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1 Introduction

The principal methodology for minimizing a smooth
function is the steepest descent (gradient) method.
One way to extend this methodology to the minimiza-
tion of a nonsmooth function involves approximating
subdifferentials through the random sampling of gra-
dients. This approach, known as gradient sampling
(GS), gained a solid theoretical foundation about a
decade ago [BLO05, Kiw07], and has developed into a
comprehensive methodology for handling nonsmooth,
potentially nonconvex functions in the context of op-
timization algorithms. In this article, we summarize
the foundations of the GS methodology, provide an
overview of the enhancements and extensions to it
that have developed over the past decade, and high-
light some interesting open questions related to GS.

2 Fundamental Idea

The central idea of gradient sampling can be ex-
plained as follows. When a function f : Rn → R
is differentiable at a point x (at which ∇f(x) 6= 0),
the traditional steepest descent direction for f at x
in the 2-norm is found by observing that

arg min
‖d‖2≤1

∇f(x)T d = − ∇f(x)

‖∇f(x)‖2
; (1)
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in particular, this leads to calling the negative gra-
dient, namely, −∇f(x), the direction of steepest de-
scent for f at x. However, when f is not differentiable
near x, one finds that following the negative gradient
direction might offer only a small amount of decrease
in f ; indeed, obtaining decrease from x along −∇f(x)
may be possible only with a very small stepsize. The
GS methodology is based on the idea of stabilizing
this definition of steepest descent by instead finding
a direction to approximately solve

min
‖d‖2≤1

max
g∈∂̄εf(x)

gT d, (2)

where ∂̄εf(x) is the ε-subdifferential of f at x [Gol77].
To understand the context of this idea, recall that
the (Clarke) subdifferential of a locally Lipschitz f
at x, denoted ∂̄f(x), is the convex hull of the limits
of all sequences of gradients evaluated at sequences
of points, at which f is differentiable, that converge
to x [Cla75]. The ε-subdifferential, in turn, is the
convex hull of all subdifferentials at points within an
ε-neighborhood of x. Although the ε-subdifferential
of f at x is not readily computed, the central idea
of gradient sampling is to approximate the solution
of (2) by finding the smallest norm vector in the con-
vex hull of gradients computed at randomly generated
points in an ε-neighborhood of x, then normalizing
the result to have unit norm. See [BLO02] for analy-
sis on approximating an ε-subdifferential by sampling
gradients at randomly generated points.

A complete algorithm based on the GS methodol-
ogy is stated as Algorithm 1, taken from the recent
survey paper [BCL+19]. To illustrate the efficacy of
this algorithm compared to more standard gradient
and subgradient methodologies, let us show its per-
formance on a nonsmooth variant of the nonconvex
Rosenbrock function [Ros60], namely,

f(x) = 8|x2
1 − x2|+ (1− x1)2. (3)

The contours of this function are shown in Figure 1;
the black asterisk indicates the initial iterate x0 =
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(0.1, 0.1) and the red asterisk indicates the unique
minimizer x∗ = (1, 1). The blue dots show the iter-
ates generated by the gradient sampling method (Al-
gorithm 1) converging to x∗, roughly tracing out the
parabola on which f is nonsmooth, but never actually
landing on it, even to finite precision. In contrast,
the magenta dots show the iterates of the gradient
method with the same line search enforcing (4) from
Algorithm 1, indicating that these iterates move di-
rectly toward the parabola on which f is nonsmooth
and stall without moving along it toward the mini-
mizer x∗. The essential difficulty is that the direction
of descent tangential to the parabola is overwhelmed
by the steepness of the graph of the function near the
parabola. The gradient sampling method, by choos-
ing the direction of least norm in the convex hull of
sampled gradients, is able to approximate the tan-
gential directions of descent toward x∗.

The poor behavior of the gradient method in
this context is well known, even in the convex case
[HUL93]; see [AO18] for a discussion of the behav-
ior of the gradient method on a simple nonsmooth
convex function. In these experiments, for both al-
gorithms, x2

1− x2 was nonzero at all iterates, even in
finite precision, so gradients were always defined. Fig-
ure 2 shows the function values {f(xk)} generated by
the two methods. Both algorithms were terminated
as soon as the objective and/or gradient was evalu-
ated at 2000 points—including iterates, trial points
in the line searches, and randomly generated points
at which the gradient is evaluated for Algorithm 1.
Algorithm 1 is able to reach iterates with much better
objective values within the same budget.1

It is also instructive to consider a subgradient
method [Sho85, Rus06] that sets iterates by

xk+1 ← xk − tkdk,

where dk is any subgradient of f at xk (i.e., any
element of ∂̄f(xk)) and {tk} is set as a fixed step-
size or according to a diminishing stepsize schedule.
This is a popular approach in the optimization lit-
erature, which has convergence guarantees in vari-
ous contexts without requiring that the value of f
decreases at each iteration. By not requiring mono-
tonic decrease, the method does not get stuck near
the parabola on which f is nonsmooth. However,

1We used the following parameters for Algorithm 1: ε0 =
ν0 = 0.1, m = 3, β = 10−8, γ = 0.5, εopt = νopt = 0, and
θε = θν = 0.1. The gradient method used the same line search
with β = 10−8 and γ = 0.5. Both algorithms used most of
their function and gradient evaluations in later iterations. The
final sampling radius for Algorithm 1 was 10−5.

progress is slow since the method has no mecha-
nism for identifying the tangential direction of de-
scent along the parabola. Instead, it is destined to os-
cillate back-and-forth across the parabola as it creeps
tangentially toward the minimizer x∗. In this exper-
iment, x2

1 − x2 was nonzero (even in finite precision)
at all but a handful of the iterates, and since the only
subgradient of f at such a point is the gradient, the
method is, for all practical purposes, identical to a
gradient method with the same stepsizes. The iter-
ates of this method with {tk} = {0.1/k} are shown in
Figure 3, and the performance with different choices
for {tk} is shown in Figure 4. With the same function
and gradient evaluation budget as the methods above,
this approach—for all stepsize choices—is slow. One
might be able to obtain better results by tuning the
stepsize choice further. Note, however, that Algo-
rithm 1 does not require such parameter tuning.

Of course, there are other effective algorithms for
nonsmooth optimization that we do not consider
here, in part because they are significantly more com-
plicated to describe; these include bundle methods
[Kiw85, SZ92], which have been used extensively for
decades, and quasi-Newton methods [LO13]. For a
collection of surveys of recent developments in nons-
mooth optimization methods, see [BGKM19].

The function f in (3) is an example of an impor-
tant class of functions, namely those that are partly
smooth with respect to a manifold in the sense de-
fined in [Lew02]. In the convex case, this concept is
related to that of the U-Lagrangian [LOS99].

3 Convergence Theory

Algorithm 1 is conceptually straightforward. At each
iterate, one need only compute gradients at randomly
sampled points, project the origin onto the convex
hull of these gradients (by solving a strongly convex
quadratic program (QP) for which specialized algo-
rithms have been designed [Kiw86]), and perform a
line search. The other details relate to dynamically
setting the sampling radii {εk} and ensuring that the
objective f is differentiable at each iterate.

On the other hand, the convergence theory for the
algorithm when minimizing a locally Lipschitz func-
tion involves important, subtle details. Rademacher’s
theorem states that locally Lipschitz functions are
differentiable almost everywhere [Cla83], ensuring
that the gradients sampled at the randomly generated
points are well defined with probability one. How-
ever, this is not sufficient to ensure convergence. To
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Algorithm 1 : Gradient Sampling with a Line Search

Require: initial point x0 at which f is differentiable, initial sampling radius ε0 ∈ (0,∞), initial stationarity
target ν0 ∈ [0,∞), sample size m ≥ n + 1, line search parameters (β, γ) ∈ (0, 1) × (0, 1), termination
tolerances (εopt, νopt) ∈ [0,∞)× [0,∞), and reduction factors (θε, θν) ∈ (0, 1]× (0, 1]

1: for k ∈ N do
2: independently sample {xk,1, . . . , xk,m} uniformly from B(xk, εk) := {x ∈ Rn : ‖x− xk‖2 ≤ εk}
3: compute gk as the solution of ming∈Gk

