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Abstract— We report on our experience with strong stabi-
lization using HIFOO, a toolbox for H∞ fixed-order controller
design. We applied HIFOO to 21 fixed-order stable H∞ con-
troller design problems in the literature, comparing the results
with those published for other methods. The results show that
HIFOO often achieves goodH∞ performance with low-order
stable controllers, unlike other methods in the literature.

I. I NTRODUCTION

By H∞ strong stabilizationwe mean the following:
given a linear time-invariant (LTI) multi-input-multi-output
(MIMO) system, we are interested in designing a controller
that stabilizes the system in closed-loop, reducing theH∞

norm of its closed loop transfer function as much as possible,
with the additional constraint that thecontroller is stable.
In addition, we require the controller to have a fixed order,
specified by the designer. Stable controllers offer several
advantages, specifically with respect to disturbance rejection,
tracking and modeling uncertainties [39]. They offer pro-
tection against sensor failures and actuator saturation [35].
Furthermore, low-order controllers are simpler and therefore
easier to implement than full-order controllers, whose order
equals the order of the plant, and may therefore offer more
confidence for practical use.

Optimal and parameterized suboptimal full-orderH∞

controllers for LTI MIMO systems can be designed by well-
known methods in the literature [14], [17]. However, the
practical value of controllers obtained by these methods
is limited by the fact that they are full-order and are not
generally stable.

There are various methods in the control literature to
design stableH∞ controllers [6], [12], [10], [22], [29], [37],
[38]. All the controllers obtained by these methods have
order greater than or equal to the plant order, specifically

• the plant order [10], [29];
• the plant order plus a free parameterQ [7];
• double the plant order [37], [38], [22];
• double the plant order plus the order of a weighting

function [6];
• three times the plant order [12].

Thus, these controllers are not practical for high-order plants.
It seems that the reason there is not much literature

on designing low-order stableH∞ controllers is that the
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order of stable controllers could be very large when the
plant pole-zero locations in the right-half-plane are close to
violating the parity interlacing property According to [11],
it is for this reason thatinstead of pursuing minimal-order
stable controllers, researchers focus on providing alternative
methods to solve the problems, usually resulting in high-order
controllers.

In this paper, we report on our experience applying the
HIFOO toolbox (Version 1.75) to fixed-order strong stabiliza-
tion H∞ controller design problems, attempting to minimize
the H∞ norm of the transfer function for the closed loop
plant using a stable controller. This is a difficult optimization
problem due to the nonconvexity and nonsmoothness of
the objective function and the stability constraint.HIFOO

1.75 uses a hybrid algorithm for nonsmooth, nonconvex
optimization based on several techniques to attempt to find
fixed-order stable controllers achieving minimal closed-loop
H∞ norm.HIFOO 1.0 was originally presented in [3], but the
original version did not support strong stabilization.HIFOO

does not have any restrictions on plant or controller such
as nullity or full-rank conditions. It allows the controller
order to be specified by the user, unlike other methods in
the literature.

HIFOO is freely availableMATLAB code1 and has been
designed to be easy to use. It is built on theHANSO optimiza-
tion package, freely available at the same website. It does not
require any external software beyond theMATLAB Control
System Toolbox, but it runs much faster if thelinorm func-
tion of the SLICOT package is installed and in theMATLAB

path (available commercially fromwww.slicot.de, but
freely available from theHIFOO webpage for noncommercial
use with HIFOO using MATLAB running under Windows).
HIFOO also makes use of thequadprog quadratic pro-
gramming solver fromMOSEK or theMATLAB Optimization
Toolbox if it is installed and in theMATLAB path, but this
is not required. Our experiments usedMATLAB 2006a with
linorm andquadprog installed.

We applied HIFOO to various benchmark plants in the
literature and compared our results with published results
based on other techniques. Our experience is thatHIFOO

gives very good experimental results for large sets of data.
In particular, we find that it is often possible to obtain stable
H∞ controllers achieving small closed-loopH∞ norm even
when the order of the controller is fixed to be much less than
the order of the plant.

