
Master’s thesis:

Limited Memory BFGS for
Nonsmooth Optimization

Anders Skajaa

M.S. student
Courant Institute of Mathematical Science

New York University

January 2010

Adviser:
Michael L. Overton

Professor of Computer Science and Mathematics
Courant Institute of Mathematical Science

New York University

Abstract

We investigate the behavior of seven algorithms when used for nonsmooth
optimization. Particular emphasis is put on the BFGS method and its lim-
ited memory variant, the LBFGS method. Numerical results from running
the algorithms on a range of different nonsmooth problems, both convex and
nonconvex, show that LBFGS can be useful for many nonsmooth problems.
Comparisons via performance profiles show that for large-scale problems –
its intended use – it compares very well against the only other algorithm for
which we have an implementation targeted at that range of problems. For
small- and medium-scale nonsmooth problems, BFGS is a very robust and
efficient algorithm and amongst the algorithms tested, there is an equally
robust, but somewhat less efficient alternative.

CONTENTS 2

Contents

1 Introduction 4

2 Methods for Smooth Optimization 5
2.1 Newton’s Method . 5
2.2 Quasi-Newton Methods . 6
2.3 BFGS . 6
2.4 Limited Memory BFGS . 8
2.5 Applicability to Nonsmooth Optimization 9
2.6 Quasi-Newton Methods in the Nonsmooth Case 10

3 Line Search 12
3.1 Strong Wolfe Conditions . 12
3.2 Weak Wolfe Conditions . 13
3.3 Bracketing Algorithm . 14

4 LBFGS and BFGS for Nonsmooth Optimization 15
4.1 Definitions . 15

4.1.1 Random starting points 15
4.1.2 Rate of convergence 15
4.1.3 V - and U -spaces . 16

4.2 LBFGS and BFGS on Five Academic Problems 17
4.2.1 Tilted norm function 17
4.2.2 A convex, nonsmooth function 17
4.2.3 A nonconvex, nonsmooth function 19
4.2.4 A generalized nonsmooth Rosenbrock function 20
4.2.5 Nesterov’s nonsmooth Chebyshev-Rosenbrock function 22

4.3 Definition of Success . 23
4.4 LBFGS Dependence on the Number of Updates 23

5 Comparison of LBFGS and Other Methods 27
5.1 Other Methods in Comparison 27

5.1.1 LMBM . 27
5.1.2 RedistProx . 27
5.1.3 ShorR . 28
5.1.4 ShorRLesage . 28
5.1.5 BFGS . 28
5.1.6 GradSamp . 29

5.2 Methodology and Testing Environment 30
5.2.1 Termination criteria 30

5.3 Three Matrix Problems . 31
5.3.1 An eigenvalue problem 31
5.3.2 A condition number problem 32

CONTENTS 3

5.3.3 The Schatten norm problem 34
5.4 Comparisons via Performance Profiles 35

5.4.1 Performance profiles 35
5.4.2 Nonsmooth test problems F1–F9 36
5.4.3 Nonsmooth test problems T1–T6 39
5.4.4 Nonconvex problems with several local minima 41

5.5 Summary of Observations . 43

Appendix 45

A Test Problems 45
A.1 Nonsmooth Test Problems F1–F9 45
A.2 Nonsmooth Test Problems T1–T6 46
A.3 Other Nonsmooth Test Problems 47

References 48

Introduction 4

1 Introduction

The field of unconstrained optimization is concerned with solving the prob-
lem

min
x∈Rn

f(x) (1.1)

i.e. finding an x? ∈ Rn that minimizes the objective function f . Analyt-
ically finding such an x? is generally not possible so iterative methods are
employed. Such methods generate a sequence of points {x(j)}j∈N that hope-
fully converges to a minimizer of f as j → ∞. If the function f is convex,
that is

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.2)

for all x, y ∈ R and all λ ∈ [0, 1], then all local minimizers of f are also global
minimizers [BV04]. But if f is not convex, a local minimizer approximated
by an iterative method may not be a global minimizer. If f is continu-
ously differentiable then (1.1) is called a smooth optimization problem. If
we drop this assumption and only require that f be continuous, then the
problem is called nonsmooth. We are interested in algorithms that are suit-
able for nonconvex, nonsmooth optimization. There is a large literature on
convex nonsmooth optimization algorithms; see particularly [HUL93]. The
literature for the nonconvex case is smaller; an important early reference is
[Kiw85].

Recently, Lewis and Overton [LO10] have shown in numerical experi-
ments that the standard BFGS method works very well when applied directly
without modifications to nonsmooth test problems as long as a weak Wolfe
line search is used. A natural question is then if the standard limited mem-
ory variant (LBFGS) works well on large-scale nonsmooth test problems. In
this thesis we will, through numerical experiments, investigate the behav-
ior of LBFGS when applied to small-, medium- and large-scale nonsmooth
problems.

In section 2 we give the motivation for BFGS and LBFGS for smooth
optimization. In section 3, we discuss a line search suitable for nonsmooth
optimization. In section 4 we show the performance of LBFGS when ap-
plied to a series of illustrative test problems and in section 5 we compare
seven optimization algorithms on a range of test problems, both convex and
nonconvex.

A website1 with freely available Matlab-code has been developed. It
contains links and files for the algorithms, Matlab-files for all the test
problems and scripts that run all the experiments. The site is still under
development.

1http://www.student.dtu.dk/~s040536/nsosite/webfiles/index.shtml

Methods for Smooth Optimization 5

2 Methods for Smooth Optimization

In the first part of this section we assume that f is continuously differentiable.

2.1 Newton’s Method

At iteration j of any line search method a search direction d(j) and a step
length αj are computed. The next iterate x(j+1) is then defined by

x(j+1) = x(j) + αjd
(j). (2.1)

Line search methods differ by how d(j) and αj are chosen.
In Newton’s method the search direction is chosen by first assuming that

the objective function may be well approximated by a quadratic around x(j):

f(x(j) +d(j)) ≈ f(x(j))+(d(j))T∇f(x(j))+
1
2
(d(j))T∇2f(x(j))d(j) =: Tj(d(j))

(2.2)
Looking for a minimizer of the function on the right hand side of (2.2), we
solve ∇Tj(d(j)) = 0 and obtain

d(j) = −
[
∇2f(x(j))

]−1
∇f(x(j)), (2.3)

assuming that ∇2f(x(j)) is positive definite. Equation (2.3) defines the New-
ton step. If f itself is a quadratic function, (2.2) would be exact and by ap-
plying (2.1) once with αj = 1, we would have minimized f in one iteration.
If f is not quadratic we can apply (2.1) iteratively with d(j) defined by (2.3).

The step length αj = 1 is, in a way, natural for Newton’s method because
it would take us to the minimizer of the quadratic function locally approx-
imating f . In a neighborhood of a unique minimizer x? the Hessian must
be positive definite. Hence most implementations of Newton-like methods
first try αj = 1 and only choose something else if the reduction in f is not
sufficient.

One can show that, using a line search method as described in section
3, the iterates converge to stationary points (usually a local minimizer x?).
Further, once the iterates come sufficiently close to x?, the convergence is
quadratic under standard assumptions [NW06]. Although quadratic conver-
gence is a very desirable property there are several drawbacks to Newton’s
method. First, the Hessian in each iterate is needed. In addition to this,
we must at each iterate find d(j) from (2.3) which requires the solution of a
linear system of equations - an operation requiring O(n3) operations. This
means we can use Newton’s method only to solve problems with the number
of variables up to one thousand or so, unless the Hessian is sparse. Finally,
Newton’s method needs modifications if ∇2f(x(j)) is not positive definite
[NW06].

Methods for Smooth Optimization 6

2.2 Quasi-Newton Methods

A standard alternative to Newton’s method is a class of line search methods
where the search direction is defined by

d(j) = −Cj∇f(x(j)) (2.4)

where Cj is updated in each iteration by a quasi-Newton updating formula
in such a way that it has certain properties of the inverse of the true Hessian.

As long as Cj is symmetric positive definite, we have (d(j))T∇f(x(j)) < 0,
that is d(j) is a descent direction. If we take Cj = I (the identity matrix),
the method reduces to the steepest descent method.

By comparing the quasi-Newton step (2.4) to the Newton step (2.3), we
see that the two are equal when Cj is equal to the inverse Hessian. So taking
a quasi-Newton step is the same as minimizing the quadradic function (2.2)
with ∇2f(x(j)) replaced by Bj := C−1

j . To update this matrix we impose
the well known secant equation:

Bj+1(αjd(j)) = ∇f(x(j+1))−∇f(x(j)) (2.5)

If we set

s(j) = x(j+1) − x(j) and y(j) = ∇f(x(j+1))−∇f(x(j)) (2.6)

equation (2.5) becomes
Bj+1s

(j) = y(j) (2.7)

or equivalently
Cj+1y

(j) = s(j). (2.8)

This requirement, together with the requirement that Cj+1 be symmetric
positive definite, is not enough to uniquely determine Cj+1. To do that we
further require that

Cj+1 = argminC‖C − Cj‖ (2.9)

i.e. that Cj+1, in the sense of some matrix norm, be the closest to Cj among
all symmetric positive definite matrices that satisfy the secant equation (2.8).
Each choice of matrix norm gives rise to a different update formula.

2.3 BFGS

The most popular update formula is

CBFGS
j+1 =

(
I − ρjs(j)(y(j))T

)
Cj

(
I − ρjy(j)(s(j))T

)
+ ρjs

(j)(s(j))T (2.10)

where ρj =
(
(y(j))T s(j)

)−1. Notice that the computation in (2.10) requires
onlyO(n2) operations because Cj

(
I − ρjy(j)(s(j))T

)
= Cj−ρj(Cjy(j))(s(j))T ,

Methods for Smooth Optimization 7

Algorithm 1 BFGS
Input: x(0), δ, C0

j ← 0
while true do

d(j) ← −Cj∇f(x(j))
αj ← LineSearch(x(j), f)
x(j+1) ← x(j) + αjd

(j)

Compute Cj+1 from (2.10) and (2.6)
j ← j + 1
if ‖∇f(x(j))‖ ≤ δ then

stop
end if

end while
Output: x(j), f(x(j)) and ∇f(x(j)).

a computation that needs one matrix-vector multiplication, one vector outer
product and one matrix addition.

BFGS2 is currently considered the most effective and is by far the most
popular quasi-Newton update formula. The BFGS algorithm is summed up
in Algorithm 1 [NW06].

The success of the BFGS algorithm depends on how well the updating for-
mula for Cj approximates the inverse of the true Hessian at the current iter-
ate. Experiments have shown that the method has very strong self-correcting
properties (when the right line search is used) so that if, at some iteration, the
matrix contains bad curvature information, it often takes only a few updates
to correct these inaccuracies. For this reason, the BFGS method generally
works very well and once close to a minimizer, it usually attains superlin-
ear convergence. A simple comparison of the BFGS method and Newton’s
method is seen in figure 1 on the next page. We see that while Newton’s
method almost immediately attains quadratic convergence, BFGS needs more
iterations, eventually achieving superlinear convergence. For small problems
like this one, it is, of course, not expensive to solve a linear system which
is needed in Newton’s method. BFGS requires only matrix-vector multipli-
cations which brings the computational cost at each iteration from O(n3)
for Newton’s method down to O(n2). However, if the number of variables is
very large, even O(n2) per iteration is too expensive - both in terms of CPU
time and sometimes also in terms of memory usage (a large matrix must be
kept in memory at all times).

2Named after its inventors: Broyden, Fletcher, Goldfarb and Shanno.

Methods for Smooth Optimization 8

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

BFGS
Newton’s
Local Minimizer

(a) Paths followed.

0 2 4 6 8 10 12
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

BFGS
Newton’s

(b) Function value at each iterate.

Figure 1: Results from running BFGS (blue) and Newton’s method (black) on the
smooth 2D Rosenbrock function f(x) = (1−x1)

2+(x2−x2
1)

2 with x(0) = (−0.9,−0.5).
The minimizer is x? = (1, 1) and f(x?) = 0.

2.4 Limited Memory BFGS

A less computationally intensive method when n is large is the Limited-
Memory BFGS method (LBFGS), see [Noc80, NW06]. Instead of updating
and storing the entire approximated inverse Hessian Cj , the LBFGS method
never explicitly forms or stores this matrix. Instead it stores information
from the past m iterations and uses only this information to implicitly do
operations requiring the inverse Hessian (in particular computing the next
search direction). The first m iterations, LBFGS and BFGS generate the
same search directions (assuming the initial search directions for the two
are identical and that no scaling is done – see section 5.1.5). The updating
in LBFGS is done using just 4mn multiplications (see Algorithm 2 [NW06])
bringing the computational cost down to O(mn) per iteration. If m � n
this is effectively the same as O(n). As we shall see later, often LBFGS
is successful with m ∈ [2, 35] even when n = 103 or larger. It can also
be argued that the LBFGS method has the further advantage that it only

Algorithm 2 Direction finding in LBFGS
1: q ← γj∇f(x(j)), with γj = ((s(j−1))T y(j−1))((y(j−1))T y(j−1))−1

2: for i = (j − 1) : (−1) : (j −m) do
3: αi ← ρi(s(i))T q
4: q ← q − αiy(i)

5: end for
6: for i = (j −m) : 1 : (j − 1) do
7: β ← ρi(y(i))T r
8: r ← r + s(i)(αi − β)
9: end for
Output: d(j) = −r

Methods for Smooth Optimization 9

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

BFGS
Newton’s
LBFGS
Local Minimizer

(a) Paths followed.

0 2 4 6 8 10 12
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

BFGS
Newton’s
LBFGS

(b) Function value at each iterate.

Figure 2: Results from running BFGS (blue), LBFGS with m = 3 (red), and
Newton’s method (black) on the smooth 2D Rosenbrock function f(x) = (1 − x1)

2 +
(x2 − x2

1)
2 with x(0) = (−0.9,−0.5). The minimizer is x? = (1, 1) and f(x?) = 0.

uses relatively new information. In the BFGS method, the inverse Hessian
contains information from all previous iterates. This may be problematic if
the objective function is very different in nature in different regions.

In some cases the LBFGS method uses as many or even fewer function
evaluations to find the minimizer. This is remarkable considering that even
when using the same number of function evaluations, LBFGS runs signifi-
cantly faster than full BFGS if n is large.

In figure 2 we see how LBFGS compares to BFGS and Newton’s method
on the same problem as before. We see that for this particular problem,
using m = 2, LBFGS performs almost as well as the full BFGS.

Experiments show that the optimal choice of m is problem dependent
which is a drawback of the LBFGS method. In case of LBFGS failing, one
should first try to increase m before completely discarding the method. In
very few situations (as we will see later on a nonsmooth example) the LBFGS
method may needm > n to converge, in which case LBFGS is more expensive
than regular BFGS.

Newton’s BFGS LBFGS
Work per iteration O(n3) O(n2) O(mn)

2.5 Applicability to Nonsmooth Optimization

Now suppose that the objective function f is not differentiable everywhere,
in particular that it is not differentiable at a minimizer x?.

In Newton and quasi-Newton methods, we assumed that f may be well
approximated by a quadratic function in a region containing the current
iterate. If we are close to a point of nonsmoothness, this assumption no
longer holds.

Methods for Smooth Optimization 10

When f is locally Lipschitz, we have by Rademacher’s theorem [Cla83]
that f is differentiable almost everywhere. Roughly speaking, this means
that the probability that an optimization algorithm that is initialized ran-
domly will encounter a point where f is not differentiable is zero. This is
what allows us to directly apply optimization algorithms originally designed
for smooth optimization to nonsmooth problems. In fact we are assuming
that we never encounter such a point throughout the rest of this thesis. This
ensures that the methods used stay well defined.

Simple examples show that the steepest descent method may converge
to nonoptimal points when f is nonsmooth [HUL93, LO10] and Newton’s
method is also unsuitable when f is nonsmooth.

2.6 Quasi-Newton Methods in the Nonsmooth Case

Although standard quasi-Newton methods were developed for smooth op-
timization it turns out [LO10] that they often succeed in minimizing nons-
mooth objective functions when applied directly without modification (when
the right line search is used — see section 3).

In figure 3 we see the performance of BFGS and LBFGS with a weak
Wolfe line search when applied directly to the function

f(x) = (1− x1)2 + |x2 − x2
1| (2.11)

This function is not smooth at the local minimizer x? = (1, 1). In figure
3(b) we see that both methods succeed in finding the minimizer. Comparing
the rate of convergence to what we saw in figure 2 on the preceding page
where we applied BFGS to the smooth Rosenbrock function, we notice that

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

BFGS
LBFGS
Local minimizer

(a) Paths followed. The black dashed line
indicates the curve x2 = x2

1 across which f

is nonsmooth.

0 10 20 30 40 50 60 70

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

BFGS
LBFGS

(b) Function value at each iterate after the
line search.

Figure 3: Results from running BFGS (blue) and LBFGS with m = 3 (red) on
the 2D nonsmooth Rosenbrock function (2.11) with x(0) = (−0.7,−0.5). The local
minimizer x? = (1, 1) is marked by a black dot and f(x?) = 0. LBFGS used 76
function evaluations and BFGS used 54 to reduce f below 10−10.

Methods for Smooth Optimization 11

the convergence is now approximately linear instead of superlinear. This is
due to the nonsmoothness of the problem.

Most of the rest of this thesis is concerned with investigating the behavior
of quasi-Newton methods - in particular the LBFGS method - when used for
nonsmooth (both convex and nonconvex) optimization. We will show results
from numerous numerical experiments and we will compare a number of
nonsmooth optimization algorithms. First, however, we address the issue of
the line search in more detail.

Line Search 12

3 Line Search

Once the search direction in a line search method has been found, a procedure
to determine how long a step should be taken is needed (see (2.1)).

Assuming the line search method has reached the current iterate x(j) and
that a search direction d(j) has been found, we consider the function

φ(α) = f(x(j) + αd(j)), α ≥ 0 (3.1)

i.e. the value of f from x(j) in the direction of d(j). Since d(j) is a descent
direction, there exists α̂ > 0 small enough that φ(α̂) < f(x(j)). However, for
a useful procedure, we need steps ensuring sufficient decrease in the function
value and steps that are not too small. If we are using the line search in a
quasi-Newton method, we must also ensure that the approximated Hessian
matrix remains positive definite.

3.1 Strong Wolfe Conditions

The Strong Wolfe conditions require that the following two inequalities hold
for αj :

φ(αj) ≤ φ(0) + αjc1φ
′(0) Armijo condition (3.2)

|φ′(αj)| ≤ c2|φ′(0)| Strong Wolfe condition (3.3)

with 0 < c1 < c2 < 1. The Armijo condition ensures a sufficient decrease
in the function value. Remembering that φ′(0) is negative (because d(j)

is a descent direction), we see that the Armijo condition requires that the
decrease be greater if αj is greater.

(a) Smooth φ(α). (b) nonsmooth φ(α).

Figure 4: Steps accepted by the strong Wolfe conditions. Dashed red line is the
upper bound on φ(α) from the Armijo condition. Red lines in upper left hand corner
indicate accepted slopes φ′(α) by the strong Wolfe condition. Lower blue line indicates
points accepted by Armijo. Magenta line indicates points accepted by strong Wolfe.
Green line indicates points accepted by both.

Line Search 13

The strong Wolfe condition ensures that the derivative φ′(αj) is reduced
in absolute value. This makes sense for smooth functions because the deriva-
tive at a minimizer of φ(α) would be zero. Figure 4 shows the intervals of
step lengths accepted by the strong Wolfe line search.

It is clear that the strong Wolfe condition is not useful for nonsmooth
optimization. The requirement (3.3) is bad because for nonsmooth functions,
the derivative near a minimizer of φ(α) need not be small in absolute value
(see figure 4(b) on the previous page).

3.2 Weak Wolfe Conditions

The Weak Wolfe conditions are

φ(αj) ≤ φ(0) + αjc1φ
′(0) Armijo condition (3.4)

φ′(αj) ≥ c2φ′(0) Weak Wolfe condition (3.5)

with 0 < c1 < c2 < 1. The only difference from the strong Wolfe condition is
that there is no longer an upper bound on the derivative φ′(αj). The same
lower bound still applies. This makes a significant difference in the case of
a nonsmooth φ(α) as seen by comparing figure 4 to figure 5. When φ(α) is
nonsmooth the absolute value of the derivative φ′(α) may never get small
enough to satisfy the strong Wolfe condition (see figure 4(b) on the previous
page). Therefore the weak Wolfe conditions are better suited for line search
methods for nonsmooth optimization. The weak Wolfe condition is all that
is needed to ensure that Cj+1 in Algorithm 1 is positive definite [NW06].

(a) Smooth φ(α). (b) nonsmooth φ(α).

Figure 5: Steps accepted by the weak Wolfe conditions. Dashed red line is the
upper bound on φ(α) from the Armijo condition. Red lines in upper left hand corner
indicate accepted slopes φ′(α) by the weak Wolfe condition. Lower blue line indicates
points accepted by Armijo. Magenta line indicates points accepted by weak Wolfe.
Green line indicates points accepted by both. Compare with figure 4 on the previous
page.

Line Search 14

3.3 Bracketing Algorithm

An effective algorithm [Lem81, LO10] for finding points satisfying the weak
Wolfe conditions is given in algorithm 3.

This procedure generates a sequence of nested intervals in which there
are points satisfying the weak Wolfe conditions. In [LO10] it is proved that
a weak Wolfe step is always found as long as a point where f is not differ-
entiable is never encountered. As mentioned, this is very unlikely, so for all
practical purposes the procedure always returns an α that is a weak Wolfe
step (unless rounding errors interfere).

We use this line search procedure with c1 = 10−4 and c2 = 0.9 for the
BFGS and the LBFGS implementations throughout this thesis.

Algorithm 3 Weak Wolfe Line Search
Input: φ and φ′

α := 1, µ := 0, ν :=∞
while true do

if φ(α) > φ(0) + αc1φ
′(0) then {Armijo (3.4) fails}

ν := α
else if φ′(α) < c2φ

′(0) then {Weak Wolfe (3.5) fails}
µ := α

else {Both (3.4) and (3.5) hold so stop}
stop

end if
if ν <∞ then

α := (µ+ ν)/2
else

α := 2α
end if

end while
Output: α

LBFGS and BFGS for Nonsmooth Optimization 15

4 LBFGS and BFGS for Nonsmooth Opti-
mization

That the LBFGS method can be used for nonsmooth optimization may be
surprising at first since it was originally developed as a limited memory ver-
sion (hence well suited for large-scale problems) of the smooth optimization
algorithm BFGS. We here present results showing that LBFGS, in fact, works
well for a range of nonsmooth problems. This should be seen as an exten-
sion and large-scale version of the numerical results in [LO10] where the full
BFGS method is tested on the same problems.

4.1 Definitions

4.1.1 Random starting points

Whenever we speak of a random starting point, we mean a starting point
x(0) ∈ Rn drawn randomly from the uniform distribution on [−1, 1]n. To do
this we use the built in function rand in Matlab. Exceptions to this rule
will be mentioned explicitly.

4.1.2 Rate of convergence

From this point on, when we refer to the rate of convergence of an algorithm
when applied to a problem, we mean the R-linear rate of convergence of the
error in function value. Using the terminology of [NW06], this means there
exist constants C > 0 and r ∈ (0, 1) such that

|fk − f?| ≤ Crk (4.1)

The number r is called the rate of convergence. Since equation (4.1) means
that

log |fk − f?| ≤ logC + k log r

we see that for a rate of convergence r, there is a line with slope log r bound-
ing the numbers {log |fk − f?|} above. To estimate the rate of convergence
of fk with respect to a sequence nk, we do a least squares fit to the points
(nk, log |fk − f?|) and the slope of the optimal line is then log r.

To get a picture of the performance of the algorithms in terms of a useful
measure, we actually use for fk the function value accepted by the line search
at the end of iteration k and for nk the total number of function evaluations
used - including those used by the line search - at the end of iteration k.

For r close to 1, the algorithm converges slowly while it is fast for small
r. For this reason we will, when showing rates of convergence, always plot
the quantity − log (1− r), whose range is (0,∞) and which will be large if
the algorithm is slow and small if the algorithm is fast.

LBFGS and BFGS for Nonsmooth Optimization 16

4.1.3 V - and U-spaces

Many nonsmooth functions are partly smooth [Lew02]. This concept leads to
the notions of the U - and V -spaces associated with a point – most often the
minimizer. In the convex case, this notion was first discussed in [LOS00].

Roughly this concept may be described as follows: Let M be a mani-
fold containing x that is such that f restricted to M is twice continuously
differentiable. Assume that M is chosen to have maximal dimension, by
which we mean that its tangent space at x has maximal dimension (n in
the special case that f is a smooth function). Then the subspace tangent to
M at x is called the U -space of f at x and its orthogonal complement the
V -space. Loosely speaking, we think of the U -space as the subspace spanned
by the directions along which f varies smoothly at x and the V -space as its
orthogonal complement. This means that ψ(t) = f(x+ ty) varies smoothly
around t = 0 only if the component of y in the V -space of f at x vanishes.
If not, ψ varies nonsmoothly around t = 0.

Consider the function f(x) = ‖x‖. The minimizer is clearly x = 0. Let
y be any unit length vector. Then ψ(t) = f(ty) = |t|‖y‖ = |t| which varies
nonsmoothly across t = 0 regardless of y. The U -space of f at x = 0 is thus
{0} and the V -space is Rn.

As a second example, consider the nonsmooth Rosenbrock function (2.11).
If x2 = x2

1, the second term vanishes so when restricted to the manifold
M = {x : x2 = x2

1}, f is smooth. The subspace tangent toM at the local
minimizer (1, 1) is U = {x : x = (1, 2)t, t ∈ R} which is one-dimensional.
The orthogonal complement is V = {x : x = (−2, 1)t, t ∈ R} which is also
one-dimensional.

In [LO10] it is observed that running BFGS produces information about
the U− and V -spaces at the minimizer. At a point of nonsmoothness the
gradients jump discontinuously. However at a point of nonsmoothness we
can approximate the objective function arbitrarily well by a smooth function.
Close to the point of nonsmoothness, the Hessian of that function would have
extremely large eigenvalues to accomodate the rapid change in the gradients.
Numerically there is no way to distinguish such a smooth function from the
actual nonsmooth objective function (assuming the smooth approximation
is sufficiently exact).

When running BFGS, an approximation to the inverse Hessian is contin-
uously updated and stored. Very large curvature information in the Hessian
of the objective corresponds to very small eigenvalues of the inverse Hessian.
Thus, it is observed in [LO10] that one can obtain information about the
U− and V -spaces at the minimizer by simply monitoring the eigenvalues
of the inverse Hessian approximation Cj when the iterates get close to the
minimizer.

LBFGS and BFGS for Nonsmooth Optimization 17

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

10
2

(a) LBFGS with m = 15.

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

10
2

(b) LBFGS with m = 25.

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

10
2

n = 4
n = 8
n = 16
n = 32
n = 64

(c) BFGS.

Figure 6: LBFGS and BFGS on (4.2) for different n. Vertical axis: Function value
at the end of each iteration. Horizontal axis: Total number of function evaluations
used. The number of updates used in LBFGS was m = 25 and x(0) = (1, . . . , 1).

4.2 LBFGS and BFGS on Five Academic Problems

4.2.1 Tilted norm function

We consider the convex function

f(x) = w‖Ax‖+ (w − 1)eT1Ax (4.2)

where e1 is the first unit vector, w = 4 and A is a randomly generated
symmetric positive definite matrix with condition number n2. This function
is not smooth at its minimizer x? = 0.

In figure 6 we see typical runs of LBFGS and BFGS on (4.2). It is clear
from figures 6(a) and 6(b) that the performance of LBFGS on this problem
depends on the number of updates m used. We will investigate this further
in section 4.4.

Comparing the three plots in figure 6 we see that the linear rate of con-
vergence varies differently with n for LBFGS and BFGS. This is also what we
see in figure 7, where we have shown observed rates of convergence for ten
runs with random x(0) for different n. Since all runs were successful for both
LBFGS and BFGS, ten red and ten blue crosses appear on each vertical line.
The curves indicate the mean of the observed rates.

We see that for smaller n, LBFGS generally gets better convergence rates
but gets relatively worse when n increases.

4.2.2 A convex, nonsmooth function

We consider the function

f(x) =
√
xTAx+ xTBx (4.3)

where we take

A =
(
M 0
0 0

)
(4.4)

LBFGS and BFGS for Nonsmooth Optimization 18

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
3

4

5

6

7

8

9

10

11

12

log10(n)

−
lo

g2
(1

−
ra

te
)

LBFGS
BFGS

Figure 7: Rates of convergence for BFGS and LBFGS on (4.2) as function of n
for ten runs with randomly chosen x(0) and cond(A) = n2. Number of updates for
LBFGS was m = 25.

and where M ∈ Rdn/2e×dn/2e is a randomly generated symmetric positive
definite matrix with condition number dn/2e2 and B ∈ Rn×n is a randomly
generated symmetric positive definite matrix with condition number n2.

First notice that for y ∈ Null(A), the function h(t) = f(ty) varies
smoothly with t around t = 0 since the first term of (4.3) vanishes, leav-
ing only the smooth term t2yTBy. The null space of A is a linear space so
the U -space of f at 0 is the null space of A and the V -space is the range of A.
Since we have chosen A such that dim(Null(A)) = dn/2e, we expect to see
dn/2e of the eigenvalues of the approximated inverse Hessian constructed in
BFGS go to zero and this is exactly what we see in experiments (see figure 8).
In figure 9 on the following page we show the convergence rates of LBFGS
and BFGS as a function of the number of variables. We see that for this

0 10 20 30 40 50 60 70 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

E
ig

en
va

lu
es

(a) n = 9. Exactly 5 eigenvalues go to zero.

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

E
ig

en
va

lu
es

(b) n = 40. Exactly 20 eigenvalues go to
zero.

Figure 8: Eigenvalues of the approximation to the inverse Hessian constructed in
the course of running BFGS on (4.3).

LBFGS and BFGS for Nonsmooth Optimization 19

1 1.5 2 2.5 3 3.5
2

3

4

5

6

7

8

9

10

11

12

log10(n)

−
lo

g2
(1

−
ra

te
)

LBFGS
BFGS

Figure 9: Rates of convergence for BFGS and LBFGS on (4.3) as function of n
for ten runs with randomly chosen x(0). Since all runs were successful, ten red and
ten blue crosses appear on all vertical lines.

problem, BFGS gets better rates of convergence for smaller n, while LBFGS
relatively does better and better as n grows. Overall, the behavior of LBFGS
on this problem is much more erratic than that of BFGS.

As an illustration of the difference in running times of the two algorithms,
see the data in table 1.

alg.\n 10 130 250 370 490
LBFGS 0.0392 0.2077 0.2809 0.3336 0.4378
BFGS 0.0099 0.2013 0.8235 3.0115 7.2507

Table 1: Total time in seconds spent by the two algorithms solving (4.3) for dif-
ferent number of variables n.

4.2.3 A nonconvex, nonsmooth function

We consider the function

f(x) =
√
δ +
√
xTAx+ xTBx (4.5)

where A and B are chosen as in (4.3). As described in [LO10], this function
is nonconvex for δ < 1 and its Lipschitz constant is O(δ−1/2) as x → 0+.
The unique minimizer is x? = 0 and f(x?) =

√
δ.

LBFGS and BFGS for Nonsmooth Optimization 20

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
2

4

6

8

10

12

14

log10(n)

−
lo

g2
(1

−
ra

te
)

LBFGS
BFGS

Figure 10: Rates of convergence for BFGS and LBFGS on (4.5) as function of
n for ten runs with randomly chosen x(0). Number of updates used for LBFGS was
m = 35. All BFGS runs were successful, but most LBFGS failed. Red crosses were
plotted for each successful run.

We fix δ = 10−3 and investigate how LBFGS and BFGS perform when
varying the number of variables n. We get the situation illustrated in fig-
ure 10. On this problem we see that LBFGS has real difficulties. For the few
runs that are actually successful, it needs on the order of 104 function evalu-
ations to drive the function value below ftarget (see (4.8) on page 23). BFGS
performs very similarly on this problem as on (4.3). For n ≥ 100, LBFGS
fails on average on about 80% of the runs effectively making it useless on
this problem.

4.2.4 A generalized nonsmooth Rosenbrock function

When f is smooth and nonconvex, it may have multiple local minimizers and
saddle points. While BFGS and LBFGS may certainly converge to non-global
local minimizers, they are not likely to converge to other stationary points,
that is points x where ∇f(x) = 0 but x is not a local minimizer (although
in principle this could happen). When f is nonsmooth, the appropriate
generalization is Clarke stationarity, that is points x where 0 ∈ ∂f(x), where
∂f(x) is the Clarke subdifferential or generalized gradient [Cla83, BL00,
RW98].

We consider the function

f(x) =
n−1∑
i=1

V
i

n

∣∣∣∣xi+1 −
i

n
x2
i

∣∣∣∣+ U
i

n
(1− xi)2 (4.6)

LBFGS and BFGS for Nonsmooth Optimization 21

0 100 200 300 400 500

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Diff. starting points

ffi
na

l

(a) BFGS

0 100 200 300 400 500

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Diff. starting points

ffi
na

l

(b) LBFGS with m = 30

Figure 11: Function value at termination of LBFGS and BFGS on (4.6) for 500
randomly started runs.

0 100 200 300 400 500

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Diff. starting points

ffi
na

l

(a) ShorRLesage

0 100 200 300 400 500
5

6

7

8

9

10

11

12

13

14

15

Diff. starting points

ffi
na

l

(b) LMBM with m = 30

Figure 12: Function value at termination of ShorRLesage and LMBM on (4.6) for
500 randomly started runs.

which is nonconvex and nonsmooth. We fix n = 12 and set V = 10 and U = 1
and run LBFGS and BFGS 500 times with starting points from [0, 5]n drawing
the points from the uniform distribution. Sorting and plotting the final
values of f found give the result seen in figure 11(a). BFGS apparently finds
approximately 7 locally minimal values when started randomly in [0, 5]n. For
LBFGS (figure 11(b)) the picture is quite different. Very few runs terminate
at what appears to be the global minimizing value f? ≈ 5.38.

For comparison we have done the same experiment (with the same start-
ing points) for two other algorithms, ShorRLesage and LMBM, that are both
further described in 5.1. We see that only ShorRLesage finds the same 7
minima that BFGS found, but that their basins of attraction appear to have
different sizes compared to those of BFGS.

These results make it clear that when f is nonconvex and has multiple
local minimizers, we cannot expect an algorithm to find the global minimizer
from any starting point. See Section 4.3 below.

LBFGS and BFGS for Nonsmooth Optimization 22

4.2.5 Nesterov’s nonsmooth Chebyshev-Rosenbrock func-
tion

The previous example apparently has multiple local minima. The exam-
ple described next has multiple Clarke stationary points, but only one of
them, the global minimizer, is a local minimizer; the others are non-locally-
minimizing Clarke stationary points. The objective function is Nesterov’s
nonsmooth Chebyshev-Rosenbrock function given by

f(x) =
1
4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1| . (4.7)

As described in [LO10], minimizing f for x ∈ Rn is equivalent to minimiz-
ing the first term subject to x ∈ S = {x : xi+1 = 2|xi| − 1, i = 1, . . . , n− 1}.
Because of the oscillatory and nonsmooth nature of S the function is very
difficult to minimize even for relatively small n. There are 2n−1 Clarke sta-
tionary points on S [Gur09]. We fix n = 4 and as in section 4.2.4, we
run four different algorithms 500 times with random starting points again
drawing the points from the uniform distribution on [0, 5]n. The results are
seen in figures 13 and 14. We expect that there are eight Clarke stationary
points including one global minimizer and this is precisely what we see. For
each algorithm, there are 8 plateaus, meaning that all algorithms found all
Clarke stationary points and the global minimizing value f? = 0. This shows
that while it is unlikely though in principle possible for BFGS to converge
to non-locally-minimizing smooth stationary points (that is points where
∇f(x) = 0, but x is not a local minimizer), it is certainly not unlikely that
BFGS, LBFGS and these other algorithms converge to non-locally-minimizing
nonsmooth stationary points (that is Clarke stationary points).

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Diff. starting points

ffi
na

l

(a) BFGS

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Diff. starting points

ffi
na

l

(b) LBFGS with m = 30

Figure 13: Function value at termination of LBFGS and BFGS on (4.7) for 500
randomly started runs.

LBFGS and BFGS for Nonsmooth Optimization 23

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Diff. starting points

ffi
na

l

(a) ShorRLesage

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Diff. starting points

ffi
na

l

(b) LMBM with m = 30

Figure 14: Function value at termination of ShorRLesage and LMBM on (4.7) for
500 randomly started runs.

4.3 Definition of Success

The results of sections 4.2.4 and 4.2.5 lead us to use the following criterion for
successful runs: We will say that an algorithm successfully solves a problem
if it in N randomly started runs successfully reduces f below

ftarget := f? + ε(|f?|+ 1) (4.8)

in at least dγNe of the runs, where γ ∈ (0, 1]. Here f? denotes the global
minimizing value and ε is a tolerance. We will determine f? by running
all algorithms under comparison multiple times with random starting points
and using the minimal value found – unless of course it is known analytically.

If f is convex, or is nonconvex but apparently does not have multiple
minimal or Clarke stationary values, we use γ = 0.7. Otherwise the numbers
N and γ will be problem dependent. We always use ε = 10−4.

4.4 LBFGS Dependence on the Number of Updates

We saw in figure 13(b) that LBFGS with m = 30 successfully found all eight
Clarke stationary points including the global minimizer of the Chebyshev-
Rosenbrock function (4.7) from section 4.2.5. Making plots similar to figure
13(b) but for different values of the number of updates m, we get the picture
seen in figure 15 on the following page. From these plots, one might expect
that for any given function f , there exists some lower bound value of m for
which LBFGS starts succeeding.

For the objective function (4.7), one can determine such an m in the
following way: Given a sorted vector v ∈ RN , that is one that satisfies
vi ≤ vi+1, i = 1, . . . , N − 1, let d be such that d(v) ∈ RN and

[d(v)]j = min(vj − vj−1,vj+1 − vj), 2 ≤ j ≤ N − 1

LBFGS and BFGS for Nonsmooth Optimization 24

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Diff. starting points

ffi
na

l

(a) m = 10

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Diff. starting points

ffi
na

l

(b) m = 19

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Diff. starting points

ffi
na

l

(c) m = 21

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Diff. starting points

ffi
na

l

(d) m = 28

Figure 15: Results from one thousand randomly started runs of LBFGS on (4.7)
with n = 4 for four different values of m.

i.e. the vector of distances to the nearest neighbor in v (the first and last
element are simply the distance to the only neighbor).

If the final values of f for N randomly started runs of LBFGS with m
updates are stored (and sorted) in the vector fm, then we can expect that
the number

ρ(fm) =
mean(d(fm))

2(max(fm)−min(fm))N−1
(4.9)

should be small if LBFGS with that m succeeded and not small if it failed.
Notice that the denominator in (4.9) is the expected average distance to
the nearest neighbor in a sorted vector with entries chosen from a uniform
distribution on [min(fm),max(fm)]. So it simply represents a normalization
to ease comparison when N varies.

In figure 16(a) on the following page, we see computed values of ρ(fm)
for different m with n = 4 on the Chebyshev-Rosenbrock function (4.7). We
see that there is a clear cut-off point at about m = 25 where the average
distance to the nearest neighbor drops dramatically. This agrees with the
plots shown in figure 15.

Doing all of this for several values of the number of variables n and
defining the smallest m for which ρ(fm) drops below a certain tolerance

LBFGS and BFGS for Nonsmooth Optimization 25

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ρ(
f m

)

(a) The number ρ(fm) as function of m (see
(4.9)).

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

n

m

m
n2

(b) Smallest m required for LBFGS to reli-
ably converge to a Clarke stationary point as
function of n.

Figure 16: Plots illustrating the smallest necessary m for LBFGS to reliably con-
verge to a Clarke stationary point of (4.7) on page 22.

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

cond(A)

m

(a) Smallest m required for LBFGS to reli-
ably minimize the tilted norm function with
n = 100, w = 4 as function of cond(A).

10
1

10
2

10
3

10
4

10
5

10
6

0

500

1000

1500

2000

2500

3000

3500

cond(A)

nf
ev

al

(b) Number of function evaluations used
when minimizing the tilted norm function
with n = 100, w = 4 as function of cond(A).

Figure 17: Performance of LBFGS on the tilted norm function.

(here chosen to be 0.2) to be the smallest m required for success, we get the
plot seen in 16(b). We see that for this particular problem, we actually need
m > n2 which makes LBFGS much more computationally expensive than full
BFGS.

We now turn to a different objective function for which experiments
previously suggested (figure 6 on page 17) that the performance of LBFGS
is dependent on m. The objective function is the tilted norm function of
section 4.2.1. We fix w = 4, n = 100 and vary the condition number of A.
The required m to find the minimizer as a function of the condition number
of A is seen in figure 17(a).

We see that although initially the required m increases as cond(A) in-
creases, it appears that at m ≈ 25, the algorithm succeeds regardless of

LBFGS and BFGS for Nonsmooth Optimization 26

cond(A). Figure 17(b) on the previous page also seems to confirm this: From
about cond(A) ≈ 103 andm ≈ 25 the number of function evaluations needed
to minimize the function does not significantly increase although there are
fluctuations.

Comparison of LBFGS and Other Methods 27

5 Comparison of LBFGS and Other Meth-
ods

5.1 Other Methods in Comparison

To get a meaningful idea of the performance of LBFGS it must be compared
to other currently used algorithms for the same purpose. The real strength of
LBFGS is the fact that it only uses O(n) operations in each iteration (when
m� n) and so it is specifically useful for large-scale problems – i.e. problems
where n is of the order of magnitude ≥ 103. The only other method that we
know capable of feasibly solving nonsmooth nonconvex problems of this size,
and for which we have access to an implementation, is the LMBM method
presented in [HMM04]. This means that for large-scale problems, we have
only one method to compare against. To get a more complete comparison we
also compare LBFGS to other nonsmooth optimization algorithms for small-
and medium-scale problems.

5.1.1 LMBM

The Limited Memory Bundle Method (LMBM) was introduced in [HMM04].
The method is a hybrid of the bundle method and the limited memory
variable metric methods (specifically LBFGS). It exploits the ideas of the
variable metric bundle method [HUL93, LV99, Kiw85], namely the utilization
of null steps and simple aggregation of subgradients, but the search direction
is calculated using a limited memory approach as in the LBFGS method.
Therefore, no time-consuming quadratic program needs to be solved to find
a search direction and the number of stored subgradients does not depend
on the dimension of the problem. These characteristics make LMBM well
suited for large-scale problems and it is the only one (other than LBFGS)
with that property among the algorithms in comparison.

We used the default parameters except the maximal bundle size, called
na. Since it was demonstrated in [HMM04] that LMBM on the tested prob-
lems did as well or even slightly better with na = 10 than with na = 100,
we use na = 10.

Fortran code and a Matlab mex-interface for LMBM are currently avail-
able at M. Karmitsa’s website3.

5.1.2 RedistProx

The Redistributed Proximal Bundle Method (RedistProx) introduced in [HS09]
by Hare and Sagastizábal is aimed at nonconvex, nonsmooth optimization.
It uses an approach based on generating cutting-plane models, not of the ob-
jective function, but of a local convexification of the objective function. The

3http://napsu.karmitsa.fi/

Comparison of LBFGS and Other Methods 28

corresponding convexification parameter is calculated adaptively “on the fly”.
It solves a quadratic minimization problem to find the next search direction
which typically requires O(n3) operations. To solve this quadratic program,
we use the MOSEK QP-solver [MOS03], which gave somewhat better results
than using the QP-solver in the Matlab Optimization Toolbox.

RedistProx is not currently publicly available. It was kindly provided to
us by the authors to include in our tests. The authors note that this code
is a preliminary implementation of the algorithm and was developed as a
proof-of-concept. Future implementations may produce improvement in its
results.

5.1.3 ShorR

The Shor-R algorithm dates to the 1980s [Sho85]. Its appeal is that it is
easy to describe and implement. It depends on a parameter β, equivalently
1 − γ [BLO08], which must be chosen in [0, 1]. When β = 1 (γ = 0), the
method reduces to the steepest descent method, while for β = 0 (γ = 1)
it is a variant of the conjugate gradient method. We fix β = γ = 1/2 and
follow the basic definition in [BLO08], using the weak Wolfe line search of
section 3.3. However, we found that ShorR frequently failed unless the Wolfe
parameter c2 was set to a much smaller value than the 0.9 used for BFGS
and LBFGS, so that the directional derivative is forced to change sign in
the line search. We used c1 = c2 = 0. The algorithm uses matrix-vector
multiplication and the cost is O(n2) per iteration. The code is available at
the website mentioned in the introduction of this thesis.

5.1.4 ShorRLesage

We include this modified variant of the Shor-R algorithm written by Lesage,
based on ideas in [KK00]. The code, which is much more complicated than
the basic ShorR code, is publicly available on Lesage’s website4.

5.1.5 BFGS

We include also the classical BFGS method originally introduced by Broyden,
Fletcher, Goldfarb and Shanno [Bro70, Fle70, Gol70, Sha70]. The method
is described in section 2.2 and experiments regarding its performance on
nonsmooth examples were done by Lewis and Overton in [LO10].

We use the same line search as for the LBFGS method (described in
section 3.3 and Algorithm 3) and we take C0 = ‖∇f(x(0))‖−1I and scale
C1 by γ = ((s(0))T y(0))((y(0))T y(0))−1 after the first step as suggested in
[NW06]. This same scaling is also suggested in [NW06] for LBFGS but before
every update. BFGS and LBFGS are only equivalent the first m (the number

4http://www.business.txstate.edu/users/jl47/

Comparison of LBFGS and Other Methods 29

Name Implementation Method Language
BFGS Overton & Skajaa Standard (full) BFGS Matlab
GradSamp Overton Gradient Sampling Matlab
LBFGS Overton & Skajaa Limited Memory BFGS Matlab
LMBM Haarala Limited Memory Bundle Fortran77
RedistProx Hare & Sagastizábal Var. Proximal Bundle Matlab
ShorR Overton Shor-R Matlab
ShorRLesage Lesage Modified Shor-R Matlab

Table 2: Overview of the different algorithms compared.

of updates in LBFGS) steps if none of these scalings are implemented. For
the tests reported below, we use the recommended scalings for every iteration
of LBFGS and the first iteration of BFGS.

As described in section 2.2, BFGS uses matrix-vector multiplication and
thus requires O(n2) operations in each iteration. The code is available at
the website mentioned in the introduction of this thesis.

5.1.6 GradSamp

The Gradient Sampling (GradSamp) algorithm was first introduced in [BLO02]
in 2002 and analysis of the method was given in [BLO05] and [Kiw07]. At
a given iterate, the gradient of the objective function on a set of randomly
generated nearby points (within the sampling radius ε) is computed, and this
information is used to construct a local search direction that may be viewed
as an approximate ε-steepest descent direction. The descent direction is then
obtained by solving a quadratic program. Gradient information is not saved
from one iteration to the next, but discarded once a lower point is obtained
from a line search. In [BLO05], the gradient sampling algorithm was found to
be very effective and robust for approximating local minimizers of a wide va-
riety of nonsmooth, nonconvex functions, including non-Lipschitz functions.
However, it is much too computationally expensive for medium- or large-
scale use. We use the MOSEK QP-solver [MOS03] to solve the quadratic
subproblem in each iteration. The code for GradSamp is publicly available
from Overton’s website5.

The proximal bundle code PBUN by Lukšan and Vlček [LV97] is publicly
available at Luksan’s website6. It is written in Fortran77, but we were un-
able to obtain a current mex-interface for Matlab. For this reason, we have
not included PBUN in our comparisons.

5http://www.cs.nyu.edu/faculty/overton/papers/gradsamp/
6http://www.cs.cas.cz/luksan/

Comparison of LBFGS and Other Methods 30

n\param Mit m

10 1000 7
50 1000 20
200 1000 35
1000 5000 35
5000 5000 35
10000 5000 35

Table 3: Parameters used for experiments on the test problems of section 5. m is
the number of updates used in LBFGS and LMBM. Mit was the maximal number of
iterations allowed.

5.2 Methodology and Testing Environment

The numerical experiments in this thesis were performed using a desktop
computer running GNU/Linux with a quad core 64-bit 3.0 GHz Intel pro-
cessor (Q9650) and 8 GB of RAM.

RedistProx, LBFGS, BFGS, ShorR and ShorRLesage were all run as Mat-
lab source code while the LMBM algorithm was run via a mex-interface to
the original Fortran source code provided by the author of LMBM [HMM04].
For this reason, it is not reasonable to compare the algorithms in terms of
CPU time (Fortran runs faster than Matlab). Instead we compare the al-
gorithms in terms of how many function evaluations they use. One should
always keep in mind that the limited memory methods (LBFGS and LMBM)
always run considerably faster than the O(n2)-methods when n is large.

We use the default parameters in all the codes except as noted above and
in table 3.

5.2.1 Termination criteria

We used the definition of succesful runs described in section 4.3.
For some of the test problems, we knew the optimal value f? analytically.

In the cases where we did not, we ran all the algorithms many times with
very high iteration limit and chose f? to be the best value found.

For most of the test problems the algorithms did not find multiple local
minimal values. The exceptions were the generalized nonsmooth Rosenbrock
function (section 4.2.4), the Schatten norm problem (section 5.3.3) and the
three problems in appendix A.3. In addition, there was one problem for
which the algorithms found multiple Clarke stationary points, namely Nes-
terov’s nonsmooth Chebyshev-Rosenbrock function (section 4.2.5).

We stopped the solvers whenever the function value dropped below ftarget
(see (4.8)). In such cases we call a run “successful”. Otherwise, it “failed”, and
the run was terminated either because the maximum number of iterations

Comparison of LBFGS and Other Methods 31

Mit was reached or one of the following solver-specific events occurred:

• LBFGS, BFGS and ShorR

1. Line search failed to find acceptable step

2. Search direction was not a descent direction (due to rounding
errors)

3. Step size was less than a certain tolerance: α ≤ εα

• RedistProx

1. Maximum number of restarts reached indicating no further progress
possible

2. Encountered “bad QP” indicating no further progress possible.
Usually this is due to a non-positive definite Hessian occuring
because of rounding errors.

• ShorRLesage

1. Step size was less than a certain tolerance: α ≤ εα

• GradSamp

1. Line search failed to find acceptable step

2. Search direction was not a descent direction (due to rounding
errors)

• LMBM

1. Change in function value was less than a certain tolerance (used
default value) for 10 consecutive iterations, indicating no further
progress possible

2. Maximum number of restarts reached indicating no further progress
possible

5.3 Three Matrix Problems

We now consider three nonsmooth optimization problems arising from matrix
applications. For the problems in this section, we use Mit = 20000.

5.3.1 An eigenvalue problem

We first consider a nonconvex relaxation of an entropy minimization problem
taken from [LO10]. The objective function to be minimized is

f(X) = logEK(A ◦X) (5.1)

Comparison of LBFGS and Other Methods 32

Alg.\n = L2 4 16 100 144 196 256
ShorR 0/15 0/103 0/225 0/451 0/1292 0/1572

ShorRLesage 0/14 0/54 0/83 0/142 0/322 0/354
LMBM 0/5 20/86 0/197 30/940 55/2151 100/–
LBFGS 0/4 0/81 0/135 0/459 0/915 10/2496
BFGS 0/4 0/43 0/56 0/106 0/159 0/218

Table 4: Performance of five different algorithms on (5.1). Each entry in table
means “percentage of failed runs”/“average number of function evaluations needed for
successful runs” with ε = 10−4. There were 20 randomly started runs for each n.
The number of updates for LMBM and LBFGS was 20. Maximal allowed number of
function evaluations was Mit = 20000.

subject to X being an L × L positive semidefinite symmetric matrix with
ones on the diagonal, where A is a fixed matrix, ◦ denotes the component-
wise matrix-product and where EK(X) denotes the product of the K largest
eigenvalues of X. Details about how to formulate this problem as an un-
constrained problem with n = L2 variables can be found in [LO10]. It is
this version of the problem we are solving here. For A we use the L × L
leading submatrices of a covariance matrix from Overton’s website7 and we
take K = L/2. With this data, it appears that this problem does not have
multiple local minimizers or Clarke stationary points [LO10]. Thus we con-
sider a run successful if the algorithm is able to bring f below ftarget with
ε = 10−4 (see (4.8)). In table 4 we see how five different algorithms perform
on the problem (5.1). ShorR, ShorRLesage and BFGS look like the more ro-
bust algorithms but BFGS is most efficient. LMBM is consistently the worst,
using more function evaluations than any other solver. Furthermore, as n
grows it fails on many of the runs. LBFGS does quite well when n is small
but the need for function evaluations seems to grow rapidly as n gets bigger.
RedistProx was not included in this comparison because it consistently failed
to solve this problem.

5.3.2 A condition number problem

We now consider the objective function

f(x) = cond(A+XXT) (5.2)

where A is a fixed randomly chosen symmetric positive semidefinite matrix
of size (5k) × (5k) with k a positive integer. The variable is x = vec(X),
whereX is of size (5k)×k. This problem was introduced in [GV06], where an
analytical expression for the optimal value is given. This is the optimal value
we are using when defining ftarget (see (4.8)) for this problem. The problem

7http://cs.nyu.edu/overton/papers/gradsamp/probs/

Comparison of LBFGS and Other Methods 33

50 100 150 200 250 300 350 400 450 500

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

n

lo
g1

0(
nf

ev
al

)

ShorR
ShorRLesage
LMBM
LBFGS
BFGS

Figure 18: Number of function evaluations required by five different algorithms to
bring f in (5.2) below ftarget (defined in (4.8)). There were N = 20 runs for each
algorithm and we used Mit = 20000.

Alg.\n 45 80 125 180 245 320 405 500
ShorR 0/39 0/66 0/96 0/156 0/200 0/327 0/437 0/605

ShorRLesage 0/57 0/65 0/70 0/74 0/75 0/81 0/85 0/88
LMBM 0/23 0/33 0/43 0/61 0/67 0/85 0/103 0/125
LBFGS 0/22 0/27 0/34 0/44 0/46 0/58 0/62 0/73
BFGS 0/35 0/57 0/84 0/131 0/154 0/223 0/276 0/342

Table 5: Performance of five different algorithms on (5.2). Read the table like
table 4 on the preceding page. We used ε = 10−4 and there were 20 randomly started
runs for each n. Number of updates for LMBM and LBFGS was 35.

does not seem to have local minimizers which was confirmed by numerous
numerical experiments similar to those carried out in sections 4.2.4 and 4.2.5.

Table 5 shows the average number of function evaluations required by
five different algorithms to reduce f below ftarget with ε = 10−4 in N = 20
randomly started runs for different n. We used n = 5k2, k = 3, 4, . . . , 10.
The algorithm RedistProx was not included in this comparison because it
consistently failed to solve this problem. For this problem, LBFGS used
fewer function evaluations than any other algorithm tested. Unlike the other
methods, the number of function evaluations used by ShorRLesage is rela-
tively independent of n, making it inefficient for small n but relatively good
for large n. The condition number of a matrix is strongly pseudoconvex on
matrix space [MY09], and this may explain why all runs were successful for

Comparison of LBFGS and Other Methods 34

all algorithms except RedistProx.

5.3.3 The Schatten norm problem

We now consider the problem

f(x) = ρ‖Ax− b‖2 +
n∑
j=1

(σj(X))p (5.3)

where x = vec(X) and σk(X) denotes the k’th largest singular value of X.
The first term is a penalty term enforcing the linear constraints Ax = b. The
number p ∈ (0, 1] is a parameter. If p = 1, the problem is the convex nuclear
norm problem that has received much attention recently, see e.g. [CR08].
For p < 1, f is nonconvex and not Lipschitz (when σ → 0+ the gradient
explodes because it involves expressions of the type σp−1). For this reason,
one might expect that this problem is very difficult to minimize for p < 1.

In figure 19, we see the function value at termination of two different al-
gorithms when started randomly 100 times on (5.3). It is clear from the plots
that there are two locally minimizing values of f that seem to attract both
ShorRLesage and BFGS. Using the definition described in 4.3, we randomly
start all the algorithms under comparison N = 100 times and call an algo-
rithm successful if it drives f below ftarget with ε = 10−4, see (4.8), where
f? is the function value corresponding to the lowest of the two plateaus in
figure 19 in at least half of the runs (γ = 0.5).

The number of successful runs and the average number of required func-
tion evaluations are shown in table 6. GradSamp looks very robust reducing
f below ftarget in 89% of the runs. However it uses about 10 times more
function evaluations than the other algorithms to do so. The performances
of ShorRLesage and BFGS are very similar and both better than LMBM. The

0 20 40 60 80 100

0.474

0.475

0.476

0.477

0.478

0.479

0.48

0.481

0.482

Diff. starting points

ffi
na

l

(a) BFGS

0 20 40 60 80 100

0.474

0.475

0.476

0.477

0.478

0.479

Diff. starting points

ffi
na

l

(b) ShorRLesage

Figure 19: Function value at termination of 100 randomly started runs on (5.3)
with n = 8, p = 0.90, ρ = 1 and A ∈ R4×8 and b ∈ R4 randomly chosen. Notice
different scales on vertical axes.

Comparison of LBFGS and Other Methods 35

Alg. ffinal ≤ ftarget Succ. Avg. func. eval.
ShorR 20% − −

ShorRLesage 68% + 365
LMBM 51% + 410
LBFGS 0% − −
BFGS 62% + 332

GradSamp 89% + 3202
RedistProx 0% − −

Table 6: Results of 100 randomly started runs on (5.3) with n = 8, p = 0.90
and ρ = 1. A ∈ R4×8 and b ∈ R4 were randomly chosen from a standard normal
distribution. We used Mit = 20000.

remaining three algorithms all fail to get f below ftarget in more than 50%
of the runs.

5.4 Comparisons via Performance Profiles

5.4.1 Performance profiles

To better compare the performance of the different methods we use perfor-
mance profiles which were introduced in [DM02].

Let P = {p1, p2, . . . } be a set of problems and let S = {s1, s2, . . . } be a
set of solvers. If we want to compare the performance of the solvers in S on
the problems in P, we proceed as follows:

Let ap,s denote the absolute amount of computational resource (e.g. CPU
time, memory or number of function evaluations) required by solver s to solve
problem p. If s fails to solve p then we set ap,s =∞.

Let mp denote the least amount of computational resource required by
any solver in the comparison to solve problem p, i.e. mp = mins∈S{ap,s} and
set rp,s = ap,s/mp. The performance profile for solver s is then

ρs(τ) =
|{p ∈ P : log2(rp,s) ≤ τ}|

|P|
. (5.4)

Consider the performance profile in figure 20 on the next page. Let us look
at just one solver s. For τ = 0 the numerator in (5.4) is the number of
problems such that log2(rp,s) ≤ 0. This is only satisfied if rp,s = 1 (because
we always have rp,s ≥ 1). When rp,s = 1, we have ap,s = mp meaning that
solver s was best for ρs(0) of all the problems. In figure 20 on the following
page we see that Solver 4 was best for about 56% of the problems, Solver 2
was best for about 44% of the problems and Solvers 1 and 3 were best for
none of the problems.

At the other end of the horizontal axis we see that ρs denotes the fraction
of problems which solver s succeeded in solving. If the numerator in (5.4) is

Comparison of LBFGS and Other Methods 36

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Solver 1
Solver 2
Solver 3
Solver 4

Figure 20: Example of performance profile.

not equal to |P| when τ is very large, then this means there were problems
that the solver failed to solve. In figure 20 we see that solvers 1 and 4 solved
all problems while solvers 2 and 3 solved 89% of the problems.

Generally we can read directly off the performance profile graphs the
relative performance of the solvers: The higher the performance profile the
better the corresponding solver. In figure 20, we therefore see that Solver 4
overall does best.

In all the performance profiles that follow the computational resource
that is measured is the number of function evaluations.

5.4.2 Nonsmooth test problems F1–F9

We now present results from applying the seven (six when n > 10) algorithms
to the test problems seen in appendix A.1 on page 45. These problems
were taken from [HMM04] and they can all be defined with any number of
variables. In table 7 on the following page information about the problems is
seen. In table 3 on page 30 we see what parameters were used when solving
the problems.

The first five problems F1-F5 are convex and the remaining four F6-F9
are not convex. We have determined through experiments that apparently
none of these nonconvex problems have multiple local minima at least for
n ≤ 200. In [HMM04] the same nine problems plus one additional problem
were used in comparisons. However, because that additional problem has
several local minima, we have moved that problem to a different profile – see
section 5.4.4.

We run all the algorithms N = 10 times with randomly chosen starting

Comparison of LBFGS and Other Methods 37

Problem Convex f?

F1 + 0
F2 + 0
F3 + −(n− 1)/2
F4 + 2(n− 1)
F5 + 2(n− 1)
F6 − 0
F7 − 0
F8 − –
F9 − 0

Table 7: Information about the problems F1-F9. The column Cvx. indicates
whether or not the problem is convex. f? shows the optimal value.

points (see section 4.1.1) and use the definition of success described in section
4.3, here with γ = 0.7 and ε = 10−4.

Figure 21 shows the performance profiles for the seven algorithms on the
problems F1-F9 with n = 10 and n = 50.

For n = 10 only BFGS, ShorRLesage and GradSamp successfully solve all
the problems to within the required accuracy. RedistProx is both for n = 10
and n = 50 the least robust algorithm, however for n = 10, it uses fewest
function evaluations in 6 of the 7 problems it solves. BFGS, LBFGS and
LMBM use significantly fewer function evaluations than ShorR, ShorRLesage
and GradSamp.

The picture for n = 50 is somewhat similar, except that the two lim-
ited memory algorithms now fail on 3 and 4 of the nine problems. Only
ShorRLesage solves all nine problems but BFGS still solves all but one prob-

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
GradSamp
RedistProx

(a) n = 10

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
RedistProx

(b) n = 50

Figure 21: Performance profiles for the seven algorithms on the test problems
F1-F9.

Comparison of LBFGS and Other Methods 38

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
RedistProx

(a) n = 200

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

LMBM
LBFGS

(b) n = 1000

Figure 22: Performance profiles for six algorithms on the test problems F1-F9 for
n = 200 and the two limited memory methods for n = 1000.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

LMBM
LBFGS

(a) n = 5000

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

LMBM
LBFGS

(b) n = 10000

Figure 23: Performance profiles for the seven algorithms on the test problems
F1-F9.

lem and still uses significantly fewer function evaluations.
When we increase n to 200, no algorithm solves more than 7 of the nine

problems. Only BFGS and ShorRLesage solve that many and again, between
the two, BFGS uses much fewer function evaluations. LBFGS is best on 3 of
the 6 problems it solves and uses fewer function evaluation than the other
limited memory method LMBM, which solves a total of 5 problems. It is also
interesting to note that ShorRLesage is much more efficient and reliable than
ShorR on these problems.

Now looking at the results for n = 1000, 5000 and 10000 shown in fig-
ure 22(b) and figure 23 we see that LBFGS is consistently and by quite a
large margin the better performer of the two limited memory algorithms on
these problems. While LMBM was better than LBFGS for n = 10 it appears
to lose more and more ground to LBFGS when n grows. As described in sec-
tion 4.1.3 on page 16, we can estimate the dimension of the V-space at the

Comparison of LBFGS and Other Methods 39

P \ n 10 19 28 37 46 55 64 gen. asymp.
F1 1 0 5 4 5 3 9 ? ?
F2 5 5 5 5 5 5 5 5 O(1)
F3 9 18 27 36 45 54 63 n− 1 O(n)
F4 10 19 28 37 46 55 64 n O(n)
F5 2 2 2 2 2 2 2 2 O(1)
F6 1 1 1 1 1 1 1 1 O(1)
F7 10 19 28 37 46 55 64 n O(n)
F8 7 16 25 33 43 52 61 n− 3? O(n)
F9 1 1 1 1 1 1 1 1 O(1)

Table 8: Computed V -space information about the problems F1-F9.

minimizer by running BFGS and counting the number of very small eigenval-
ues of the approximated inverse Hessian at the final iterate – assuming that
BFGS terminated at, or very close to, the minimizer. Table 8 shows these
computed V-space dimensions.

We see that the problem set F1-F9 includes both problems where the
V-space is low dimensional and problems where the V-space is almost the
full space. This means that these experiments do not favor an algorithm
better able to solve one or the other type of problem.

5.4.3 Nonsmooth test problems T1–T6

We now consider the results from applying the seven algorithms to the prob-
lems from TEST29 seen in appendix A.2. These problems were taken from
[LTS+02] and may be defined with any number of variables. For all prob-
lems, we have confirmed via numerical experiments that they apparently do
not have multiple local minima. Table 3 on page 30 shows the parameters
used for these test problems.

As for the problems F1-F9, we do N = 10 randomly initialized runs and
use γ = 0.7.

Figure 24 on the next page shows the performances for n = 10 and
n = 50. We see that RedistProx performs the fastest on most of the problems,
but fails to solve some problems. For n = 10, three algorithms successfully
solve all 6 problems, namely ShorRLesage, ShorR and GradSamp, while BFGS
solves 5. For both n = 10 and n = 50, the two limited memory algorithms
do worst and specially for n = 50 the result is very poor. Both methods
bring f below the target on only three of the problems. For n = 10, LBFGS
is slightly better than LMBM and for n = 50 LMBM is the slightly better
algorithm.

In figure 25 on the following page we see the results for n = 200 and
n = 1000. For n = 200, only BFGS solves 4 of 6 problems – the rest solve

Comparison of LBFGS and Other Methods 40

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
GradSamp
RedistProx

(a) n = 10

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
RedistProx

(b) n = 50

Figure 24: Performance profiles for the seven algorithms on the test problems
T1-T6.

either 3 or 2 problems. On this problem set, RedistProx does much better
than that of section 5.4.2. Although it is still not very robust, it uses very
few function evaluations to solve the problems that it successfully solves.

When n = 1000, only the two limited memory algorithms are feasible to
use and we see from figure 25(b) that both algorithms succeed on 3 of the 6
problems. LBFGS is best on two of them and LMBM on the last.

It is clear from these experiments that the problems T1-T6 are generally
harder than the problems F1-F9 for which we presented results in section
5.4.2. In table 9 on the next page, we see the V -space information that BFGS
was able to provide for the problems T1-T6. We see that as for the problems
F1-F9, we have also in this problem set problems of both high and low V -
space dimension – it was, however, much more difficult to determine how
many eigenvalues of the inverse Hessian were bounded away from zero. To

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
RedistProx

(a) n = 200

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

LMBM
LBFGS

(b) n = 1000

Figure 25: Performance profiles for six algorithms on the test problems T1-T6 for
n = 200 and the two limited memory methods for n = 1000.

Comparison of LBFGS and Other Methods 41

P \ n 10 20 30 40 50 60 70 gen. asymp.
T1 10 20 30 40 50 60 70 n O(n)
T2 4 5 6 7 7? 7? 8? ? O(1)?
T3 1 1 1 1 1 1 1 1 O(1)
T4 8 18 28 38 49(!) 58 68 n− 2? O(n)
T5 10 20 30 40 50 60 70 n O(n)
T6 10 20 30 40 50 60 70 n O(n)

Table 9: Computed V -space information about the problems T1-T6. A question-
mark indicates that BFGS was unable to solve the problem to an accuracy sufficient
to display any useful V -space information.

0 5 10 15 20 25
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(a) T3

0 100 200 300 400 500 600 700
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(b) T4

0 100 200 300 400 500 600 700 800 900
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

(c) T2

Figure 26: Eigenvalues of Cj as function of iteration counter j for selected prob-
lems from the problem set T1-T6 with n = 60.

see the difficulty, consider the plots in figure 26. In the left and the middle
pane of figure 26 it is not hard to see that the eigenvalues separate in two
groups: those that go to zero and those that do not. In fact we can count
that for (a) T3, one eigenvalue goes to zero (b) T4, all but two eigenvalues
go to zero. As seen in the right pane, it is essentially not possible for (c) T2
to determine how many eigenvalues go to zero before BFGS terminates.

For the problems F1-F9 from section 5.4.2, we were able to compare the
two limited memory algorithms when n = 5000 and n = 10000. For the
problem set T1-T6, however, neither method succeeds in enough cases to
make comparison meaningful.

5.4.4 Nonconvex problems with several local minima

In this section, we present results from comparing the seven algorithms on
problems that have several local minima or non-locally-minimizing Clarke
stationary points. These problems are the three problems P1-P3 shown
in appendix A.3 along with the nonsmooth Rosenbrock function of Section
4.2.4, the Nesterov problem of 4.2.5 and the Schatten norm problem of sec-
tion 5.3.3 but here all with n = 10 variables.

For these problems we do N = 10 randomly initialized runs and set

Comparison of LBFGS and Other Methods 42

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

ShorR
ShorRLesage
LMBM
LBFGS
BFGS
GradSamp
RedistProxM

Figure 27: Performance profile for seven algorithms on the six test problems with
several local minima or non-locally-minimizing Clarke stationary points, with n = 10
variables and γ = 0.3. There were N = 10 randomly initialized runs and the starting
points from a uniform distribution on [0, 2]n.

γ = 0.3. This relatively small γ was chosen because the problems are known
to have several local minima or non-locally-minimizing Clarke stationary
points which we know attract the iterates. Hence it is reasonable to expect
that the algorithms more often fail to reduce f below ftarget than if only
one such point was present. We drew the starting points from a uniform
distribution on [0, 2]n.

In figure 27 we see how the algorithms compare on these problems. Five
of the seven algorithms succeed in solving all of the six problems. In terms
of function evaluations, BFGS and ShorRLesage do somewhat better than
ShorR and LMBM and these do much better than GradSamp. For these
problems, LBFGS is the poorest performer with only three of the six problems
successfully solved. RedistProx is a lot better than LBFGS in these problems,
but as for the other problem sets, it is not very robust, solving only four of
six problems.

Comparison of LBFGS and Other Methods 43

5.5 Summary of Observations

In the previous sections we have found that for

• small- and medium-scale problems (1 ≤ n < 1000),

– BFGS was, together with ShorRLesage, generally the most robust
algorithm solving totally 45 of 51 problems. In terms of function
evaluations, it was the best algorithm on the problems F1-F9 for
n = 10, 50 and 200. It was also the most efficient on the eigenvalue
problem (5.1) and the Schatten norm problem (5.3). It should also
be noted for its robustness and its consistent convergence rates,
see figures in section 4.2.

– ShorRLesage was equally robust solving totally 47 of 51 problems.
In terms of function evaluations, it was rarely the most efficient
except on the small scale versions of the problems T1-T6 and the
condition number problem (5.2). It used more function evalu-
ations than BFGS on the problems F1-F9 but on the problems
T1-T6 it was slightly more robust than BFGS.

– ShorR was satisfactory only for the very small scale versions of the
problems T1-T6 and only in terms of robustness. Its performance
dropped dramatically for larger n. With a few exceptions, ShorR
appeared to be worse than ShorRLesage, so there is no reason to
prefer it.

– RedistProx was generally the least predictable of the tested algo-
rithms. It was unable to solve any of the matrix problems and did
not compare very well on the performance profiles for the prob-
lem set F1-F9 – except when n = 10, where it used few function
evaluations but failed to solve two of the problems. It was overall
not very robust, failing on seven of nine the problems for n = 50
and eight of nine for n = 200. On the problem set T1-T6, it
failed on two of the six problems for n = 10 and on three of six
for n = 50. On the other hand, in the same problem set, it was
best on almost all of the problems that it successfully solved. On
the nonconvex problems of section 5.4.4, it was about as fast as
the best methods on this set, but failed on two of six problems.

– LBFGS was, on the small- and medium-scale problems, compa-
rable to LMBM. It was more efficient on the condition number
problem (5.2), but clearly worse on the Schatten norm problem
(5.3). On the eigenvalue problem (5.1), it was more robust than
LMBM. On the problems F1-F9, LBFGS was overall marginally
better than LMBM for n ≤ 200. On the problems T1-T6, LBFGS
was best for smaller n, but the two were about equal for larger
n. Generally the behavior of LBFGS is much more erratic than

Comparison of LBFGS and Other Methods 44

that of BFGS. This was particularly clear on the problems of sec-
tion 4.2. LBFGS did very poorly on the nonconvex problems of
section 5.4.4. Here it solved only three of six problems and it did
so using significantly more function evaluations than every other
algorithm except GradSamp.

– LMBM was similar in its behavior to LBFGS on most small-scale
problems. The only exception was the nonconvex problems of sec-
tion 5.4.4. Here LMBM did well solving all problems with about
the same use of function evaluations as the other successful algo-
rithms.

– GradSamp was included only in the performance profiles for n =
10. The reason for this was its intense use of function evaluations.
It was simply infeasible to solve bigger problems. However, it
should be noted that it was very robust, solving all problems on
which it was applied. Its need for function evaluations was far
greater than that of any other method.

• large-scale problems (n ≥ 1000),

– LBFGS was notably superior to LMBM. On the test problems F1-
F9, LBFGS got relatively better compared to LMBM when n was
bigger. For n = 1000, both methods solved five of nine prob-
lems and LBFGS was best on all but one of them. For n = 5000,
LBFGS again solved five while LMBM solved four of nine prob-
lems and LBFGS was best on all of them. Similarly, LBFGS was
superior for n = 10000. On the problem set T1-T6, which was
overall a harder set of problems than F1-F9, LBFGS and LMBM
both successfully solved three problems for n = 1000 and LBFGS
was more efficient on two of them. However, neither method suc-
ceeded when n = 5000 or n = 10000. Overall, LBFGS was clearly
superior to LMBM for large n, which is a surprising conclusion,
considering that LMBM was specifically designed for large-scale
nonsmooth optimization while LBFGS was originally meant for
smooth problems.

A Test Problems

A.1 Nonsmooth Test Problems F1–F9

The following nine problems were taken from [HMM04]. They are all non-
smooth at the minimizer. The first five are convex and the following four
are nonconvex. They can all be formulated with any number of variables
and we will refer to them as F1 through F9. They were implemented in
Matlab by the author of this thesis based on the Fortran implementations
from Karmitsa’s website (see page 27). Information about all the problems
is gathered in table 7 on page 37 and table 8 on page 39.

F1: Generalization of MAXQ

f(x) = max
1≤i≤n

x2
i (A.1)

F2: Generalization of MAXHILB

f(x) = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

xj
i+ j − 1

∣∣∣∣∣∣ (A.2)

F3: Chained LQ

f(x) =
n−1∑
i=1

max
{
−xi − xi+1,−xi − xi+1 +

(
x2
i + x2

i+1 − 1
)}

(A.3)

F4: Chained CB3 I

f(x) =
n−1∑
i=1

max
{
x4
i + x2

i+1, (2− xi)2 + (2− xi+1)2, 2e−xi+xi+1
}

(A.4)

F5: Chained CB3 II

f(x) = max

{
n−1∑
i=1

(
x4
i + x2

i+1

)
,
n−1∑
i=1

(
(2− xi)2 + (2− xi+1)2

)
,
n−1∑
i=1

(
2e−xi+xi+1

)}
(A.5)

F6: Number of Active Faces

f(x) = max
1≤i≤n

{
g

(
−

n∑
i=1

xi

)
, g(xi)

}
, where g(y) = ln(|y|+ 1) (A.6)

F7: Nonsmooth Generalization of Brown Function 2

f(x) =
n−1∑
i=1

(
|xi|x

2
i+1+1 + |xi+1|x

2
i +1
)

(A.7)

Test Problems 46

F8: Chained Mifflin 2

f(x) =
n−1∑
i=1

(
−xi + 2(x2

i + x2
i+1 − 1) +

7
4

∣∣x2
i + x2

i+1 − 1)
∣∣) (A.8)

F9: Chained Crescent I

f(x) = max

{
n−1∑
i=1

(
x2
i + (xi+1 − 1)2 + xi+1 − 1

)
,
n−1∑
i=1

(
−x2

i − (xi+1 − 1)2 + xi+1 + 1
)}

(A.9)

A.2 Nonsmooth Test Problems T1–T6

These test problems are from the test library TEST29 from [LTS+02], which
contains many more problems. They were also used in [HMM04].

T1: Problem 2 from TEST29

f(x) = max
1≤i≤n

|xi| (A.10)

T2: Problem 5 from TEST29

f(x) =
n∑
i=1

∣∣∣∣∣∣
n∑
j=1

xj
i+ j − 1

∣∣∣∣∣∣ (A.11)

T3: Problem 6 from TEST29

f(x) = max
1≤i≤n

|(3− 2xi)xi + 1− xi−1 + xi−1| , with x0 = xn+1 = 0

(A.12)
T4: Problem 11 from TEST29

f(x) =
2(n−1)∑
k=1

|fk(x)| (A.13)

where (A.14)
fk(x) = xi + xi+1((1 + xi+1)xi+1 − 14)− 29 if mod(k, 2) = 0 (A.15)
fk(x) = xi + xi+1((5− xi+1)xi+1 − 2)− 13 if mod(k, 2) = 1 (A.16)

i = b(k + 1)/2c (A.17)

T5: Problem 22 from TEST29

f(x) = max
1≤i≤n

∣∣∣∣∣2xi + 1
2(n+ 1)2

(
xi +

i

n+ 1
+ 1
)3

− xi−1 − xi+1

∣∣∣∣∣ (A.18)

with x0 = xn+1 = 0.
T6: Problem 24 from TEST29

f(x) = max
1≤i≤n

∣∣∣∣2xi + 10
(n+ 1)2

sinh (10xi)− xi−1 − xi+1

∣∣∣∣ (A.19)

with x0 = xn+1 = 0.

Test Problems 47

A.3 Other Nonsmooth Test Problems

The problems presented here all have either multiple local minima or non-
locally-minimizing Clarke stationary points.

P1: Problem 13 from TEST29

f(x) =
2(n−2)∑
k=1

∣∣∣∣∣∣yl +
3∑

h=1

h2

l

4∏
j=1

xi+j
|xi+j |

∣∣∣xj/hli+j

∣∣∣
∣∣∣∣∣∣ (A.20)

where i = 2b(k+3)/4c−2, l = mod(k−1, 4)+1 and y1 = −14.4, y2 = −6.8,
y3 = −4.2 and y4 = −3.2. Further n must be even.

P2: Problem 17 from TEST29

f(x) = max
1≤i≤n

∣∣∣∣∣∣5− (j + 1)(1− cosxi)− sinxi −
5j+5∑

k=5j+1

cosxk

∣∣∣∣∣∣ (A.21)

where j = b(i− 1)/5c. Further n must be a multiple of 5.
P3: Chained Crescent II

This problem was used as a tenth problem (F10) in the set F1-F9 (see ap-
pendix A.1) in [HMM04], but since we determined that there were several
local minimal values, we moved it to this problem set.

f(x) =
n−1∑
i=1

max
{
x2
i + (xi+1 − 1)2 + xi+1 − 1,−x2

i − (xi+1 − 1)2 + xi+1 + 1
}

(A.22)

REFERENCES 48

References

[BL00] J. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Op-
timization: Theory and Examples. Springer, 2000.

[BLO02] J. V. Burke, A. S. Lewis, and M. L. Overton. Two numerical
methods for optimizing matrix stability. Linear Algebra Appl.,
351-352:117–145, 2002.

[BLO05] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient
sampling algorithm for nonsmooth, nonconvex optimization. SIAM
J. Optimization, 15:751–779, 2005.

[BLO08] J. V. Burke, A. S. Lewis, and M. L. Overton. The speed of Shor’s
R-algorithm. IMA J. Numer. Anal., 28(4):711–720, 2008.

[Bro70] C. G. