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The column stands both as the essence of an architec- 
tural order and as the first flexible body to fall to math- 
ematical analysis. The aesthetic ideal, formulated and 
realized by the ancient Greeks, was recorded by Vit- 
ruvius in De Architectura (circa 25 B.C.). The result, a 
subtle variation on the cylindrical profile, calls for a 
bulge at approximately one third of the column's 
height and a diminution near its top. With a denunci- 
ation of this aesthetic ideal, Lagrange in 1773 formu- 
lated the first scientific criterion, one based on strength 
rather than appearance. A number of missteps in ap- 
plying the calculus led him to the mistaken conclusion 
that the cylinder was the strongest hinged column. 
Though T. Clausen, in 1851, appeared to succeed 
where Lagrange had failed, C. Truesdell, troubled by 
"elements of mystery" remaining a century later, in- 
vited a fresh approach. In response, J. Keller recov- 
ered, in greater generality, the result of Clausen. Keller 
published his findings in 1960 and with I. Tadjbakhsh 
in a paper of 1962 tackled the remaining boundary con- 
ditions of interest. M. Overton and I have recently 
closed the longstanding debate over Tadjbakhsh and 
Keller's claim that the strongest clamped and clamped- 
hinged columns possess  interior points where  the 
cross section vanishes. 

Here I trace the influence exerted by the aesthetic 
ideal through the early stages of the theory of elasticity 
and the subsequent formulation of the scientific ideal 
under the influence of Euler and Laugier. I indicate 
where the extension of Keller's successful analysis 
breaks down, tracing the cause to the lack of differen- 
tiability, indeed the lack of continuity, of Lagrange's 
measure of strength. Finally, in a setting in which an 
optimal design exists, I discuss the role of double 
eigenvalues and the consequent need for nonsmooth 
analysis in the construction of necessary conditions. 

The Aesthetic Ideal 

The swelling of columns was but one of the optical 
refinements employed by the Greeks to counter per- 
ceived imperfections. This practice, which varied to a 
degree dictated by the proposed structure's size and 
surroundings, reached its zenith in the Parthenon 
where 

The delicate curves and inclinations of the horizontal and 
vertical lines include the rising curves given to the stylo- 
bate and entablature in order to impart a feeling of life and 
to prevent the appearance of sagging, the convex curve to 
which the entasis of the columns was worked in order to 
correct the optical illusion of concavity which might have 
resulted if the sides had been straight, and the slight in- 
ward inclinations of the axes of the columns so as to give 
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the whole building an appearance of greater strength; all 
entailed a mathematical precision in the setting out of the 
work and in its execution which is probably unparalleled 
in the world [5, p. 178]. 

For Vitruvius these refinements were direct conse- 
quences of the principle: Ergo quod oculus faUit, ratioci- 
natione est exequendum. "For what the eye cheats us of 
must be made up by calculation" [19, v. 1 p. 179]. Its 
application to the design of columns induced Vitruvius 
to warn that " . . .  the sight follows gracious contours; 
and unless we flatter its pleasure, by proportionate 
alterations of the modules (so that by adjustment there 
is added the amount  to which it suffers illusion), an 
uncouth and ungracious aspect will be presented to 
the spectators. As to the swelling which is made in the 
middle of the columns (this among the Greeks is called 
entasis), an illustrated formula will be furnished at the 
end of the book to show how the entasis may be done 
in a graceful and appropriate manner" [19, v. I p. 179]. 
That close inspection has turned up "no Roman col- 
umns without an entasis" [15, p. 121] suggests such 
warnings were indeed heeded. 

Though Vitruvius's illustration was lost, his text on 
this point differs so little from Alberti's discussion of 
entasis in De re Aedictoria (1450) that one expects the 
illustration (Figure 1) in Bartoli's 1550 Italian transla- 
tion of this work to faithfully represent the ideal of 
Vitruvius. This despite Alberti's claim that his pre- 
scription "is not a discovery of the ancients handed 
down in some writing, but  what we have noted our- 
selves, by careful and studious observation of the work 
of the best architects. What follows principally con- 
cerns the rules of lineaments; it is of the greatest im- 
portance, and may give great delight to painters" [1, p. 
188]. It must be noted that here Alberti abandons the 
rationale of optical refinement for his much more ab- 
stract notion of lineaments ("the correct, infallible way 
of joining and fitting together those lines and angles 
which define and enclose the surfaces of the building" 
[1, p. 7]) and so obscures the motivation behind enta- 
sis. In addition, as with Vitruvius, Alberti's wooden 
prescription fails to encompass the full range of Greek 
examples, from the lack of entasis in the Temple of 
Apollo at Corinth to its overabundance in the Basilica 
at Paestrum. Though the correction of optical illusions 
is surely at work in these structures, the existence of a 
single theory embracing all cases "is liable to serious 
objections" [13, p. 103]. 