The rest of the paper is organized as follows. The prob-

1http://www.cs.nyu.edu/overton/software/hifoo/



lem of fixed-order strongly stableH∞ controller design is
described and the optimization method used byHIFOO is
summarized in Section II. The benchmark plants are specifed
in Section III. Our computational results and comparisons
with those published for other methods are given in Section
IV. Concluding remarks are in Section V.

II. PROBLEM FORMULATION AND OPTIMIZATION

METHOD

The state-space equations of a generalized plantG are

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t) (II.1)

and the state-space realization for the controllerK is

ẋK(t) = AKxK(t) + BKy(t),

u(t) = CKxK(t) + DKy(t), (II.2)

whereA ∈ Rn×n, D12 ∈ Rp1×m2 , D21 ∈ Rp2×m1 , with
other matrices having compatible dimensions, andAK ∈
RnK×nK , with BK , CK , DK having dimensions that are
compatible withAK and the generalized plant matrices. The
controller ordernK is fixed, so it can be specified by the
designer.

The signals(z, w, y, u) respectively represent the regulated
outputs, the exogenous inputs (including disturbance and
commands), the measured (or sensor) inputs, and the control
inputs. The transfer function from the inputw to outputz is
denotedTzw; see [14] for details. The optimalH∞ controller
design can be formulated as minimization of the closed loop
H∞ norm function

inf
K stabilizing

‖Tzw‖∞, (II.3)

where the constraint specifies thatK internally stabilizes the
closed-loop system.

In this paper, we impose the additional constraint that the
controller is stable, so that we wish to minimize

inf
K stabilizing andK stable

‖Tzw‖∞. (II.4)

Let us useα(X) to denote the spectral abscissa of a matrix
X , i.e., the largest of the real parts of the eigenvalues. Thus,
not only do we require thatα(ACL) < 0, whereACL is the
closed-loop system matrix, but we also require thatα(AK) <

0. The feasible set forAK , that is the set of stable matrices,
is not a convex set and has a boundary that is not smooth.
It has been studied extensively, see e.g. [5], [23].

As with previous versions [3], [31]HIFOO uses two
phases: stabilization and performance optimization. In the
stabilization phase,HIFOO 1.75 proceeds to minimize
max(α(ACL, ǫα(AK)), whereǫ is a positive parameter that
will be described shortly, until it finds a controllerK for
which this quantity is negative, i.e., the controller is stable
and stabilizes the closed loop system. If it cannot find such
a controller,HIFOO will return with a message to that effect.

In the performance optimization phase,HIFOO 1.75 looks for
a local minimizer of

f(K) =

{

∞ if max(α(ACL), α(AK)) ≥ 0
max(‖Tzw‖∞, ǫ‖K‖∞) otherwise,

(II.5)

where

‖K‖∞ = sup
ℜs=0

‖CK(sI − AK)−1BK + DK‖2. (II.6)

The motivation for the introduction ofǫ is that the principal
design goal is to stabilize the closed loop system and
minimize ‖Tzw‖∞, indicating thatǫ should be relatively
small, but theǫ‖K‖∞ term prevents theH∞ norm of
the controller from growing too large, which the stability
constraint by itself will not. Because of the stabilization
phase, the performance optimization phase begins with a
finite value forf(K). When it subsequently encounters an
instance ofK for which f(K) = ∞ it is rejected by the line
search which insists on a reduction in the objective at every
iteration.