1
2‖g‖

2
2, where Gk := conv{∇f(xk),∇f(xk,1), . . . ,∇f(xk,m)}

4: if ‖gk‖2 ≤ νopt and εk ≤ εopt then terminate
5: if ‖gk‖2 ≤ νk
6: then set νk+1 ← θννk, εk+1 ← θεεk, and tk ← 0
7: else set νk+1 ← νk, εk+1 ← εk, and

tk ← max
{
t ∈ {1, γ, γ2, . . . } : f(xk − tgk) < f(xk)− βt‖gk‖22

}
(4)

8: if f is differentiable at xk − tkgk
9: then set xk+1 ← xk − tkgk

10: else set xk+1 randomly as any point where f is differentiable such that

f(xk+1) < f(xk)− βtk‖gk‖22 and ‖xk − tkgk − xk+1‖2 ≤ min{tk, εk}‖gk‖2 (5)

11: end for

obtain a satisfactory convergence result it is required
that the set of points at which f is continuously dif-
ferentiable has full measure in Rn. For further dis-
cussion of this issue, see [BCL+19].

The following theorem, whose precise statement is
taken from [BCL+19], but whose proof depends on
the convergence theorems in [BLO05, Kiw07], is the
main convergence result for Algorithm 1. Other re-
sults of interest that can be proved relate to the be-
havior of the algorithm when the tolerances νopt and
εopt are positive, so the algorithm terminates finitely,
or when one sets θε = 1, so that the sampling radius
is fixed, in which case one can prove convergence to
ε-stationarity; see [BLO05, Kiw07, BCL+19].

Theorem 1. Suppose that f is locally Lipschitz
on Rn and continuously differentiable on an open set
with full measure in Rn. Suppose also that Algo-
rithm 1 is run with ν0 > 0, νopt = εopt = 0, and
strict reduction factors θν < 1 and θε < 1. Then,
with probability one, Algorithm 1 is well defined in
the sense that the sampled gradients exist in every it-
eration, the algorithm does not terminate, and either

• {f(xk)} ↘ −∞ or

• {νk} ↘ 0, {εk} ↘ 0, and each limit point x̄ of
the sequence {xk} is Clarke stationary for f , that
is, 0 ∈ ∂̄f(x̄).

It has been shown that the result of Theorem 1

can be extended for some cases of non-locally Lips-
chitz f , in particular, when it is directionally Lips-
chitz [Lin09]. Extending it to the general non-locally
Lipschitz setting, on the other hand, seems quite dif-
ficult. One can also prove that, in the case of mini-
mizing finite-max functions, Algorithm 1 can achieve
a linear rate of local convergence, at least in a cer-
tain probabilistic sense [HSS17]. This should not be
too surprising given the connection between the GS
methodology and standard steepest descent.

4 Enhancements

Since the inception and analysis of the initial GS al-
gorithm in [BLO05], various enhancements and ex-
tensions have appeared in the literature. First, a few
fundamental advances were published in [Kiw07]; in
particular, in this work, Kiwiel showed how to sim-
plify the analysis of a basic GS algorithm and ex-
tend it for some interesting algorithm variants, such
as when invoking a trust region methodology. Other
proposed enhancements include techniques for avoid-
ing the differentiability check in Steps 8–10 of Al-
gorithm 1) [Kiw07, HSS16], performing the gradient
sampling adaptively so that only O(1) gradients need
to be sampled in each iteration [CQ13, CQ15], and
for incorporating second-order derivatives or approx-
imations, say by borrowing quasi-Newton ideas from
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Figure 1: Contours of the nonsmooth Rosenbrock
function (3) showing iterates generated by the gra-
dient sampling method (blue dots) and the ordinary
gradient method with the same line search (magenta
dots). The black asterisk is the initial point and the
red asterisk shows the unique minimizer.

the smooth optimization literature [CQ13, CQ15].
Added benefits of adaptive sampling are that one can
re-use gradients computed in previous iterations and
warm-start the solve of each QP so that the com-
putation of each search direction becomes relatively
inexpensive.