Subsequent architects, though keenly aware of the 
optical refinements as practiced, appear ignorant of, or 
at least unconcerned with, the causes that induced 
them. In the writings of the 16th-century Italian archi- 
tects Palladio and Vignola, for example, one finds de- 
tailed illustrated prescriptions of entasis without dis- 
cussion of the condition for which this remedy is being 
prescribed. Divorced from its inspiration the practice 
of entasis suffered instances of both exaggeration, 
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Figure 1. Illustration of entasis in Bartoli's 1550 Italian 
translation of De re Aedictoria. 
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"even to a cigar shape" [5, p. 186], and neglect, "too 
delicate an ornament to be appreciated by the common 
man; columns more often were tailored to follow the 
form of the perfect cylinder" [18, v. 3, p. 495]. If this 
suggests a waning of the influence of Vitruvius, the 
decline of the Baroque would signal a return to the 
Greek models and the man in whose writings they 
were preserved. M. Blondel, the director of Louis 
XIV's Royal Academy of Architecture and member of 
the Paris Royal Academy of Sciences, endowed his 
1675 treatise on architecture with the subtitle L'origine 
& les Principes d'Architecture, & les practiques des cinq 
Ordres suivant la doctrine de Vitruve. Blondel's treatment 
of en tas i s ,  d i f f e r i n g  f rom tha t  of Pa l lad io  or 
Vignola in his attempt to express it analytically, coin- 
cided with the announcements of R. Hooke, of the 
Royal Society of London, regarding both "The true 
Mathematical and Mechanical form of all manner of 
Arches for Building" and "The true Theory of Elastic- 
ity." 

Early W o r k  on  Elast ic i ty  

In his treatise on elasticity of 1678 [7] Hooke writes, 
"The Power of any Spring is in the same proportion 
with the Tension thereof . . . .  The same will be found, 
if trial be made, with a piece of dry wood that will bend 
and return, if one end thereof be fixt in a horizontal 
posture, and to the other end be hanged weights to 
make it bend downwards."  The latter remark, in stat- 
ing the column's restoring force in terms of the load- 
induced strain, contains the seed of the first constitu- 
tive law for a flexible body. It would remain for Euler 
and the Bernoullis to quantify the relevant notions of 
stress and strain and so flesh out this bending law of 
Hooke's. 

Clearly aware of the three-dimensional nature of the 
column, James Bernoulli, beginning in 1691, nonethe- 
less sought to describe its bending in terms of the pla- 
nar deformation of a "neutral axis," ~/. In particular, 
associating the strain in the column with the curvature 
,: of ~/and the column's stress with the bending mo- 
ment M, he attempted to derive Hooke's law, M ~ K. 
This program proved too ambitious, indeed the posi- 
tion of the neutral axis eludes us to this day, and it was 
not until 1732 that James's nephew Daniel Bernoulli 
first postulated M ~ K in a theory of bending. Euler, in 
an unpublished work on a special case, identified this 
proportion with the product of E, the modulus of ex- 
tension, and I, the second moment of area of the col- 
umn's cross section about a line through its centroid 
normal to the plane of bending, with the result 

M = EIK. (1) 

This is known as the Bernoulli-Euler formula for the 
bending of a column, while the name of Thomas 

Young, but three years old when Euler produced its 
precise definition, is that typically attached to the mod- 
ulus E. In accordance with these measures of stress 
and strain D. Bernoulli, in a letter of 1738, posed to 
Euler the problem of finding that curve for which the 
stored energy f e  M K ds was a minimum. 

