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Chapter 16

Stability Optimization for Polynomials
and Matrices

Suppose that the coefficients of a monic polynomial or the entries of a square
matrix depend affinely on parameters, and consider the problem of minimizing the
root radius (maximum of the moduli of the roots) or root abscissa (maximum of their
real parts) in the polynomial case, and the spectral radius or spectral abscissa in the
matrix case. These functions are not convex and they are typically not locally Lipschitz
near minimizers. We first address polynomials, for which some remarkable analytical
results are available in one special case, and then consider the more general case of
matrices, focusing on the static output feedback (SOF) problem arising in control of
linear dynamical systems. We also briefly discuss some spectral radius optimization
problems arising in the analysis of the transient behavior of a Markov chain and the
design of smooth surfaces using subdivision algorithms.

16.1. Optimization of roots of polynomials

Optimization of roots of polynomials can arise in many contexts, but perhaps the
most important application area is feedback control in the frequency domain
[DOR 99]. Consider the problem

minmax{Re A I p(A) = O}
pEP AEC

Chapter written by Michael L. OVERTON.
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where

This arises in maximizing, over all linear feedback controllers of order two, the
asymptotic decay rate for a two-mass-spring dynamical system with one input (an
actuator positioning the first mass) and one output (the measured position of the
second mass) [HEN 06]. The polynomials in P are those that are admissible as the
denominators of the relevant rational closed-loop system transfer function, and their
roots must be in the left half of the complex plane for the system to be stable. Note
that P is a set of monic polynomials with degree 6 whose coefficients depend affinely
on five parameters. In [HEN 06], a formulation was given of a polynomial in P of the
form (A - AO) 6 , with just one distinct negative real root AO of multiplicity 6, and its
local optimality (the property that no nearby polynomial in P has all its roots to the
left of AO) was established. It was subsequently discovered that the solution
constructed in [HEN 06] is globally optimal (no polynomial in P has all its roots to
the left of AO). This fact is a special case of a remarkable general theory that we
summarize below, extracting the main results from a recent paper by the author and
others [BLO 12]. As noted there, it turns out that part of this general theory was first
given in a PhD thesis by Raymond Chen [CHE 79b].

16.1.1. Root optimization over a polynomial family with a single affine constraint

Every monic polynomial of degree n may be represented by a point in C",
representing the coefficients of the monomials An-I , . .. , A, 1. Let r denote the root
radius of such a polynomial:

r(p) = max {IAI : p(A) = 0, A E C}.

The polynomial p is said to be Schur stable if r(p) < 1. Let a denote the root
abscissa:

a(p) = max {Re(A) : p(A) = 0, A E C}.

The polynomial p is said to be Hurwitz stable if a(p) < O.

As functions of the polynomial coefficients, the radius r and abscissa a are not
convex. They are continuous, but not Lipschitz continuous near a polynomial p with
a multiple root whose modulus or real part , respectively, equals r (p) or a(p). So, in
general, global minimization of the radius or absci ssa over an affine family of monic
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polynomials, pushing the roots as far as possible toward the origin or left in the
complex plane , seems hard. Indeed, variations on the question of whether a given
polynomial family contains one that is stable (has roots inside the unit circle or in the
left-half plane) have been studied for decades [BLO 95]. But if an affine family of
monic polynomials of degree n has n - 1 free parameters, this question can be
answered efficiently. Equivalently, there is a single affine constraint on the
coefficients.

16.1.2. The root radius

We begin by optimizing the root radius over real coefficients. Informally, we want
to push all the roots as close to zero as possible. By compactness, an optimal
polynomial must exist ; the following result states an explicit form for the solution.

THEOREM 16.1.- [BLO 12, theorem 1]- Let bo, b1 , . . . , b., be real scalars (with
b1 , .. . , bn not all zero) and consider the affine family

n

P = {An + a1An- 1 + ... + an- 1A + an bo+L bjaj = 0, ai E R}.
j = l

The optimization problem

r" := inf r(p)
pEP

has a globally optimal solution of the form

for some integer k with 0 ~ k ~ ti, where , = r *.

This leads immediately to an algorithm for computing k and , :

COROLLARY 16.1.- [BLO 12, Corollary 2]- Let , be the globally optimal value
whose existence is asserted in theorem 16.1 and consider the set

:=: = {r E R : gk(r) = 0 for some k E {O, 1,.,. , n}} ,

where
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and (Va , . . . ,vn ) is the convolution of the vectors

((n ~ k), (n ~ k), ...(~= ~)) and ((~), - G)' ...(-1)' G))

for k = 0, . . . ,n . Then, - ry and ry are elements of S with smallest magnitude.

Now, we consider the same problem with complex coefficients .

THEOREM 16.2.- [BLO 12, theorem 6]- Let ba, bi , . . . .b ., be complex scalars (with
b1 , . .. , b., not all zero) and consider the affine family

n

P = {An + alA n
-

1 + ... + an-IA + an : ba +L bjaj = 0, a; E C}.
j=l

The optimization problem

r " := inf r(p)
pEP

has an optimal solution of the form

P*(A) = (A _ ry) n E P

with - ry given by a root of smallest magnitude of the polynomial

h(A) = bnAn
+bn-l (n: 1) A

n
-

1 + ... + b, (~) A+bo

Compared to the case of real coefficients , this result is somewhat simpler to state:
there is an optimal polynomial all of whose roots coincide at one point ry, compared to
two real roots ±ry in the real case. However, somewhat surprisingly, the proof in the
complex case is much more complicated than in the real case, requiring an elaborate
induction on n (see [BLO 12, Appendix A] for detail s).
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16.1.3. The root abscissa

Now, we consider root abscissa optimization in the real case: instead of trying to
push all the roots as close to zero as possible , we wish to push them as far as possible
into the left half-plane. Consequently, we no longer have a compact domain for the
coefficients, and hence there is no guarantee that an optimal polynomial will exist.
The next result states exactly when it exists and what form it has.

THEOREM 16.3.- [BLO 12, theorem 7]- Let bo,b1 , . . . , bn be real scalars (with
b1 , ... , b., not all zero) and consider the affine family

n

p = {An + a1 An-1 + ... + an-1 A + an bo+L bj aj = 0, a; E R}.
j = l

Let k = max{j : bj =I- O} and define the polynomial of degree k

The optimization problem

a " := inf a(p).
pEP

has the infimal value

a " = min { ,8 E R : h(i )( - ,8) = 0 for some i E {O, ... , k - I} } ,

where h(i ) is the ith derivative of h. Furthermore, the optimal value a * is attained by
a minimizing polynomial p* if and only if -a* is a root of h (as opposed to one of its
derivatives), and in this case, we can take

P*(A) = (A - 'Yt E P

with -y = a*.

The formula for the optimal value was given in [CRE 79b], as was the
characterization of the optimal polynomial when -a* is a root of h. The fact that
there is no optimal polynomial when -a* is a root of one of the higher derivatives of
h was established in [BLO 12]. In this case, we may consider instead the problem of
finding a sequence of polynomials whose abscissa converges to the optimal value.
The following result displays a specific structure for such a sequence:
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THEOREM 16.4.- [BLO 12, theorem 13]- Assume that -a* is not a root of h. Let 1!
be the smallest integer i E {I , ... , k - I} for which -a* is a root of h(i). Then, for
all sufficiently small E > 0, there exists a real scalar M Efor which

PE('\) := (,\ - ME)m(,\ - (a" + E)t-m E P,

where m = 1! or 1! + 1, and M E-+ - 00 as E -+ O.

Thus, as in the real radius case, two roots playa role, but only one is finite. There
is a formula for M E, but it is too complicated to include here and depends on whether
m = 1! or m = 1! + 1. In practice, it is a bad idea to make E too small: then IMEI
becomes large.

We observed that, in the real case, the optimal value is not attained when one
of the derivatives of h has a real root to the right of the rightmost real root of h.
However, it is not possible that a derivative of h has a complex root to the right of the
rightmost complex root of h. This follows immediately from the Gauss-Lucas theorem
[BUR 05b, MAR 66]. Consequently, we might guess that the optimal abscissa value
is always attained in the complex case. Indeed, this is the case, as we now state.

THEOREM 16.5.- [BLO 12, theorem 14]- Let bo, b1 , ... .b., be complex scalars (with
b1 , .. . , bn not all zero) and consider the affine family

n

P = {,\n + al,\n-l + ... + an-l'\ + an : bo + L bjaj = 0, ai E C}.
j = l

The optimization problem

a " := inf a(p)
p EP

has an optimal solution of the form

p*(,\) = (,\ - l') n E P

with - 1 given by a root with largest real part of the polynomial

h(A) = u;»: + bn- I (n: 1) An- I + 000 +b, (~) A+boo

Ste
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tat -a* is not a root of h. Let f!
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16.1.4. Examples

Figure 16.1. Optimal radius valuefor A3 + alA2 + a2A + a3 subject to the
constraint bo + al + a2 + a3 = 0, for bo E [-2,4]. The solid curve shows the
optimal value when the coefficients a; are required to be real while the dashed

curve shows the optimal value when the a; are allowed to be complex

Ie, but only one is finite. There
e here and depends on whether
) make E too small: then IMf.1

alue is not attained when one
: the rightmost real root of h.
complex root to the right of the
from the Gauss-Lucas theorem
that the optimal abscissa value
he case, as we now state.

.. , bn be complex scalars (with
EXAMPLE 16.1.- [BLO 12, BUR 0Ic]- Consider the problem of minimizing the
root abscissa a over the monic polynomials of degree n with the constraint that the
coefficients of An - 1 and An - 2 must sum to zero. The polynomial h defined in
theorems 16.3 and 16.5 is given by

n

- Lbjaj = O,ai E C}.
j=1

The roots of hare 0 and n-_21 and the only root of the derivative h (1) is n~\ ' so
a " = 0 and An is a global optimizer. Theorem 16.5 proves global optimality over
a; E R and theorem 16.5 proves global optimality over ai E C. Thus, no polynomial
with the constraint a1 + a2 = 0 can be Hurwitz stable.

.ynomial

EXAMPLE 16.2.- Consider the problem of minimizing the root radius r over the
monic polynomials of degree n with the constraint that bo + a1 + ... + an = 0, where
bo E R. When bo = 0, all the coefficients can be taken to be zero, so the optimal
polynomial is p* = An with r " = O. When bo = 1 and the coefficients are restricted
to be real, we find that the set B defined in corollary 16.1 is just {-1, I}, so r * = 1.
When bo = 1 and the coefficients a; are allowed to be complex, the polynomial h
defined in theorem 16.2 is h(A) = (A + l )" , so its only root is -1 and again the
optimal value is r * = 1, with the optimal polynomial p* = (A - I)". For bo < 1, the
optimal value drops rapidly toward zero in both the real and complex cases, but for



358 Nonlinear Physical Systems

bo > 1, the behavior is quite different: in the complex case, r * drops rapidly before
turning around and increasing again, while in the real case , r * increases steadily as bo
increases. Figure 16.1 shows the optimal value for n = 3 and bo E [-2,4]. The solid
curve shows the optimal value in the real case and the dashed curve shows the optimal
value in the complex case . Thus, for all bo near to but not equal to one, there is a Schur
stable polynomial whose coefficients sum to one if they are allowed to be complex,
but if they are required to be real, no Schur stable polynomial exists when bo ~ 1.

There is a significant class of frequency domain stabilization problems that can be
solved using theorem 16.3, as explained in [RAN 89]; see also [BLO 12, section I].
These include the two-mass-spring stabilization example mentioned in section 16.1.
Some other examples may be found in [BLO 12, section IV]. More may readily be
explored using a publicly available MATLAB code implementing the constructive
algorithms implicit in the theorems above.!

We should emphasize that multiple roots are very sensitive to perturbation. More
specifically, a random perturbation of size E to the coefficients of a polynomial with
a non-zero root with multiplicity k moves the corresponding roots by O(E1/ k ) . In
practice, we might want to locally optimize a more robust measure of stability, as
mentioned in section 16.3. Also, the monomial basis is a poor choice numerically
unless the polynomial has very small degree. Nonetheless, the optimal value can be
computed accurately even if n is quite large.

16.1.5. Polynomial root optimization with several affine constraints

A natural question is whether the results given above extend to cases where there
there are several affine constraints on the coefficients. Figure 16.2 shows contour
plots of r for two randomly generated monic polynomial families with coefficients
depending on two real parameters. In Figure 16.2(a) [BLO 10], the polynomials have
degree n = 3, so affine dependence on two parameters is equivalent to imposing a
single affine constraint on the coefficients, and hence the global minimizer can be
computed explicitly by theorem 16.1. The global minimizer (.\ - 1'1)3, where
1'1 ~ 0.541, occurs on the right side of the plot. There is also a local minimizer,
(.\ - 1'2)3, with 1'2 ~ -0.567, on the left side. Both - 1'1 and - 1'2 are roots of the
polynomial go defined in corollary 16.1 and so both are elements of 3, and indeed, it
is generally true that all local minimizers must have roots ±1' E 3, and so elements
of 3 often (though not always) correspond to local minimizers. In contrast, in
Figure 16.2(b), the polynomials have degree n = 4, so affine dependence on tWO
parameters is equivalent to two affine constraints, and the theorems of the previous
section are not applicable. Again global and local minimizers appear on the right and
left, respectively, but these were approximated by numerical optimization; more on

1 www.cs.nyu.edu/overton/software/affpoly/.
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this below. Both panels clearly illustrate both the non-convexity and non-Lipschitz
behavior of r, particularly around the global and local minimizers.

Figure 16.2. Contour plot of the root radius r for two randomly generated monic polynomial
families with coefficients depending affinely on two real parameters Xl, X 2. For each, the global
minimizer occurs on the right side ofthe plot and a local minimizer occurs on the left. a) A cubic
family for which the minimizers were obtained using theorem 16.1. b) A quartic family for which
minimizers were approximated numerically
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Let us define the active roots of a polynomial p as those whose modulus equals
r(p) or real part equals a(p), depending on the context; the others are said to be
inactive. We know from the results of section 16.1.2 that when there is one affine
constraint, the root radius always has a global minimizer with no inactive roots and
in fact with at most two distinct active roots (one in the complex case). In the case of
the quartic family plotted in the right panel, for which there are implicitly two affine
constraints on the coefficients, the global minimizer that was found numerically is
(,\ - (1)3(,\ - (2) where ( 1 ~ -0.983 and (2 ~ 0.905, with one triple active root
and one inactive root. The local minimizer that was found apparently has the form
(,\ - (3)2(,\ - (3)2, with (3 ~ -0.053 + 1.07i , so it has a double conjugate pair of
active roots with no inactive roots. The global minimizer is Schur stable but the local
minimizer is not.