The GS methodology has also been extended for
solving constrained optimization problems. Specif-
ically, a Riemannian GS method has been proposed
for optimization on manifolds [HU17], and a so-called
SQP-GS method, which merges the GS methodol-
ogy with that of a penalty sequential quadratic pro-
gramming (SQP) technique from the smooth opti-
mization literature, has been proposed for solving in-
equality constrained optimization problems in which
the objective and constraint functions may be non-
smooth and/or nonconvex [CO12]. A feasible vari-
ant of the SQP-GS method has also been proposed,
which establishes a path for the design of two-phase
approaches: a first phase seeking feasibility and a sec-
ond phase seeking optimality [TLJL14].

Another interesting line of work has been on adap-
tions of the GS methodology for designing derivative-
free algorithms for minimizing nonsmooth functions.
In a couple of these cases, authors have proposed to
use the GS methodology in a relatively straightfor-
ward manner with gradients replaced by gradient ap-
proximations constructed using function evaluations

Figure 2: Function values by iteration number for the
gradient sampling method and the gradient method,
both run with a backtracking line search (LS).

[Kiw10, HN13]. There has also been work on methods
that do not borrow the gradient sampling strategy per
se, but are still motivated by the GS methodology in
terms of the types of subproblems that are employed
to compute search directions [LMW16].

For more information on the enhancements and ex-
tensions that have been made to the GS method-
ology over the past decade, as well as information
about available software and success stories in prac-
tice, see [BCL+19].

5 Closing Remarks

Gradient sampling is a conceptually straightforward,
yet powerful approach for extending the steepest
descent methodology to the minimization of nons-
mooth, nonconvex functions. The fundamental idea
of GS is to stabilize the notion of a steepest descent
direction by finding the minimum norm element of
the convex hull of gradients evaluated at points ran-
domly sampled near the current iterate. The method-
ology enjoys a solid theoretical foundation and has
been enhanced and extended in various ways, such as
for solving constrained optimization problems.

There remain various interesting avenues of re-
search related to the GS methodology. For example,
it remains an open question how far one may be able
to extend the convergence theory for a GS method in
terms of minimizing non-locally Lipschitz functions;
e.g., can one extend the GS theory for the class of
semi-algebraic, but not locally Lipschitz or direction-
ally Lipschitz functions? On the other hand, one can
imagine various opportunities for exploring tailored
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Figure 3: Contours of the nonsmooth Rosenbrock
function (3) showing iterates generated by the sub-
gradient method with {tk} = {0.1/k}. The black
asterisk is the initial point and the red asterisk shows
the unique minimizer.

GS approaches when one aims to minimize a func-
tion for which one has knowledge about the structure
of the nonsmoothness of a function f . How should
sampling be performed when, at any given iterate,
one has knowledge about the directions in which f is
smooth and directions in which it is nonsmooth (at
least in a neighborhood of the current iterate)?

One also has the sense that there remain numer-
ous avenues to pursue in the context of constrained
optimization. Given the range of methodologies for
solving smooth constrained optimization problems,
one could explore techniques that combine these ap-
proaches with gradient sampling so that convergence
guarantees could potentially be obtained when han-
dling nonsmooth functions as well. One might also
re-evaluate the use of certain methods, such as some
exact penalty methods, which have previously fallen
out of favor due to the presence of nonsmoothness.
After all, the issues that inhibited the effectiveness of
such approaches might no longer be of concern since
GS might naturally overcome them.

Finally, there remain various open questions about
the possible connections between the GS methodol-
ogy and other randomized and/or stochastic opti-
mization methods. The basic GS method involves
computing the minimum norm element in the con-
vex hull of gradients evaluated at randomly gener-
ated points. Can the GS theory be extended when
the subproblems for computing the search directions

Figure 4: Function values by iteration number for the
subgradient method with different stepsize sequences,
indicated by the formula for tk in the legend.

are only solved approximately? If so, this might rep-
resent a step toward tying the convergence theory of
GS with those of other randomized/stochastic gradi-
ent/subgradient approaches, which have attracted a
lot of recent attention; see, e.g., [DD18, DDKL19].
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