The optimization code called byHIFOO in both phases
is HANSO, which implements a hybrid algorithm for non-
smooth, nonconvex optimization, based on the following
elements: a quasi-Newton algorithm (BFGS) provides a fast
way to approximate a local minimizer; a local bundle method
attempts to verify local optimality for the best point found
by BFGS, and if this does not succeed, gradient sampling
[4], [2] attempts to refine the approximation of the local
minimizer, returning a rough optimality measure. The local
bundle and gradient sampling methods are not invoked if
the quadratic programming codequadprog is not in the
MATLAB path. All three of these optimization techniques
use gradients which are automatically computed byHIFOO.
No effort is made to identify the exceptional points where
the gradients fail to exist. The algorithms are not defeated
by the discontinuities in the gradients at exceptional points.
The BFGS phase builds a highly ill-conditioned Hessian
approximation matrix, and the bundle and gradient sampling
final phases search for a point in parameter space for which
a convex combination of gradients at nearby points has small
norm. More details are given in [3].

BecauseHIFOO uses randomized starting points, and also
the gradient sampling phase involves randomization, the
same results are not obtained every timeHIFOO is run. In
the results reported below, we made multiple runs setting
ǫ to 10−2, 10−3,10−4,10−5, and 10−6, and running each
case 10 times. Each result in the tables in Section IV
reports the lowest value for‖Tzw‖∞ obtained over all these
runs. We did not attempt to compare the running times of
different methods. In our view, one of the biggest advantages
of HIFOO is its ease of use. Generally, the running time
requirements for computation of controllers are not nearly
as important as the performance and safety aspects of the
computed controllers. Implementing any controller is far
more work than computing it, so the key aspect of running
time in computing a controller is that it should not be longer
than the designer is willing to wait. For this reasonHIFOO

accepts an option,options.cpumax, which controls the



running time. Better performance may be obtained if a
larger value ofoptions.cpumax is specified. We set
options.cpumax to 300 (5 minutes) in all of our tests.

III. B ENCHMARK PROBLEMS

Benchmark examples for stableH∞ controller design
were chosen from both applied and academic test problems,
as follows.

1) Zeren-Özbay Example: A 5th-order plant given in
[38]. For this example, the optimal full-orderH∞ con-
troller is unstable and furthermore the central controller
[14] for any closed-loopH∞ norm is unstable.

2) Cao-Lam Example: A 2nd-order plant given in [8].
3) Choi-Chung Example: A 4th-order plant given in

[10].
4) Four-Disk System: An 8th-order four-disk system

with noncolocated sensors and actuators given in [1],
[6].

5) AC8: A 9th-order state-space model of the linearized
vertical plane dynamics of an aircraft [18];

6) HE1: A 4th-order model of the longitudinal motion of
a VTOL helicopter [27];

7) REA2: A 4th-order chemical reactor model [25];
8) AC10: A 55th-order aeroelastic model of a modified

Boeing B-767 airplane [13];
9) BDT2: An 82nd-order realistic model of a binary

distillation tower [33];
10) HF1: A 130th-order one-dimensional model for heat

flow in a thin rod [24];
11) CM4: A 240th-order cable mass model for nonlinear

dynamic response of a relief valve protecting a pneu-
matic system from overpressure [32];

12) PA: A 5th-order model of a piezoelectric bimorph
actuator system [9];

13) HIMAT: A 20th-order model of an experimental
highly maneuverable (HIMAT) airplane [20];

14) VSC: A 4th-order quarter-car model representing char-
acteristics of a real suspension system [30];

15) AUV: 3rd, 5th and6th-order linearized models of an
autonomous underwater vehicle for speed, heading and
depth autopilots respectively [16];

16) Enns’ Example: An 8th-order plant used as an aca-
demic test problem for designing reduced-orderH∞

controllers [15];
17) Wang’s Example: A 4th-order plant used as a theo-

retical benchmark problem for designing reduced-order
H∞ controllers [36], Example6.2.