In Addi tamentum I de curvis elasticis (1744) [6, s. 1 v. 
24], an appendix to his text on the calculus of varia- 
tions, Euler subsequently solved the problem of the 
inextensible elastica, i.e., for constant E and I he found 
that curve of prescribed length with prescribed termi- 
nal displacements and slopes and minimum stored en- 
ergy. Here it will suffice to consider curves that are 
graphs of functions over the interval [0, 4~]. In this con- 
text, Euler succeeded in minimizing 

EIlu"12 + [u'12) 1/2 
fo e (1 + lu'12) 9/4 dx - ~. f e  ~ (1 dx, (2) 

where u and u' are prescribed at 0 and at f and h is the 
Lagrange multiplier associated with the length con- 
straint. Identifying K with the axial load necessary to 
sustain a prescribed deformation, Euler found the pre- 
cise load under which an initially straight column 
would commence to bend. This value, now known as 
the Euler buckling (or critical) load, is he = EI~r2/(4f2), 
where f is the length of a quarter period of the de- 
formed curve. Euler singled out the hinged case, 
where the displacement and moment vanish at each 
end, for which f = f/2 and so 

,IT 2 

Kc = E1 - ~  . 

That the quadratures required to obtain this result 
owed their existence to the constant nature of E and I 
perhaps led Euler to the alternative characterization of 
)~r in Sur la force des colonnes (1757) [6, s. 2 v. 17]. In this 
work he observed, again in the context of hinged ends, 
that as )% marks the load under  which deformation 
begins one could indeed restrict attention to the linear- 
ization of the first variation of (2) about the straight 
state. It follows that )~ is the least eigenvalue of 

(EIu")" + Ku" = O, 
u(O) = EIu"(O) = u(O = EIu"(f) = O. 

(3) 

The corresponding first eigenfunction, u c, as above 
measures displacement of the neutral axis and contrib- 
utes to the bending moment Mc via M c = EIu c. This 
choice of boundary conditions proved especially con- 
venient, for in this case uc and M~ are each first eigen- 
functions (with first eigenvalue Kr of 

E I y " +  Ky = 0, y(0) = y(e) = 0, (4) 

and hence u c = Me. With this formulation Euler pro- 
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F i g u r e  2.  The primitive hut: frontispiece from the second edition of the Essai sur l'Architecture, engraved by Ch. Eisen. 
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ceeded to compute Xc for the class of nonuniform col- 
umns in which E ~ 1 and I(x) = (a + bx/Q q at selected 
values of q. For columns with circular cross section, I is 
proportional to the square of the cross sectional area, 
A. The case q = 2, for which Euler finds 

he = ~ + (log(1 + b/a)) ~ " 
(5) 

then corresponds to columns of circular cross section 
for which A either increases or decreases linearly with 
length. He indeed calculated Xc for a number  of other 
exponents but s topped short of formulating a basis of 
comparison with which to distinguish the various 
choices. 

T h e  S c i e n t i f i c  I d e a l  

This task was taken up by Lagrange in Sur la figure des 
colonnes (1773) [9, v. 2]. Lagrange sought to maximize 
)~c, suitably normalized, over solids of revolution with 
prescribed length. In particular, he sought that func- 
tion for which the "relative strength" 

Xc(A) (6) 
V2(A) 

achieves its maximum. Here A : [0, (?] --+ [0, oc) mea- 
sures cross-sectional area, V(A) = feo A dx is the col- 
umn's volume, and hc(A ) is the least eigenvalue of (4) 
with E = 1 and I = A 2. With this I in (4) it follows for 
every positive oL that hc(o.A) = c,2K~(A), and, as the 
volume obeys V(cxA) = oLV(A), if A maximizes (6) then 
so too does c~A. Consequently, maximizing (6) is in fact 
equivalent to maximizing ~ over solids of revolution of 
prescribed volume and length. 

Rather than arguing the efficacy of his relative 
strength in the design of columns, Lagrange instead 
attacks the legitimacy of the aesthetic ideal of the 
Greeks. Seeking to upstage Vitruvius, "le 16gislateur 
des architectes modernes,"  Lagrange claimed in his 
search for a rationale underlying the prescription of 
entasis to find nothing more sound than a resemblance 
to the human body, a profile he found, with reference 
to the primitive hut, inferior to that of the trunk of a 
tree. Noting the loss of Vitruvius's original illustration, 
Lagrange then denounced the prescriptions of Palla- 
dio, Vignola, and Blondel as arbitrary variations on an 
already shaky theme. If Palladio, Vignola, and Blondel 
were not sufficiently critical in their reading of Vitru- 
vius, Lagrange is clearly mistaken in his. For recall that 
Vitruvius prescribed entasis, not as mere decoration, 
but  as the subtle solution to a difficult engineering 
problem. Ignorant of this problem, Lagrange aban- 
doned the aesthetic ideal and sought instead a rational 
basis from which one could judge the value of a given 

column. With the fanfare: "'among those rules at the 
foundation of architecture there is but one that is fixed 
and invariable, and consequently susceptible to calcu- 
lation: that is solidity," Lagrange offered the relative 
strength of (6). 