Now consider the general problem of minimizing r subject to ~ affine constraints
on the coefficients. Based on extensive numerical experiments, we conjecture that
there always exists a global minimizer with at most ~ - 1 inactive roots. However,
there does not seem to be a useful bound on the number of possible distinct active
roots. Thus , computing global optimizers appears to be difficult.
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16.1.6. Variational analysis of the root radius and abscissa

Given a polynomial p that is a candidate for a local minimizer of r or a,
discovered through numerical optimization or in some other way, how may we verify
that it is locally optimal, or at least a stationary point in a sense that is suitable for
non-smooth functions? When the coefficients are parametrized by two real variables,
we can be reasonably confident simply by looking at a contour plot, but this is not
possible for many variables. Standard optimality conditions such as those used for
constrained optimization, based on Lagrange multipliers [NOC 06], or for convex
optimization, based on subgradients and other concepts from convex analysis
[ROC 70], are not applicable to polynomial root optimization problems. However,
there is a whole body of work known as non-smooth analysis or variational analysis
[CLA 83, ROC 98, BaR 05] that is applicable. Following the development in
[ROC 98], formulas for subgradients of the root abscissa a , valid even at polynomials
with multiple active roots where a is not Lipschitz, were presented in [BUR 01b],
where a key result was proved: a is globally subdifferentially regular. Subsequently,
this work was refined in [BUR OSb] and extended to more general max functions of
the roots, including the root radius r, in [BUR 12]. These results can, in principle, be
used to establish necessary or sufficient conditions for a candidate polynomial to be a
local minimizer of the radius r or abscissa a even in the presence of multiple active
roots, exploiting a chain rule from non-smooth analysis to take account of the affine
parametrization; an abscissa example is worked out in detail in [BUR 06b]. We write
"in principle" above, because if the optimization problem or the candidate minimizer
is not sufficiently simple , or the candidate minimizer is not known exactly,
establishing these conditions is complicated or impossible. We will mention a far less
rigorous but more practical alternative approach to assessing approximate local
optimality in section 16.2.3.

16.1.7. Computing the root radius and abscissa

In MATLAB , roots of a given polynomial p(A) = An + alA n - 1 + ...+ an are
computed numerically by determining the eigenvalues of the corresponding
companion matrix

-al 1
-a2 1

I
M(p) =

I
1

-an 0 0

the rationale being that the method used to solve the eigenvalue problem is highly
reliable and efficient. So, in our root optimization experiments, we computed the root
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radius r(p) or root abscissa a(p) by computing the spectral radius or abscissa of
M (p). The gradients needed for numerical optimization were then obtained by
differentiating the spectral radius or abscissa (more on this below), applying the
ordinary chain taking account of the companion matrix structure to yield gradients in
the polynomial coefficient space, and applying the chain rule again to recover
gradients in the parameter space. Although the gradients are valid only at
polynomials with just one active root (or conjugate pair of active roots in the real
case) with multiplicity one, appropriate numerical methods using these gradients
approximate local minimizers of r and a with multiple active roots surprisingly
effectively, as will be discussed further in the next section.

16.2. Optimization of eigenvalues of matrices

Now let us tum our attention to eigenvalues of n x n matrices. Let p : cn x n ---+ R
define the spectral radius:

p(X) = max {IAI : det(AI - X) = 0, A E C}

and a : cn x n ---+ R the spectral abscissa:

a (X ) = max {Re(A) : det(AI - X) = 0, A E C} .

An eigenvalue of X is said to be active if its modulus (real part) equals the
spectral radius (abscissa). The spectral functions p and a are not convex and are not
Lipschitz near a matrix with an active multiple eigenvalue. We say that an eigenvalue
is non-derogatory if it is associated with only one right eigenvector. Equivalently, it is
associated with a single block in the Jordan form, whose dimension is its multiplicity.
Of those matrices with an eigenvalue with given multiplicity, those for which the
eigenvalue is non-derogatory are most generic [ARN 71].

The spectral radius and abscissa of a matrix X are the root radius and abscissa of
the characteristic polynomial det(AI - X), but the results of section 1 do not extend
to the more general case of an affine family of n x n matrices depending on n - 1
parameters . For example, consider the matrix family

This matrix depends affinely on a single parameter ~ E R, but the coefficients
of its characteristic polynomial det(AI - A(~)) do not, so the results of the previous
section do not apply. The minimal spectral radius of A(~) is attained by ~ = 0, for
which the eigenvalues are ±i.
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16.2.1. Static output feedback

As control feedback problems in the frequency domain are a source of
applications for polynomial root optimization problems, so control feedback
problems in state space are a source of applications for eigenvalue optimization
problems. To be specific, let us consider the SOF stabilization problem. Given the
discrete-time dynamical system with control input and measured output

Xk+l = F Xk + GUk, Yk = H Xk

where F E Rn xn , G E Rn xp, H E R m xn, the SOF problem is to find a controller
K E RPx m so that, setting U = K Y, all solutions of

Xk+l = (F + GKH) Xk

converge to zero, that is all eigenvalues of F +GK H are inside the unit disk, or prove
that this is not possible. The analogous continuous-time system is

x = Fx + Gu, y=Hx

and then the SOF problem is to find K so that the eigenvalues of F +GK H are in the
left half-plane. In general , SOF is a major open problem in control [BLO 95, KIM 94].
However, if m = nand H is non-singular (without loss of generality, we can take
H = I, the identity matrix, so that y = x ), the SOF greatly simplifies and becomes the
state feedback stabilization problem. Then, provided the pair (F, G) is controllable,
a property that holds generically, a standard "pole placement" procedure [WON 85]
defines K so that the eigenvalues of F + GK have any desired values, so stabilization
is trivial. In fact, stabilization via pole placement extends generically to the case n <
mp [WAN 96, WIL 97] (and to n = mp in the complex case [HER 77]).

When n > mp, the SOF problem seems hard. A natural approach is to formulate
the stabilization problem as an eigenvalue optimization problem: minimize either the
spectral radius p or spectral abscissa a over the affine matrix parametrization F +
GKH for K E R pm. But, as pointed out by Chen [CHE 79b, p. 4], [CHE 79a, p. 412],
there is an interesting simplification in the case p = 1, i.e. when the dynamical system
has a single control input , which depends on the following lemma due to Cauchy
[HOR 13, equation [0.8.5.11]].

LEMMA 16.1.- Let A E c n xn, b E C n x 1 and e E C 1 x n . Then,

det(A + be) = det(A) + e adj (A) b
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where adj is variously known as the classical adjoint, the adjugate or the transposed
cofactor matrix.

It follows that when p = 1, substituting AI - F for A, G for band - K H for c,
one has-
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>< n . Then,

The entries in adj(AI - F) are cofactors of AI - F, which are polynomials in A
with degree n - 1. So, when p = 1, the coefficients of the characteristic polynomial
of F + GK H depend affinely on the m entries of the row vector K E R 1 x m, and
hence optimizing the spectral radius or abscissa reduces to an affinely parametrized
polynomial root radius or root abscissa optimization problem. Then, if we further
assume m = n - 1 (so that the dynamical system has n - 1 outputs), it follows that
the SOF problem can be solved explicitly using the results given in sections 16.1.2
and 16.1.3. Indeed, this was a key motivation for Chen's PhD thesis [CHE 79b].
However, in general, optimizing the spectral abscissa or radius of F + GK Hover
K E Rpm does not reduce to polynomial root optimization, so we tackle the
eigenvalue optimization problem directly.

16.2.2. Numerical methods for non-smooth optimization

In developing numerical methods suitable for searching for local minima of
non-smooth functions, we take the following viewpoint: although the optimization
objective function may not be differentiable or even Lipschitz at minimizers , we
evaluate it at only a finite number of points and we can reasonably expect it to be
differentiable at all of them. Indeed, any locally Lipschitz function is differentiable
almost everywhere on its domain, and this is also true of the non-locally-Lipschitz
but semi-algebraic functions p, o , rand a. However, the standard method of steepest
descent (choosing each new iterate by moving along the direction of the negative
gradient from the current iterate) fails badly on non-smooth functions, typically
generating iterates that converge to a point where the function is not differentiable
but that is nowhere near a local minimizer.

To be able to approximate local minimizers of non-smooth functions , a method
must be able to exploit the gradient information obtained at several points, not just at
one point. One such method, the gradient sampling algorithm [BUR 05a], has a very
satisfactory convergence theory for locally Lipschitz functions, although this has not
been extended to non-locally-Lipschitz functions. This was the method that we used
in our first numerical experiments with eigenvalue optimization [BUR 02], but the

2 There is a sign error in Chen 's version of this equation.
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computational cost is substantial. Another method, the Broyden­
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm with an Armijo-Wolfe
line search, is a standard workhorse for minimizing smooth functions even in the
absence of convexity, but it has not generally been considered suitable for functions
that are non-differentiable, let alone non-Lipschitz, at their local minimizers.
However, although the theoretical properties of the BFGS method in this context are
not well understood, in practice we have found that it is an efficient and reliable
method for identifying local minimizers of non-smooth functions, particularly in the
locally Lipschitz case [LEW 13]. Our MATLAB code HANSO combines the gradient
sampling and BFGS methods together in one package.t

Both methods require repeated evaluation of the objective function and its gradient
at a sequence of points. As already noted, we take the view that with high probability,
the function will be differentiable at all these points, and hence the gradient will be
well defined, but in any case, using floating-point computer arithmetic it makes little
sense to try to determine whether or not a function is differentiable at a given point.
In the case of the spectral radius p, the matrix at which it is being evaluated will
normally have only one active eigenvalue (or one complex conjugate pair of active
eigenvalues in the real case), with multiplicity one, implying that p is differentiable.
If there happens to be a tie for the maximum value, we take the view that it is broken
arbitrarily ; when p is evaluated again at other nearby points, eventually the tie will be
broken differently, providing more gradient information.

Thus , in minimizing the spectral radius p or the spectral abscissa a of X (K) =
F + GK H over the parameter matrix K E RP x m , all we need to do is to provide
a routine to compute p(X) or a (X ) together with its gradient with respect to X E

R n x n at a given matrix X = X (K) = F + GKH, and then use the ordinary chain
rule to obtain the gradient of p(X (K)) or a( X( K )) with respect to the parameter
matrix K at a given K. Assume that only one real eigenvalue or conjugate pair of
eigenvalues of X is active, with multiplicity one. Since X(K) is real for all real K,
we can confine our attention to eigenvalues with non-negative imaginary part. Let
the active eigenvalue and its right and left eigenvectors be denoted by j.1" v and u
respectively, that is Xv = j.1,V and u* X = uu", normalized so that u *v = 1. Then,
exploiting well-known formulas [HOR 85, theorem 6.3.12] we have
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Under the assumption that j.1, is simple, the normalization u *v = 1 is always
possible, but if j.1, is close to a multiple eigenvalue, the resulting gradient norm
Ilullllvll may be arbitrarily large. This is to be expected , because a and p are not
Lipschitz near a matrix with an active multiple eigenvalue .
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16.2.3. Numerical results for some SOF problems

We define a class of SOF problems as follows. Let F be a Grear matrix [WRI 02]
scaled by 1/2, defined as a Toeplitz matrix whose non-zeros consist of the number 0.5
on the main diagonal and first three superdiagonals, and the number -0.5 on the first
subdiagonal. We start by setting its order n = 8 and p = 1, with G = [1 , ... , If,
and consider m ranging from 0 to 8, setting H to the matrix whose rows are the first
m rows of the identity matrix. When m = 0, the matrices Hand K are empty, so we
interpret X = F +GK H as X = F. The top half of Figure 16.3 shows eigenvalues in
the complex plane as small circles. The first panel, for m = 0, shows the eigenvalues
of F. The other panels show, for each value of m between 1 and 8, the eigenvalues
of a matrix X obtained from numerical minimization of the spectral radius of X =

F + GK Hover K E R 1 x"'. The optimization was conducted by initializing the
BFGS method at 100 different starting points whose entries were randomly generated
from the standard normal distribution, taking up to 1,000 BFGS iterations for each run ,
with early termination when the line search failed to obtain a reduction in p. Then, X
was defined as the final matrix with the smallest spectral radius over all 100 runs. The
large circle on each panel has its center at the origin and radius p(X), so the small
circles superimposed on the large circle show the active eigenvalues of X while those
inside it correspond to inactive eigenvalues.

In the first panel, we see that F has just one conjugate pair of active eigenvalues,
and in the second panel, that after optimizing p over K E R, there are two conjugate
pairs of active eigenvalues whose modulus is slightly reduced below p(F). In the
next panel, we see that by optimizing over K E R 1 x 2, we are able to obtain a Schur
stable matrix, with a real active eigenvalue as well as two active conjugate pairs. For
m = 3, we see active multiple eigenvalues for the first time. Of course, these are not
exactly multiple eigenvalues, but we observe one active conjugate pair of double
eigenvalues coinciding up to plotting accuracy as well as another active conjugate
pair of simple eigenvalues. Note that since non-derogatory eigenvalues are the most
generic, the multiple eigenvalues obtained from optimizing spectral functions are
expected to be non-derogatory, unless some special structure, such as matrix
symmetry, is present. That is not the case here.

For m = 4, we observe an active conjugate pair of triple eigenvalues. For m = 5,
we see a double active conjugate pair and a triple active real eigenvalue, leaving just
one inactive eigenvalue. For m = 6, we have one quadruple active conjugate pair,
with no inactive eigenvalues. As explained in section 16.2.1, since p = 1, these SOF
spectral radius optimization problems are actually equivalent to root radius
optimization problems with n - m affine constraints on the polynomial coefficients.
Therefore, according to the conjecture in section 16.1.5, for each m, there should
exist an optimal solution with most n - m - 1 inactive roots. As n = 8, Figure 16.3
supports this conjecture, displaying 4, 3, 2, 2, 1 and 0 inactive roots for m = 1, 2, 3,
4, 5 and 6 respectively.
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The scaling of the axes changes for each m, but for m = 7, we have a dramatic
change in scaling, with all 8 eigenvalues nearly coalescing to one real eigenvalue of
multiplicity 8. In this case, the eigenvalue optimization problem is equivalent to a root
radius optimization problem with just one affine constraint, whose solution can be
computed explicitly by the results in section 16.1.2. Applying corollary 16.1, we find
that the optimal polynomial is indeed of the form (A - 'Y) 8 , and the asterisk marked
on the panel for m = 7 marks the location of the multiple root')'. Finally, for m = 8,
SOF reduces to the state feedback problem, and since the pair (F, G) is controllable,
this can be solved by placing all the eigenvalues at the origin, so the optimal spectral
radius is zero, as marked by the asterisk .
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For both m = 7 and m = 8, we observe that BFGS is unable to reduce the spectral
radius to close to its known optimal value. Instead, for m = 7, we find that the final
eigenvalues are gathered on an arc of a circle with a radius somewhat greater than the
optimal value of the spectral radius, and for m = 8, although the spectral radius is
reduced by another 50% compared to m = 7, it is still not very small. These results
are not surprising given the sensitivity of non-derogatory eigenvalues with such high
multiplicity. For example, suppose X were an upper Jordan block of order 8 with a
zero eigenvalue perturbed by placing the entry 10-8 in the lower left comer; then, the
eigenvalues of X would lie equally spaced around the circle with radius 0.1. From this
point of view, the results achieved by BFGS are remarkably good.