Examples1 − 4 are collected from various papers specif-
ically concerned with strongly stableH∞ controller design.
The plants5 − 17 were collected in [21] as benchmark
examples for fixed-orderH∞ controller design without any
stability constraint on the controller. Examples5 − 15 are
taken from real applications and16 − 17 are academic test
problems. The problem data for examples5−12 are obtained
from the COMPLeIB library [28] and those for examples
13−17 are collected from various papers in the literature. In

the runs reported in the next section, the strong stabilization
constraint is imposed for all examples. We do not give
running times in this paper, but times for the results reported
in [21] are available on the web.2

IV. RESULTS ONBENCHMARK PROBLEMS

In Tables I-VI, we compare the performance ofHIFOO

with other methods from the strong stabilization literature
on examples 1-4. Tables VII-VIII show results obtained by
HIFOO when the strong stabilization constraint is imposed
on examples 5-17 (there are no results from the literature to
compare for these examples). In all the tables, the controller
order is shown bynK , andγnK

shows theH∞ performance
achieved for this order using the method indicated. In Tables
I-VI, the lines in the table shaded inlight gray show results
for the various strong stabilization methods in the literature,
which all produce controllers with order greater than the
order of the plant, as mentioned in Section I. In all the tables,
the line shaded indark gray (labeledfull in Tables I-VI),
shows, fornK , the order of the plant and, forγnK

, theH∞

performance for the optimal full-order controller computed
using thehinfsyn routine of [17] (see also [14]). TheH∞

performance of the full-order controller is a lower bound
for the achievableH∞ norm by any order controller and
is therefore a measure of performance for all methods. The
unshadedlines below the full-order controller line show the
results obtained byHIFOO for various specified controller
orders. The last column in Tables I-VI indicates whether the
controller is stable.

A. Zeren-̈Ozbay Example

TABLE I

COMPARISON ONZEREN-ÖZBAY EXAMPLE

nK γnK
Methods Controller

Stability

10 42.51 [38] Stable
10 35.29 [22] Stable
6 34.44 [7] Stable
5 34.24 full Unstable
5 34.81 HIFOO Stable
4 34.97 HIFOO Stable
3 34.94 HIFOO Stable
2 41.16 HIFOO Stable
1 57.32 HIFOO Stable

Results for this example are given in Table I. The plant
order is 5 and the optimal full-order controller is unstable.
The performance of the method [7] is good as it finds a stable
6th order controller with a closed-loopH∞ norm close to
the optimal full-order performance. However,HIFOO finds a
stable3rd order controller with nearly the sameH∞ norm.

B. Cao-Lam Example

Results for this example are given in Table II. The plant
order is 2 and, as in the previous example, the optimal full-
orderH∞ controller is unstable. The method of [11] finds a

2http://www.cs.nyu.edu/overton/papers/pdffiles/acc08times.pdf



TABLE II

COMPARISON ONCAO-LAM EXAMPLE

nK γnK
Methods Controller

Stability

8 1.29338 [11] Stable
4 1.36994 [29] Stable
4 1.36957 [22] Stable
4 1.36814 [11] Stable
2 1.29022 full Unstable
2 1.36957 HIFOO Stable
1 1.36957 HIFOO Stable

stable controller with nearly the sameH∞ performance, but
it uses an8th order controller.HIFOO finds a stable1st order
controller with less than 10% increase inH∞ performance,
approximately the same as that found by the other methods
for 4th order controllers.

C. Choi-Chung Example

TABLE III

COMPARISON ONCHOI-CHUNG EXAMPLE

nK γnK
Methods Controller

Stability

16 25.430 [11] Stable
12 21.787 [12] Stable
8 43.167 [10] Stable
8 37.551 [37] Stable
8 32.557 [22] Stable
8 24.790 [11] Stable
4 12.015 full Unstable
4 16.612 HIFOO Stable
3 16.486 HIFOO Stable
2 20.797 HIFOO Stable
1 62.638 HIFOO Stable

Results for this example are given in Table III. We see
again that the stableH∞ controller design methods in the
literature are conservative in terms of controller order.HIFOO

achieves betterH∞ performance than the other methods with
a lower-order stable controller.

D. Four-Disk System

The results for the Four-Disk System with three different
parameter values are shown in Tables IV-VI. One can see
that the design objectives (stability and low closed-loopH∞

norm) are achieved byHIFOO using low-order controllers.
HIFOO achieves the sameH∞ performance as the other
methods with a5th order stable controller whereas the
controllers obtained by the other methods have order16, 16
and24 respectively.

E. Other Benchmark Examples

Results obtained usingHIFOO to find stable controllers
for examples5 − 17 are shown in Table VII and VIII. The
examples are grouped according to plant order: Table VII
shows low to medium-order plants and Table VIII shows

TABLE IV

COMPARISON ONFOUR-DISK SYSTEM, β = 10−1

nK γnK
Methods Controller

Stability

24 0.237 [6] Stable
16 0.245 [37] Stable
16 0.241 [22] Stable
8 0.232 full Unstable
8 0.235 HIFOO Stable
7 0.236 HIFOO Stable
6 0.236 HIFOO Stable
5 0.235 HIFOO Stable
4 0.274 HIFOO Stable
3 0.307 HIFOO Stable
2 0.347 HIFOO Stable
1 0.649 HIFOO Stable

TABLE V

COMPARISON ONFOUR-DISK SYSTEM, β = 10
−2

nK γnK
Methods Controller

Stability

24 0.151 [6] Stable
16 0.178 [37] Stable
16 0.176 [22] Stable
8 0.141 full Unstable
8 0.152 HIFOO Stable
7 0.153 HIFOO Stable
6 0.153 HIFOO Stable
5 0.152 HIFOO Stable
4 0.212 HIFOO Stable
3 0.276 HIFOO Stable
2 0.314 HIFOO Stable
1 0.634 HIFOO Stable

higher-order plants. For the low to medium-order plants, we
report results for strong stabilization with order rangingfrom
1 to the order of the plant. For the higher-order plants, we
restricted the order of the controller to8.

The performance ofHIFOO is very good for low and
medium-order plants. In most cases, the optimal closed-loop
full-order H∞ performance is achieved or nearly achieved
by 1st-3rd order stable controllers, even though the full-order
controller is not necessarily stable. In general,HIFOO shows
that it is often possible to find a stable low-order controller
without greatly sacrificing closed-loopH∞ performance.

HIFOO also performs successfully on higher-order plants
as shown in Table VIII. These examples are numerically
difficult and it is sometimes difficult to calculate the optimal
full-order H∞ performance with well-known robust algo-
rithms. The plant AC10 is particularly difficult to stabilize
so we needed more runs than used for the other plants,
building higher order controllers with lower order ones as
initial search points; we omit the details. These results clearly
demonstrate thatHIFOO is very effective not only for simple
plants but real-life high-order plants that arise in industrial
applications.



TABLE VI

COMPARISON ONFOUR-DISK SYSTEM, β = 10−3

nK γnK
Methods Controller

Stability

24 0.132 [6] Stable
16 0.170 [37] Stable
16 0.170 [22] Stable
8 0.122 full Unstable
8 0.142 HIFOO Stable
7 0.143 HIFOO Stable
6 0.145 HIFOO Stable
5 0.154 HIFOO Stable
4 0.208 HIFOO Stable
3 0.274 HIFOO Stable
2 0.314 HIFOO Stable
1 0.634 HIFOO Stable

V. CONCLUDING REMARKS

We applied theHIFOO Toolbox to 21 strongly-stable de-
sign problems, taken from a mix of industrial and academic
test problems. The performance ofHIFOO is better than
existing results in the literature in most cases, even when
the specified controller order is low. We conclude thatHIFOO

is an effective method for fixed-order stableH∞ controller
design, giving flexibility to the designer to specify the
controller order and generally obtaining good performance.
HIFOO, which is written in MATLAB , is easy to use and is
freely available on the web.
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