled memoryless BFGS generates iterates xk for which f (xk) is bounded
below even though f is unbounded below.
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 11

3.2 Dependence on the Armijo condition

Combining (15) and (28) we get

∇f (xk)
Tdk = −|d(1)

k |
[

(−1)ka
1

]T [
(−1)k

|bk|1
]

= −|d(1)
k | (a + (n − 1) |bk|

)
, (33)

so the Armijo condition (4) with t = tk at iteration k is

c1tk|d(1)
k | (a + (n − 1) |bk|

) ≤ f (xk) − f (xk + tkdk). (34)

If tk satisfies the Wolfe condition, i.e., tk is large enough that the sign change (13) occurs, then we
must have

|x(1)
k | < tk|d(1)

k |. (35)

Given this we can derive f (xk) − f (xk + tkdk) using the definition of bk in (19) as follows:

f (xk) − f (xk + tkdk) = 2a|x(1)
k | − (

a − (n − 1)|bk|
)

tk|d(1)
k |. (36)

By defining ϕk as follows

ϕk = c1

(
a + (n − 1)|bk|

) + a − (n − 1)|bk|
2a

, (37)

we can restate the Armijo condition in the following lemma.

Lemma 3.3 Suppose tk satisfies the Wolfe condition (13). Then for tk to satisfy the Armijo condition
(34) we must have

ϕktk|d(1)
k | ≤ |x(1)

k |. (38)

Proof. Combining (36) and (34) we get

c1tk|d(1)
k | (a + (n − 1) |bk|

) ≤ 2a|x(1)
k | − (

a − (n − 1) |bk|
)

tk|d(1)
k |,

and using the definition of ϕk in (37), (38) follows. �
From (35) and (38) we see that ϕk is the ratio of the lower bound and the upper bound on the

steplength tk provided by the Wolfe and Armijo conditions, respectively. The next lemma provides
bounds on ϕk.

Lemma 3.4

(n − 1)|bk|
a

< ϕk. (39)
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12 A. ASL AND M. L. OVERTON

Proof. Using Lemma 2.1 we know 3(n − 1)|bk| ≤ a for all k, and so

2(n − 1)|bk| ≤ a − (n − 1)|bk|,

and since

a − (n − 1)|bk|
2a

= ϕk − c1
a + (n − 1)|bk|

2a
,

and c1 > 0, (39) follows. �
Corollary 3.5 For k ≥ 1 we have

|s(1)
k | ≤ |s(1)

k−1|
1 − ϕk−1

ϕk
. (40)

Proof. Summing the Armijo inequality (38) for two consecutive iterations we obtain

|s(1)
k−1|ϕk−1 + |s(1)

k |ϕk ≤ |x(1)
k−1| + |x(1)

k |,

and noticing that the right-hand side (R.H.S.), according to (14), is equal to |s(1)
k−1| we get (40). �

Lemma 3.6 For any given ε > 0 let K be the smallest integer such that for any k ≥ K, (31) holds. Then
for all N > K we have

f (xK) − f (xN) < a|x(1)
K | + ((n − 1) b + ε)

N−1∑
k=K

|s(1)
k |. (41)

Proof. Using tkdk = sk and xk+1 = xk + sk in (36) and then applying (31) we obtain

f (xk) − f (xk+1) < 2a|x(1)
k | − a|s(1)

k | + ((n − 1) b + ε) |s(1)
k |. (42)

Summing up (42) from k = K to k = N − 1 and recalling (14), we get

f (xK) − f (xN) < a
N−1∑
k=K

|s(1)
k | + a|x(1)

K | − a|x(1)
N | − a

N−1∑
k=K

|s(1)
k | + ((n − 1) b + ε)

N−1∑
k=K

|s(1)
k |.