This naturally raises the question: how close to optimal are the results for m =
1 through m = 6? Although we do not know the optimal values in these cases,
we can get a good idea by looking at the lower half of Figure 16.3. The first panel
(m = 0) simply displays the constant value p(F). Each subsequent panel (m = 1
through m = 8) displays the sorted final spectral radius values found by the 100
randomly initiated runs of the BFGS algorithm applied to minimize p(F + GK H)
over K E R 1 x "'. For m = 1, we find that all 100 final values are the same at least
to plotting accuracy. For m = 2, two locally optimal values are found: the lower one
is less than one indicating Schur stability, but the other is substantially greater than
p(F). For m = 3, we see that several different locally optimal values were found by
BFGS, each one corresponding to a "plateau" in the plotted values. The one found
most frequently is the second smallest. It seems a reasonable guess that the smallest
is globally optimal in this case. We see plateaus for m = 4, 5 and 6 too, indicating
the existence of several locally minimal values, but, especially for m = 6, there is
no clear plateau at the left end of the plot, indicating that the globally minimal value
is not well approximated. Again, this is not surprising, given the sensitivity of the
multiple eigenvalues that were found in these cases. For m = 7, we see no convincing
plateaus, but nonetheless, the irregularity of the optimal value curve at the top right
may indicate approximate convergence to local minimizers for some runs. Finally, for
m = 8 we see no plateaus at all, which is to be expected since the pole placement
theorem implies that minimizers of p must have all eigenvalues equal to zero.
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m=2

m=5

-0.5 a 0.5

m=8

Now let us consider a larger problem, setting F to the Grear matrix of order
n = 15 scaled by 0.5 and setting G to the 15 x 2 matrix with the first column
[l ,l, . . . , l ]T and the second column [1, -1 , 1, ... , - 1, l]T. Equation [16.1] no
longer applies, so the eigenvalue optimization problem no longer reduces to a
polynomial root optimization problem with affine constraints on the coefficients. The
top part of Figure 16.4 shows the eigenvalues obtained by using BFGS to minimize
the spectral radius , for m ranging from 1 to 8. Every panel indicates the presence of
active multiple eigenvalues, even for m = 1, for which there is an active double
conjugate pair. For m = 8, we know that the optimal spectral radius is zero for
generic (F,G,H) as mp > n. Turning to the sorted final function values in the lower
half of Figure 16.4, there is just one locally minimal value for m = 1, but there are
several clear plateaus of locally optimal values for m = 2. However, BFGS is unable
to approximate the optimal values accurately for m 2: 3, no doubt because of the
high eigenvalue multiplicities, so it is hard to judge how many local minimizers were
approximated.

-0.5 a 0.5

m=2

16.2.4. The Diaconis-Holmes-Neal Markov chain

An eigenvalue optimization problem with a very different character is provided by
the analysis of a non-reversible Markov chain for Monte Carlo simulation [DIA 00].
For ~ E [0 ,1], the associated doubly stochastic transition matrix A(~) E R 2n x 2n is
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The rate of convergence of the chain is determined by

,o(A(~))=max{IAI: det(AI-A(~))=O , AEC,Al=l}.

Diaconis et al. [DIA 00] showed that for ~ = lin, the non-reversible Markov
chain defined by this transition matrix reaches a stationary state in 0 (n) steps,
compared to O(n2 ) steps for a similar reversible chain. (Non-reversible chains have
non-symmetric transition matrices, while reversible chains have symmetric transition
matrices.)
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We call this quantity the reduced spectral radius, as it is the spectral radius after
the eigenvalue one is removed. We call an eigenvalue active if its modulus equals the
reduced spectral radius and inactive if it is smaller (the eigenvalue one is neither active
nor inactive) . Using formulas for the eigenvalues of A(~) given in [DIA 00], it is easy
to prove that p(A(~)) is minimized over ~ E [0, 1] by

a 1- X l

1- X2

ReducedSpectral Radiusof K(x)

~ = sin(7rIn) > ~
1 + sin(7rIn) n .

X 2

a X l

Xn

1- X n
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It is not surprising that with one free parameter, we can only make one pair of
eigenvalues coalesce. So, let us change the problem to have multiple parameters: for
x = [Xl , ... ,xn]T, Xj E [0,1], j = 1, . . . ,n , we define the transition matrix A(x) E
R 2n x 2n as

Figure 16.5. a) Eigenvalues of the 2n x 2n transition matrix A(~) for n = 10, along with
circles of radius p(A(~)) centered at the origin . Small circles: eigenvalues when ~ = lin
(with n - 1 active complex conjugate pairs). Asterisks: eigenvalues when ~ = t (two conjugate
pairs have coalesced to double real eigenvalues). Small squares: eigenvalues when ~ > t (the
double eigenvalues have each split into a real pair, with p increasing rapidly). b) Plots p(A(~))

for ~ E [0,1] , for n = 10 and n = 100. Note that p(A(t)) < p(A(l/n)) and that p(A(t))
approaches one as n increases

F~r ~ < ~ , there are n - 1 active conjugate pairs and one inactive eigenvalue. For
~ = ~ , two conjugate pairs coalesce to two double real non-derogatory eigenvalues,
resulting in two active double real eigenvalues and n - 3 active simple conjugate pairs.
For ~ > ~ , the double eigenvalues each split into two real eigenvalues, increasing pby
a term proportional to I~ - ~II /2, with two active simple eigenvalues. The eigenvalues
of A(~) are shown in Figure 16.5(a), along with a circle centered at the origin with
radius p(A(~)) for n = 10 and for ~ = lin < ~, ~ = ~ and ~ > { Plots of p(A(~) )

. are shown in Figure 16.5(b) for ~ E [0,1 ] for both n = 10 and n = 100.
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This matrix is still doubly stochastic. With n free parameters instead of one, can
we further reduce pby allowing coalescence of more eigenvalues?

16.2.5. Active derogatory eigenvalues

Somewhat surprisingly, it seems that the answer is no. The vector x = [~, '... , ~]T

appears to be optimal. This statement is based on two arguments. The first argument
is numerical: when we applied the gradient sampling algorithm [BUR 05a]
mentioned above, initialized at randomly generated points near x, we repeatedly
obtained convergence to x. The second argument is theoretical, using variational
analysis. We have established in [GAD 07] that x satisfies a necessary condition for
local optimality, and, furthermore, that if we remove some redundancy in the
parametrization by setting Xj = Xn - l -j for j = 1,2, ... , Ln 21 J and X n - l = X n,

and make some assumptions that seem reasonable, we find that x satisfies a sufficient
condition for local optimality. These optimality conditions are not standard as the
reduced spectral abscissa is not differentiable, in fact not even Lipschitz at x, because
of the presence of the active double eigenvalues. The analysis of this example is quite
complicated, and so we do not give further details here, but we give some references.
The analysis in [GAD 07] is based on the variational analysis of spectral functions
given in [BUR 01a], which is in tum built on the variational analysis of the
polynomial root abscissa and root radius already mentioned in section 16.1.6, as well
as subsequent work by Lewis [LEW 03]. An accessible introduction to this subject
may be found in [BUR 01c]. This variational analysis is applicable to the Markov
chain problem because the active eigenvalues at the candidate minimizer are all
non-derogatory (two double real eigenvalues and n - 3 simple conjugate pairs).

0.80.6

(b)

0.40.2

we can only make one pair of
have multiple parameters: for

e the transition matrix A(x) E

Although non-derogatory eigenvalues are the most generic, the structure present
in a matrix family may lead to local optimizers with active derogatory eigenvalues.
Two reduced spectral radius optimization problems of this sort, arising in the design
of surface subdivision schemes with applications in computer graphics, are studied in
[GRU 11, Chapters 2 and 4]. In both problems, several of the largest eigenvalues of a
matrix family A(x) are fixed and the largest of the moduli of the remaining
eigenvalues is to be minimized. In one of these examples, the optimal matrix A(x)
has one active zero eigenvalue associated with three Jordan blocks, respectively,
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having order 2, 1 and 1. In the second example, A(x) again apparently has one active
zero eigenvalue but with four Jordan blocks , respectively, having order 5, 3, 2 and 2.
In derogatory cases like this, variational analysis of the spectral abscissa or spectral
radius becomes very difficult even for simple examples. The special case with two
Jordan blocks with order 2 and 1, respectively, is analyzed in detail in [GRU 13].

16.3. Concluding remarks

We have seen that the optimization problems discussed in this chapter typically
lead to polynomials with multiple roots or matrices with non-derogatory multiple
eigenvalues, and we have observed that the higher their multiplicity, the more these
multiple roots or eigenvalues are sensitive to small perturbations; furthermore,
computing these minimizers numerically is difficult. Instead of optimizing
eigenvalues, we could consider optimizing pseudospectra. The e-pseudospectrum of
a matrix A, denoted (JE (A), is the set of points in the complex plane that are
eigenvalues of matrices within E in norm of a given matrix [TRE 05]. Fortunately, for
the 2-norm, there is a more convenient equivalent definition using the singular value
decomposition: (JE (A) is the set of points z E C for which the smallest singular value
of A - zI is no greater than E. Then, it is natural to define the pseudospectral radius
PE(A) and pseudospectral abscissa aE (A), respectively, as the largest of the moduli
and largest of the real parts of the points in (J E (A). Algorithms to compute these
functions are given in [MEN OS, BUR 03b]. It turns out that these functions are
locally Lipschitz with respect to both A and E [LEW 08, GUR 12], although the
pseudospectrum itself is not. For this reason, neglecting the cost of computing the
pseudospectral radius and abscissa, local optimization of these functions is less
difficult than for the spectral radius and abscissa: gradient sampling is known to
converge to non-smooth stationary points in the locally Lipschitz case, and while no
such result is known for BFGS , the boundedness of the gradients in the Lipschitz
case allows for the use of a practical termination condition described in [LEW 13,
section 6.3], instead of running the BFGS iteration until the line search fails or a
maximum iteration count is exceeded, as described in section 16.2.3.

See [BUR 03a] for some examples of optimizing the pseudospectral abscissa for
some SOF problems arising in applications. In [BUR 02], we used a different
approach for replacing the spectral abscissa by a robust alternative exploiting the
well-known Lyapunov characterization of stability, but this required solving
nonconvex optimization problems in a much larger variable space. Finally, we
mention that using many of the ideas discussed in this chapter, we have built a
software package for solving practical problems that arise in controller design
[BUR 06a].4

4 www.cs.nyu.edu/overton/software/hifoo.
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