Though Lagrange cites no source of inspiration for 
this invective, his contempt for modern architects, his 
misreading of Vitruvius, and his quest for fixed and 
unchangeable rules are surely drawn from the ideas of 
Marc-Antoine Laugier, the anonymous author of the 
controversial, though very popular, Essai sur l'Architec- 
ture (1753). Laugier, upset with an architecture that 
had "been left to the capricious whim of the artists 
who have offered precepts indiscriminately . . . fixed 
rules at random, based only on the inspection of an- 
cient buildings, copying the faults as scrupulously as 
the beauty; lacking principles which would make them 
see the difference . . . .  " summoned the one who "will 
undertake to save architecture from eccentric opinions 
by disclosing its fixed and unchangeable laws." [10, p. 
2]. For his model Laugier took the primitive hut, a 
rendering of which served as frontispiece for his 
work's 2nd edition (1755), see Figure 2. He begins his 
first chapter with a list, first pronouncing correct meth- 
ods in the design of columns then remarking on sev- 
eral faulty methods. We recall one  of each: "The col- 
umn must be tapered from bottom to top in imitation 
of nature where this diminution is found in all plants" 
[10, p. 14], and "Fault: to give a swelling to the shaft at 
about the third of its height instead of tapering the 
column in the normal way. I do not believe that nature 
has ever produced anything that could justify this 
swelling" [10, p. 18]. In addition to parroting these 
opinions Lagrange goes so far as to adopt the vague 
notion of soliditd, identified, though undefined, by 
Laugier as "the first quality a building must have" [10, 
p. 68]. We shall see that Lagrange, in answering this 
summons with a cylindrical column, outdoes even 
Laugier by removing not only the swelling but  also the 
diminution. 

As preparation for the general case Lagrange first 
attacks the finite-dimensional problem of maximizing 
(6) over those functions of the form 

A(x)  = a + bx + cxL (7) 

Following Euler's lead, Lagrange finds 

)~c(A) = b2/4 - ac + "rc2/h 2, h =- :O ! dx 
A "  

which indeed reduces to (5) when c = 0. In the case b 2 
= 4ac, i.e., A(x) = (Vaa + V~cx) 2, he finds 

Xc(A) Tr2(a q- V ~ e ) 2  

V2(A) e4(a + V ~ e  + ce2/3) 2" 
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For each a this is a decreasing function of c and there- 
fore a maximum when  c = 0, i.e., among those col- 
umns for which A is a perfect square, the cylinder is 
the strongest. In his subsequent attempt to reduce (7) 
to a perfect square lies Lagrange's first misstep. In par- 
ticular, after reducing the relative strength to the work- 
able form that begins his section 24, he errs in setting 
its logarithmic derivative to zero and therefore arrives 
at an erroneous necessary condition. This condition 
implies that perfect square A are indeed to be preferred 
and hence that the cylinder maximizes (6) over those A 
given by (7). Offering up this result without physical 
interpretation Lagrange rushes into the general case of 
maximizing the relative strength over all functions A : 
[0, 2] ~ [0, oo). Again, he finds what he is looking for, 
the cylinder. The technical errors he was forced to 
commit at this stage were caught by J. Serret in editing 
Lagrange's Oeuvres. 

Had Lagrange had the courage to criticize the phys- 
ical merits of his scientific design criterion, he would 
have been led directly to perceive his mistakes of cal- 
culus. For maximizing the relative strength is equiva- 
lent to maximizing the buckling load subject to fixed 
volume, and to raise a column's buckling load without 
changing its volume one should obviously increase A 
where large bending moment  M is expected and de- 
crease it in regions of relatively little bending. In short, 
A and [M I should be similarly ordered. As the differ- 
ential equation (4) determines the qualitative proper- 
ties of the bending moment, this meta-theorem has an 
immediate consequence. For M, being a, say positive, 
first eigenfunction of (4), must be a concave function 
vanishing at each end. Consequently, the buckling 
load of a hinged cylinder is increased when material is 
removed from its ends and added to its middle. Fi- 
nally, nowhere does Lagrange argue the relevance or 
indicate the role of the chosen hinged boundary con- 
ditions in the practical problem he has set himself. He 
appears to have followed Euler's use of these condi- 
tions as blindly as he followed the pronouncements of 
Laugier. 