Canceling the first and fourth terms and dropping −a|xN |, we arrive at (41). �
From applying Theorem 3.1 to the definition of ϕk in (37) it is immediate that {ϕk} converges. Let

ϕ = c1 (a + (n − 1)b) + a − (n − 1)b

2a
, (43)
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 13

so

lim
k→∞ ϕk = ϕ. (44)

Lemma 3.7 Assume

0 < ε ≤
√

a2 − 3(n − 1)

3
, (45)

and let K be defined as in Lemma 3.6. Then for any k ≥ K we have

∣∣∣∣1 − ϕk−1

ϕk
− 1 − ϕ

ϕ

∣∣∣∣ <
15

a
ε. (46)

Proof. By rearranging terms in (30) and using (45) we get

(n − 1)b + ε ≤ (n − 1)b +
√

a2 − 3(n − 1)

3
= a

3
. (47)

Using (31) and (47), for k ≥ K we have

0 < a − (n − 1)b − ε < a − (n − 1)|bk|.

Combining this with (39) we get

0 <
a − (n − 1)b − ε

2a
< ϕk < 1.

Hence,

1 <
1

ϕk
<

2a

a − (n − 1)b − ε
≤ 2a

a − a
3

= 3.

Since 0 < c1 < 1, from (31), (37), (43) and (44) we get

|ϕk − ϕ| <
(1 + c1)ε

2a
<

ε

a
.

So,

∣∣∣∣1 − ϕk−1

ϕk
− 1 − ϕ

ϕ

∣∣∣∣ =
∣∣∣∣ 1

ϕk
− 1 + ϕk − ϕk−1

ϕk
− 1

ϕ
+ 1

∣∣∣∣
<

∣∣∣∣ϕ − ϕk

ϕkϕ

∣∣∣∣ +
∣∣∣∣ϕk − ϕk−1

ϕk

∣∣∣∣ <
ε

aϕk

(
1

ϕ
+ 2

)
.

Note that 1 < 1/ϕk < 3 applies to all ϕk (as well as the limit ϕ) with k ≥ K, and therefore we
conclude (46). �
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14 A. ASL AND M. L. OVERTON

Let

ψε = 1 − ϕ

ϕ
+ 15

a
ε. (48)

If Lemma 3.7 applies then from (40) and (46) we conclude

|s(1)
k | < ψε |s(1)

k−1|. (49)

That is to say, with ε satisfying (45), after at most K iterations, (49) holds. Consequently, with the
additional assumption ψε < 1, we obtain

N−1∑
k=K

|s(1)
k | < |s(1)

K | 1

1 − ψε

. (50)

Now we can prove the main result of this subsection. Recall that c1 < 1.

Theorem 3.8 Suppose c1 is chosen large enough that

1

c1
− 1 <

a

(n − 1)b
(51)

holds. Then, using any Armijo–Wolfe line search with any starting point x0 with x(1)
0 �= 0, scaled

memoryless BFGS applied to (2) fails in the sense that f (xN) is bounded below as N → ∞.

Proof. It follows from (51) and (43) that ϕ > 1/2. Therefore, using (48), we can choose ε small enough
such that ψε < 1 holds in addition to (45). Applying Lemmas 3.6 and 3.7, we conclude that there exists
K such that for any N > K, (50) holds, and, substituting this into (41) we get

f (xK) − f (xN) < a|x(1)
K | + |s(1)

K | (n − 1) b + ε

1 − ψε

. (52)

This establishes that f (xN) is bounded below for all N > K. �
Using (30) we see that the failure condition (51) for scaled memoryless BFGS with any Armijo–

Wolfe line search applied to (2) is equivalent to

1 − c1

c1
(n − 1) < a2 + a

√
a2 − 3(n − 1). (53)

The corresponding failure condition for the gradient method on the same function, again using any
Armijo–Wolfe line search, is, as we showed in Asl & Overton (2019),

1 − c1

c1
(n − 1) < a2. (54)

Hence, scaled memoryless BFGS fails under a weaker condition relating a to the Armijo parameter
than the condition for failure of the gradient method on the same function with the same line search
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 15

conditions. Indeed, Assumption 3.2 implies

a2 + a
√

a2 − 3(n − 1) ≥ 4(n − 1) + 2
√

n − 1
√

n − 1 = 6(n − 1).

So, if the Armijo parameter c1 ≥ 1/7, then (53) holds. In contrast, the same assumption implies that if
c1 ≥ 1/5, then (54) holds. So, scaled memoryless BFGS with any Armijo–Wolfe line search applied to
(2) fails under a weaker condition on the Armijo parameter than the gradient method does.

3.3 Results for a specific Armijo–Wolfe line search, independent of the Armijo parameter

Considering only the first component of the direction dk in (28) we have

2a

a − (n − 1)|bk−1|
|d(1)

k | = |s(1)
k−1|. (55)

Using (17), it follows that if

tk <
2a

a − (n − 1)|bk−1|
, (56)

we have |s(1)
k | < |s(1)

k−1|. Note that the R.H.S. of (56) is greater than two. However, as shown in the next
lemma, except at the initial iteration (k = 0), t = 2 is always large enough to satisfy the Wolfe condition,
implying that there exists t ≤ 2 satisfying both the Armijo and Wolfe conditions.

Lemma 3.9 For k ≥ 1, the steplength tk = 2 always satisfies the Wolfe condition (13), i.e., we have

|x(1)
k | < 2|d(1)

k |. (57)

Proof. Since k ≥ 1, we know that the Armijo and Wolfe conditions hold at iteration k − 1 by definition
of Algorithm 1. So, using (38) and (17) we have

ϕk−1|s(1)
k−1| ≤ |x(1)

k−1|. (58)

Using the inequality (39) in the left-hand side (L.H.S.) and the equality (14) in the R.H.S. we get

(n − 1)|bk−1|
a

|s(1)
k−1| < |s(1)

k−1| − |x(1)
k |,

i.e.,

|x(1)
k | < |s(1)

k−1|
a − (n − 1)|bk−1|

a
.

Substituting (55) into the R.H.S., we obtain (57). �
Now let us focus on the Armijo–Wolfe bracketing line search given in Lewis & Overton (2013) and

Asl & Overton (2019), which we state here for convenience.
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16 A. ASL AND M. L. OVERTON

Algorithm 2 (Armijo–Wolfe bracketing line search)

α ← 0
β ← +∞
t ← 1
while true do

if the Armijo condition (4) fails then
β ← t

else if the Wolfe condition (5) fails then
α ← t

else
stop and return t

end if
if β < +∞ then

t ← (α + β)/2
else

t ← 2α

end if
end while

It is known from the results in Lewis & Overton (2013) that provided f is bounded below along
dk−1 (as we already established must hold for directions generated by Algorithm 1), the Armijo–Wolfe
bracketing line search will terminate with a steplength t satisfying both conditions. In the following
lemma we show that if we use this line search, it always generates tk ≤ 2 for k ≥ 1.

Lemma 3.10 When scaled memoryless BFGS is applied to (2), using Algorithm 2 it always returns
steplength tk ≤ 2 for k ≥ 1.

Proof. The line search begins with the unit step. If this step, t = 1, does not satisfy the Armijo condition
(4), then the step is contracted, so the final step is less than one. On the other hand, if t = 1 satisfies (4),
then the line search checks whether the Wolfe condition (5) is satisfied too. If it is, then the line search
quits; if not, the step is doubled and hence the line search next checks whether t = 2 satisfies (5). At
the initial iteration (k = 0), several doublings might be needed before (5) is eventually satisfied. But for
subsequent steps (k ≥ 1), we know that t = 2 must satisfy the Wolfe condition, so the final step must
satisfy tk = 2 (if t = 2 satisfies (4)) or tk < 2 (otherwise). Thus, for k ≥ 1 we always have tk ≤ 2. �

Now we can present the main result of this subsection; using a line search with the property just
described, the optimization method fails.

Theorem 3.11 If scaled memoryless BFGS is applied to (2), using an Armijo–Wolfe line search that
satisfies tk ≤ 2 for k ≥ 1, such as Algorithm 2, then the method fails in the sense that f (xN) is bounded
below as N → ∞.

Proof. Recalling tk+1d(1)
k+1 = s(1)

k+1 again, using (55) and tk+1 ≤ 2 we find that

|s(1)
k+1| ≤ a − (n − 1)|bk|

a
|s(1)

k |. (59)
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 17

Let ε > 0 satisfy

δε ≡ a − (n − 1)b

a
+ ε

a
< 1.

Define K as in Lemma 3.6, so that (31) holds, and hence

a − (n − 1)|bk|
a

< δε .

Applying this inequality to (59) we get

|s(1)
k+1| ≤ δε |s(1)

k |, (60)

and since δε < 1 we have

N−1∑
k=K

|s(1)
k | < |s(1)

K | 1

1 − δε

. (61)

By substituting this into (41) we get

f (xK) − f (xN) < a|x(1)
K | + |s(1)

K | (n − 1) b + ε

1 − δε

,

which shows f (xN) is bounded below. �
Finally, we have the following corollary to Theorems 3.8 and 3.11. Recall that γk is the scale factor

(see (24)).

Corollary 3.12 If the assumptions required by either Theorem 3.8 or 3.11 hold, then

lim
N→∞ γN = 0 (62)

and xN converges to a nonoptimal point x̄ such that

x̄ = [0, x̄(2), . . . , x̄(n)]T . (63)

Proof. It is immediate from (50) or (61) that |s(1)
N | → 0 as N → ∞, so from (24), we conclude (62).

Also due to (14) we have |x(1)
N | → 0, and since f (xN) = a|x(1)

N | + ∑n−1
i=2 x(i)

N is bounded below, so is∑n−1
i=2 x(i)

N . Due to (32) and (28), we have d(i)
N−1 < 0, for i = 2, 3, . . . , n, so tN−1d(i)

N−1 = x(i)
N − x(i)

N−1 < 0,

and therefore x(i)
N is strictly decreasing as N → ∞. Hence, x(i)

N converges to a limit x̄(i). �
Due to the symmetry we discussed earlier, the total decrease along each component, x(i)

0 − x̄(i) =∑N
k=0 s(i)

k , is the same for i = 2, 3, . . . , n.
Finally, note that it follows from Corollary 3.12 together with (23) that, when the assumptions hold,

the matrix HN converges to zero. In contrast, when full BFGS is applied to the same problem, it is
typically the case that a direction is identified along which f is unbounded below within a few iterations,
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18 A. ASL AND M. L. OVERTON

and that at the final iterate, one eigenvalue of the inverse Hessian is much smaller than the others, with
its corresponding eigenvector close to the first coordinate vector, along which f is nonsmooth.

4. Experiments

Our experiments were conducted using the BFGS / L-BFGS Matlab code in hanso.1 This uses the
Armijo–Wolfe bracketing line search given in Algorithm 2. Consequently, according to the results of
Section 3.3, scaled memoryless BFGS (L-BFGS with m = 1) should fail on function (2) when a satisfies
Assumption 3.2: 2

√
n − 1 ≤ a. This is illustrated in Fig. 2, which shows an experiment where we set

a = 3 and n = 2 and ran scaled memoryless BFGS, the gradient method and full BFGS, starting from
the same randomly generated initial point. We see that scaled memoryless BFGS fails, in the sense that
it converges to a nonoptimal point, while the gradient method succeeds, in the sense that it generates
iterates with f (xk) ↓ −∞. In contrast to both, full BFGS succeeds in the sense that it finds a direction
along which f is unbounded below in just five iterations. These three different outcomes respectively
illustrate the three different ways that the hanso code terminated in our experiments: (i) convergence to
a nonoptimal point, which is detected when the steplength upper bound β in Algorithm 2 converges to
zero indicating that Armijo–Wolfe points exist, but the line search terminates without finding one due
to rounding errors; (ii) divergence of the f (xk) to −∞ although the line search always finds Armijo–
Wolfe steplengths; and (iii) generation of a direction along which f is apparently unbounded below,
which is detected when β in Algorithm 2 remains equal to its initial value of ∞ while the lower
bound α is repeatedly doubled until a limit is exceeded.2 In the results reported below for function
(2), termination (i) is considered a failure while terminations (ii) and (iii) are considered successes.
We note that, provided

√
n − 1 ≤ a, the gradient method can never result in termination (iii), and

whether it results in termination (i) or (ii) depends on the Armijo parameter (Asl & Overton, 2019). In
our experiments, L-BFGS, with or without scaling and with one or more updates, always resulted in
termination (i) or (iii), while full BFGS invariably resulted in termination (iii) (as we know it must from
the results in Xie & Waechter, 2017).

Although the proof of Theorem 3.1 does require Assumption 3.2 we observed that
√

3(n − 1) ≤ a
suffices for {|bk|} and consequently |dk|/‖dk‖2 to converge. In Fig. 3 we repeat the same experiment
with a = √

3 and n = 2, showing that scaled memoryless BFGS still fails. In this case, as noted in
Section 3, the normalized direction is the same as the normalized direction generated by the gradient
method, but unlike in the gradient method, the magnitude of the directions dk converge to zero so scaled
memoryless BFGS fails.

However, if we set a to
√

3−0.001 the method succeeds. This is demonstrated in Fig. 4; observe that
although one at first has the impression that xk is converging to a nonoptimal point, a search direction is
generated on which f is unbounded below ‘at the last minute’.

Extensive additional experiments verify that the condition
√

3(n − 1) ≤ a, as opposed to
Assumption 3.2, is sufficient for failure, as illustrated by the magenta asterisks in Fig. 5. Starting from
5000 random points generated from the normal distribution, we called scaled memoryless BFGS to
minimize function (2) with n = 30 and for values of a ranging from 9.317 to 9.337, since for n = 30,√

3(n − 1) ≈ 9.327. We see that for 9.327 ≤ a the failure rate is 1 (100%), while for 9.32 > a the
failure rate is 0. In comparison to a similar experiment in Asl & Overton (2019) for the gradient method,

1 www.cs.nyu.edu/overton/software/hanso/
2 Although in principle the code would alternatively terminate if a termination tolerance was met or an upper bound on the

number of iterations was exceeded, we set these so small and large, respectively, that they virtually never caused termination.
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 19

Fig. 2. Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient method (blue squares) applied to the
function (2) defined by a = 3 and n = 2. Scaled memoryless BFGS fails while full BFGS and the gradient method succeed.

Fig. 3. Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient method (blue squares) applied to the
function (2) defined by a = √

3 and n = 2. Scaled memoryless BFGS fails while full BFGS and the gradient method succeed.
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20 A. ASL AND M. L. OVERTON

Fig. 4. Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient method (blue squares) applied to the
function (2) defined by a = √

3 − 0.001 and n = 2. All methods succeed.

Fig. 5. The failure rate of memoryless BFGS with scaling (magenta asterisks) and without scaling (cyan squares) applied to
function (2) with n = 30 and 21 different values of a, initiating the method from 5000 random points. With scaling, the failure
rate is 1 for 9.327 ≤ a. Without scaling, the failure rate is 0 regardless of a.

the transition from failure rate 0 to 1 is quite sharp here. This might be explained by the fact that the
gradient method fails because the steplength tk → 0, whereas for scaled memoryless BFGS, tk does not
converge to zero; it is the scale γk and consequently the norm of dk which converges to zero. Hence,
rounding error prevents the observation of a sharp transition in the results for the gradient method, as
explained in Asl & Overton (2019); by comparison, rounding error plays a less significant role in the
experiments reported here.

The cyan squares in Fig. 5 show the results from the same experiment for memoryless BFGS without
scaling, i.e., with H0

k = I instead of (1), using the same 5000 initial points. In this case, the method is
successful regardless of the value of a.

Experiments suggest that the theoretical results we presented for scaled L-BFGS with only one
update might extend, although undoubtedly in a far more complicated form, to any number of updates.
In Fig. 6 we show results of experiments with a variety of choices of m and a, running scaled L-BFGS-
m (L-BFGS with m updates) initiated from 1000 randomly generated points for each pair (m,a). The
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ANALYSIS OF LIMITED-MEMORY BFGS ON A CLASS OF NONSMOOTH CONVEX FUNCTIONS 21

Fig. 6. The failure rate for each scaled L-BFGS-m, where the number of updates m ranges from 1 to 10, applied to function (2)
with a = 2.99 (blue pluses), a = 3 (orange circles), a = 10 (yellow asterisks), a = 30 (purple crosses), a = 100 (green triangles)
and finally a = 300 (cyan diamonds), with c1 = 0.01 and n = 4 and hence

√
3(n − 1) = 3, and with each experiment initiated

from 1000 random points.

Fig. 7. The same experiment as in Fig. 6 except that c1 = 0.001.

horizontal axis shows m, the number of updates, while the vertical axis shows the observed failure rate.
We set the Armijo parameter c1 = 0.01 and n = 4, so that

√
3(n − 1) = 3, and show results for

values of a ranging from 2.99 to 300. Figure 7 shows results from the same experiment except that
c1 = 0.001. The results shown in Fig. 8 use a different objective function; instead of (2), we define
f (x) = a|bT

1 x| + bT
2 x, where b1 and b2 were each chosen as a random vector in R10 and normalized

to have length one. The Armijo parameter was set to c1 = 0.01. In all of Figs 6, 7 and 8 we observe
that as a gets larger for a fixed m, the failure rate increases. On the other hand, as m gets larger for a
fixed a, the failure rate decreases. Comparing Figs 6 and 7, we see that the results do not demonstrate a
significant dependence on the Armijo parameter c1; in particular, as we established in Section 3.3, there
is no dependence on c1 when m = 1 because we are using the line search in Algorithm 2. However, we
do observe small differences for the larger values of m, where the failure rate is slightly higher for the
larger Armijo parameter. This is consistent with the theoretical results in Section 3.2 as well as those in
Asl & Overton (2019), where, if a is relatively large, then to avoid failure c1 should not be too large.

Finally, we conducted experiments with a more general class of piecewise linear max functions
defined as

f (x) = max
i=1,...p

{bT
i x − ri}, (64)

where b1, ..., bp are randomly generated vectors in Rn and r1, ..., rp are random scalars. These quantities
were fixed for the experiment reported here but similar results were obtained for other choices. We
set n = 10 and p = 50, obtaining a problem that, unlike those studied above, is bounded below.
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Fig. 8. The same experiment as in Fig. 6 except that f (x) = a|bT
1 x| + bT

2 x where b1, b2 ∈ R10 were chosen randomly.

Fig. 9. Median accuracy of the solution fB found by L-BFGS-m with m = 1, . . . , 10 for the piecewise linear function defined
in (64), with n = 10 and p = 50, compared with the value f∗ obtained from the linear optimizer in mosek using high accuracy.
Scaled L-BFGS-m does not obtain accurate solutions even with m = 10. In contrast, with scaling off, L-BFGS-9 obtains a median
accuracy of about 10−9.

Consequently, all runs result in termination (i), and we evaluated how successful they were by comparing
the final function value to the optimal value f∗ that we obtained via linear programming using mosek3

with the tolerance set to 10−14. Figure 9 shows the median accuracy obtained by L-BFGS-m, for m =
1, . . . , 10, with and without scaling. L-BFGS with scaling does not achieve a median accuracy better
than 10−2, even when m = 10. Without scaling, the accuracy of the results improves substantially, to a
median accuracy of about 10−9 with m = 9. Strangely, for this problem, and many different instances
of it that we tried, L-BFGS-10 performs worse than L-BFGS-9. The median accuracy of the solution
found by full BFGS (with or without scaling the initial inverse Hessian approximation) is significantly
better: about 10−14.

5. Concluding remarks

We have given the first analysis of a variant of L-BFGS applied to a nonsmooth function, showing
that the scaled version of memoryless BFGS (L-BFGS with just one update) applied to (2) generates
iterates converging to a nonoptimal point under simple conditions. One of these conditions applies to the
method with any Armijo–Wolfe line search and depends on the Armijo parameter. The other condition
applies to the method using a standard Armijo–Wolfe bracketing line search and does not depend on the

3 https://www.mosek.com/
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Armijo parameter. Experiments suggest that extended results likely hold for L-BFGS with more than
one update, though clearly a generalized analysis would be much more complicated.

We do not know whether L-BFGS without scaling applied to the same function can converge to a
nonoptimal point, but numerical experiments suggest that this cannot happen. Furthermore, we observed
that L-BFGS without scaling obtains significantly more accurate solutions than L-BFGS with scaling
when applied to a more general piecewise linear function that is bounded below. Nonetheless, it remains
an open question as to whether scaling is generally inadvisable when applying L-BFGS to nonsmooth
functions, despite its apparent advantage for smooth optimization.
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A. Proof of Lemma 2.1

Suppose
√

3(n − 1) ≤ a. Using a change of variable such that βk = bk when k is even, and βk = −bk
when k is odd, (26) becomes

βk = 1 + (n − 1)β2
k−1

a − (n − 1)βk−1
− βk−1. (A.1)

From (18) we have β0 = 1/a. Using induction we prove that 0 < βk ≤ 1/a. This is clearly true for
k = 0. Suppose we have 0 < βk−1 ≤ 1/a. Hence,

βk−1 <
1

a − (n − 1)βk−1
<

1 + (n − 1)β2
k−1

a − (n − 1)βk−1
,

so, dropping the middle term and moving βk−1 to the R.H.S., we get exactly the definition of βk
according to (A.1). So, we have 0 < βk. Next, starting from

√
3(n − 1) ≤ a, we show that βk ≤ 1/a:

3(n − 1)

a
≤ a ⇒

(n − 1)

a
+ 2(n − 1)βk−1 ≤ a ⇒

a2 + n − 1

a
≤ 2(a − (n − 1)βk−1) ⇒

a2 + n − 1

a(a − (n − 1)βk−1)
≤ 2.

Multiplying both sides by βk−1 we get

aβk−1 + 1

a − (n − 1)βk−1
− 1

a
≤ 2βk−1,

and finally by moving 1/a to the right and 2βk−1 to the left we get

1 + (n − 1)β2
k−1

a − (n − 1)βk−1
− βk−1 ≤ 1

a
.

The L.H.S. is βk as it’s defined in (A.1), so βk ≤ 1/a. Recalling the change of variable in the beginning
of the proof it follows that βk = |bk|. So, from (A.1) we get (27).
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B. Proof of Theorem 3.1

We continue to use the same change of variable as before, that is βk = bk when k is even, and βk = −bk
when k is odd. In this way, (A.1) is equivalent to (27), and we prove that if 2

√
n − 1 ≤ a, then {βk}

converges. From a little rearrangement in (A.1) we can easily get

a(βk + βk−1) = 1 + 2(n − 1)β2
k−1 + (n − 1)βk−1βk, (B.1)

and by moving (n − 1)βk−1βk to the left and adding 1 to both sides we get

a(βk + βk−1) − (n − 1)βk−1βk + 1 = 2
(
1 + (n − 1)β2

k−1

)
. (B.2)

For further simplification we define

ρk = 1 + (n − 1)β2
k

a − (n − 1)βk
, (B.3)

so we can rewrite (A.1) as

βk+1 = ρk − βk. (B.4)

By applying (B.4) recursively we obtain

βk+1 − βk−1 = ρk − ρk−1. (B.5)

Note that from (B.3) we have

ρk − ρk−1 = 1 + (n − 1)β2
k

a − (n − 1)βk
− 1 + (n − 1)β2

k−1

a − (n − 1)βk−1

=
(

1 + (n − 1)β2
k

)(
a − (n − 1)βk−1

)
−

(
1 + (n − 1)β2

k−1

)(
a − (n − 1)βk

)
(

a − (n − 1)βk

)(
a − (n − 1)βk−1

)

=
(βk − βk−1)(n − 1)

(
a(βk + βk−1) − (n − 1)βk−1βk + 1

)
(

a − (n − 1)βk

)(
a − (n − 1)βk−1

) . (B.6)

The last factor in the numerator is the L.H.S. in (B.2), so

ρk − ρk−1 =
(βk − βk−1)(n − 1)2

(
1 + (n − 1)β2

k−1

)
(

a − (n − 1)βk

)(
a − (n − 1)βk−1

) . (B.7)

Hence, since all of the factors in this product except (βk − βk−1) are known to be positive, we have

(ρk − ρk−1)(βk − βk−1) ≥ 0. (B.8)
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Putting (B.5) and (B.8) together we conclude

(βk+1 − βk−1)(βk − βk−1) ≥ 0. (B.9)

As the next step we will show that

(βk+1 − βk)(βk − βk−1) ≤ 0. (B.10)

Since a ≥ 2
√

n − 1 and using 1/a ≥ βk−1 we get

(
a2 − 4(n − 1)

)(
a2 + (n − 1)

) ≥ 0 ⇒

a2 − 3(n − 1) ≥ 4(n − 1)2

a2
⇒

a2 − 3(n − 1) ≥ 4(n − 1)2β2
k−1 ⇒

a2 − 3(n − 1) − 4(n − 1)2β2
k−1 ≥ 0.

By adding and deducting 2(n − 1)2βkβk−1 to the L.H.S. above we get

a2 − 2(n − 1)
(
1 + 2(n − 1)β2

k−1 + (n − 1)βk−1βk

) + 2(n − 1)2βkβk−1 − (n − 1) ≥ 0.

By combining this with (B.1) we get

a2 − 2(n − 1)a(βk + βk−1) + 2(n − 1)2βkβk−1 − (n − 1) ≥ 0.

By moving some of the terms to the R.H.S. and factorizing the L.H.S. we get

(
a − (n − 1)βk

)(
a − (n − 1)βk−1

) ≥ a(n − 1)(βk + βk−1) − (n − 1)2βkβk−1 + (n − 1),

which we can write as

1 ≥ (n − 1)
(
a(βk + βk−1) − (n − 1)βkβk−1 + 1

)
(
a − (n − 1)βk

)(
a − (n − 1)βk−1

) . (B11)

Now, suppose βk − βk−1 ≥ 0. Multiplying both sides of the inequality (B.11) by βk − βk−1, according
to (B.6) we get

βk − βk−1 ≥ ρk − ρk−1,

so,

ρk−1 − βk−1 ≥ ρk − βk

which means that via (B.4) we have shown βk ≥ βk+1. Alternatively, if we had βk − βk−1 ≤ 0 above,
then we would get βk ≤ βk+1. Hence, we always have (βk+1 − βk)(βk − βk−1) ≤ 0, which is exactly
inequality (B.10).
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Since we start with β0 = 1/a, according to Lemma 2.1 we have β1 ≤ β0. Using (B.10) inductively
we get

β1 − β0 ≤ 0, 0 ≤ β2 − β1, β3 − β2 ≤ 0, . . .

and from applying (B.9) to each one of these inequalities we conclude

β2 − β0 ≤ 0, 0 ≤ β3 − β1, β4 − β2 ≤ 0, . . .

which shows that we can split {βk} into two separate monotonically decreasing and increasing
subsequences:

0 < . . . β4 ≤ β2 ≤ β0 = 1/a,

0 < β1 ≤ β3 ≤ β5 . . . < 1/a.

By the bounded monotone convergence theorem we conclude that each one of these subsequences
converge, i.e.

lim
k→∞ |βk+2 − βk| = 0,

and recalling (B.5) we get

lim
k→∞ |ρk+1 − ρk| = 0.

On the other hand, looking at the equality in (B.6) we know that except (βk+1 − βk) all the factors in
the numerator and denominator are bounded away from zero. So therefore we must have

lim
k→∞ |βk+1 − βk| = 0,

and hence, since the even and odd sequences both converge, they must have the same limit. Using the
definition of βk+1 in (A.1) we get

lim
k→∞

∣∣∣∣∣1 + (n − 1)β2
k

a − (n − 1)βk
− 2βk

∣∣∣∣∣ = 0.

Since the denominator is bounded away from zero we must have

lim
k→∞ 3(n − 1)β2

k − 2aβk + 1 = 0.

The two roots of the limiting quadratic equation are

a ± √
a2 − 3(n − 1)

3(n − 1)
.

The smaller root is b as defined in (30) and the larger root is greater than 1/a, which according to
Lemma 2.1 is not possible. Hence,

lim
k→∞ βk = lim

k→∞ |bk| = b.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drz052/5706038 by Serials D
epartm

ent user on 14 August 2020


	Analysis of limited-memory BFGS on a class of nonsmooth convex functions
	1. Introduction
	2. The memoryless BFGS method
	2.1 Existence of Armijo--Wolfe steps when 3n-1< a

	3. Failure of scaled memoryless BFGS
	3.1 Convergence of the absolute value of the normalized search direction when 2 n-1 le a
	3.2 Dependence on the Armijo condition
	3.3 Results for a specific Armijo--Wolfe line search, independent of the Armijo parameter

	4. Experiments
	5. Concluding remarks