Though Euler makes no reference to this work of 
Lagrange, T. Young, arguing that Lagrange possessed 
"the habit of relying too confidently on calculation, 
and too little on common sense," believed it "possible 
to assign a stronger form than a cylinder, since the 
summit and base must  certainly contain some useless 
matter'' [20, p. 568]. T. Clausen in l~rber die Form ar- 
chitektonischer Siiulen (1851) [3], was the first to offer a 
correct solution to this problem of Lagrange. Clausen 
in fact solved the equivalent problem of minimizing 
volume subject to a fixed buckling load. I have seen 
this work only in the summary offered by Pearson [17, 
v. 2, p. 325], an assessment much clouded by Pear- 
son's ringing endorsement of Lagrange's cylindrical 
solution. Unaware of Lagrange's historical, physical, 
and mathematical errors, Pearson credited him with 

having "shaken the then current architectural falla- 
cies" [17, v. 1, p. 67]. This prattle provoked Truesdell 
to surmise that "Pearson took [Lagrange] as a torch 
carrier for Victorian architectural practice, according to 
which, it seems, the ugliest forms turn out to be the 
most useful" [6, s. 2, v. 11.2, p. 355]. Confused by a 
solution which differed from Lagrange's, Pearson en- 
deavored to "simplify" Clausen's analysis. Unfortu- 
nately he makes things too simple, for though he ar- 
rives at the correct conclusion, the path he takes is 
nonsense from the start. Rather than dwell on Pear- 
son's mistakes I instead display Clausen's solution, 
Figure 3 (the exaggerated entasis of a cigar), and move 
on to J. Keller's derivation in The shape of the strongest 
column (1960) [8]. 

The Work of J. Keller and I. Tadjbakhsh 

Assuming, with respect to the nondimensionalized 
problem 

y" + hA-2y = 0, y(0) = y(1) = 0 (8) 

fd A dx = We, (9) 

that (i) A ~ he(A) attains its maximum at A over those 
nonnegative A satisfying (9), and (ii) t ~-~ Kr + tAo) is 

1 differentiable for each variation A 0 satisfying fo Ao dx 
= 0, Keller succeeded in characterizing A via a first- 
order necessary condition. In particular, the perturbed 
equilibrium equation 

y" + ),~(A + tAo)(A + tAo)-2y = O, 
y(0) = y(1) = 0, 

when differentiated with respect to t at t = 0, yields 

9"+ xc(A)A-~ = 2x~(A)A -3  Aog, 
(0) = j ) ( 1 )  = 0 ,  ( l O )  

where I have used the fact that he(A) = 0 and denoted 
the first eigenfuncfion of (8) when A = A by Y. For (10) 
to possess a solution, the Fredholm alternative re- 
quires that its right-hand side be orthogonal to each 
solution of the corresponding homogeneous equation, 
i.e., flA-392 A o dx = 0. This being necessary for every 
zero-mean A 0, there must exist a positive constant c 
for which 

92 = cA3. (11) 

The form of A is now immediate, for in agreement with 
my simple meta-theorem, like 9 it must be a concave 
function vanishing at each end. Its precise form is 
found on solving the nonlinear differential equation, 
subject to (9), that results on substituting the necessary 
condition, (11), into the equilibrium equation, (8). Ex- 
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Figure 3. Solution for hinged end 
conditions. 

Figure 4. Solution with clamped- 
hinged end conditions. 

Figure 5. Solution for clamped 
end conditions. 

plicitly, )~c(A) = 4~2V2/3~ 2, while the graph of A per- 
mits the parametrizat ion 

3(2 ) 
x(t) = G "~(t - s in t )  

2 
y(t) = 5(1 - cos t) 

0 ~ t ~2~r.  

This s tunted cycloid, pictured in Figure 3, is stronger, 
by a factor of 4/3, than the cylindrical co lumn of the 
same length and volume.  

In Strongest columns and isoperimetric inequalities for 
eigenvalues (1962) [16], Keller, with I. Tadjbakhsh,  ex- 
t ended  his earlier f indings to co lumns  either free, 
hinged, or c lamped at their ends. I follow their treat- 
ment  of the nondimensional ized equilibrium equation 

(A2u")" + Ku ' ' =  0 (12) 
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subject to either c lamped-hinged end conditions, 

u(0) = u'(0) = 0, u(1) = A2u"(1) = 0, (13) 

or c lamped end conditions, 

u(0) = u'(0) = 0, u(1) = u'(1) = 0. (14) 

Unlike the hinged problem, the displacement  u and 
momen t  M = A2u '' do not  coincide and it is only the 
momen t  that satisfies 

M" + K A - 2 M  = O. (15) 

Assuming  existence and smooth  dependence ,  Tadj- 
bakhsh  and Keller characterize the optimal design, A, 
in terms of its corresponding moment ,  /~4, via ?vl 2 = 
CA B for some positive c. Cont inui ty  of M then implies 
continuity of A, and as/~I = A2~/" it follows that 



A4I~"I 2 = cA 3, (16) 

in perfect agreement with (11) when 9 is interpreted as 
moment. Where (11) led to a design with vanishing 
cross sectional area at its ends, we shall see that (16) 
with either (13) or (14) forces A to vanish at interior 
point(s). First note that any nontrivial C2(0, 1) function 
obeying (13) admits at least one inflection point, while 
(14) requires at least two, so in particular, if ~ E C2(0,1) 
then z/" (x0) = 0 for some x o E (0, 1). Equation (16) then 
implies that A cannot remain bounded in a neighbor- 
hood of x 0. As this contradicts the continuity of A (not 
to mention our meta-theorem), one must abandon the 
assumption that ~/ E C2(0, 1). The continuity of A and 
(16) then together force A to vanish at points where if' 
fails to exist. 

Indeed, the designs proposed by Tadjbakhsh and 
Keller as optimal under  clamped-hinged and clamped 
end conditions possess, respectively, 1 and 2 interior 
zeros. Fifteen years passed before Olhoff and Rasmus- 
sen [12] discovered the buckling load of Tadjbakhsh 
and Keller's clamped column to be considerably less 
than advertised. As hard evidence, however,  they 
cited numerical results with no discussion of the algo- 
rithm used. Their findings failed to convince those that 
have argued up through 1988 in favor of Tadjbakhsh 
and Keller's solution (see the references in [4]). In [4] 
M. Overton and I established that Olhoff and Rasmus- 
sen did however correctly identify the points at which 
Tadjbakhsh and Keller erred in (i) the calculation of the 
buckling load of their clamped column, and in (ii) their 
derivation of the necessary condition (16). At issue in 
the former is the fact that ~' need not even exist at 
points where A = 0. With this, we found [4, app.] both 
the clamped-hinged and clamped columns of Tadj- 
bakhsh and Keller to buckle at loads significantly less 
than the associated cylinders. Regarding (ii), Olhoff 
and Rasmussen argued, again with supporting numer- 
ical data, that unlike second-order problems where 
eigenvalues can be at most simple, kc(A) may in fact be 
double. Under the assumption that k~(A) was indeed 
double for clamped ends, Olhoff and Rasmussen, and 
later Masur [11] and Seiranian [14], formally derived 
new necessary conditions. Applictltion of their condi- 
tions led, in each case, to the column of Figure 5. In 
spite of this consensus, doubt remained, for in addi- 
tion to the formal nature of these derivations, a proof 
of existence was still lacking. I sketch below the reso- 
lution of these two remaining issues. 

tions. This suggests the imposition of a uniform lower 
bound on those admissable A. In the interest of bound-  
ing kc(A ) from above it is convenient to impose, in 
addition, a uniform upper bound on A. This leaves us 
with the following set of admissible designs: ad = {A ~. 
L ~ : 0 < e~ <~ A(x) <~ [3, S~ A dx = 1}. And indeed, for 
each of the end conditions of interest, there exists an A 

ad for which kc(A)/> K~(A) for each A if: ad (see [4, 
w Regarding the differentiability of A ~-> kc(A ), recall 
Rayleigh's characterization 

01 a 2 1 u ' l  dx 
kc(A) = inf 

~111X' I2 dx 

u E H2(0,1) A ((13) or (14)), 

and denote by %(A) those (eigen)functions at which 
this infimum is attained. It is not hard to show that the 
dimension of %(A), i.e., the multiplicity of k~(A), may 
not exceed two. 

Ah, but  if the multiplicity is two, that is already 
enough to invalidate any derivation relying on smooth 
dependence upon A! As an infimum of smooth func- 
tions of A, A ~-> k~(A) of course need not be smooth. It 
is however Lipschitz and therefore amenable to the 
calculus of Clarke [2]. The generalized gradient of kr at 
A is by definition the collection of continuous linear 
functionals on L~(0, 1) subordinate to the generalized 
directional derivative of k c at A, i.e., ok~(A) =- {~ E 
(L~)*; k~ A) >i (~, A) VA if: L~}, where 

k~ A) =- lim sup 
B--* ,~ 
t,~0 

kc(B + tA) - kc(B) 

Where ok,(A) contains but a single function, k c is Ga- 
teaux differentiable and the formal arguments that be- 
gan with Keller are justified. We found Okc(A) to be the 
derivative of the Rayleigh quotient evaluated at its var- 
ious minimizers. In particular [4, w 

o~r = co {A(af~. + b~)2 : a 2 + b 2 = 1}, 

where co denotes convex hull, and {z/1, /12} spans %(A) 
and obeys S~ ~[f~; dx = 8ij. Zero is not an element of 
akc(A ), but  rather, for sufficiently large ~, an element 
of the generalized gradient of the Lagrangian 

Getting It Right 

In refuting the clamped-hinged and clamped columns 
of Tadjbakhsh and Keller we found evidence of the not 
surprising fact that A ~-> k~(A) need not be continu- 
ous in the sup norm topology over nonnegative func- 

kc(A ) - ~2dist(A,ad), 

at A. Consequently, a member of akc(A) differs from a 
positive constant by an amount that is negative when 
A = e~, positive when A = 6, and zero otherwise. 
More precisely, there exist a c > 0 and 8 i ~ 0, 818 2 
832/4, such that at almost every x E (0, 1), 
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A = ~ ~ A ( ~ l l / ~ I  2 q- 83/d~/d ~ q- 821/,l~12) ~ c 

e, < A < 13 ~ A(811~/~12 + ~3t/i~ + 821t/~12) = c (17) 

A = 13 ~ A(811all 2 + 83/~/~ q- 821a~12) -> c 

The difference 8182 - 82/4 should be interpreted as a 
Lagrange multiplier that  measures interaction between 
the two buckling modes,  ~1 and a2. When  this differ- 
ence is zero,  for example,  the e igenfunc t ion  ~ -= 
V ~ l U  1 q- V~2/~ 2 satisfies 

Ala"l  2 = c, (16) 

i.e., we recover the necessary condition of Tadjbakhsh 
and Keller. This clearly occurs w h e n  hc(A) is simple, 
and it is not hard to show that this is in fact the case 
when  the end condit ions are either h inged or clamped- 
hinged. Regarding the former, (16) predicts singular 
behavior of ~" only at the ends and so Keller's calcu- 
lation of the buckl ing load of his h inged  co lumn 
stands. With respect to damped-h inged  conditions, 
however, recall that  (16) forces interior singularities of 
~" and consequent  zeros of A that  invalidate Tadj- 
bakhsh and Keller's calculation of the associated buck- 
ling load. Hence (16) in the context of clamped-hinged 
cannot hold over the column's  entire length,  i.e., there 
must  exist portions of the column along which A is 
identically a or 13. Figure 4 depicts the  s t rongest  
damped-h inged  column for a particular choice of a 
and 13, obtained numerically in [4]. 

Though (16) may  not  hold over the entire column for 
d a m p e d  ends,  the same cannot be said for (17). That 
is, should X~(A) be double,  so long as 8132 - 82/4 > 0 
equation (17) in itself does not necessarily require in- 
finite area near zeros of ~i~ or, conversely, zero area at 
points where ti~ fails to exist. The mixture of the two 
modes may compensate  for the anomalies inherent  in 
any single-mode formulation. Indeed one can choose ot 
sufficiently small and  13 sufficiently large so that (17) 
holds over the column's  entire length. Figure 5 depicts 
the strongest c lamped column for such a choice, again 
obtained numerically in [4]. This result vindicates the 
formal procedures invoked by Olhoff and  Rasmussen,  
Masur, and Seiranian, in deriving the same profile. 
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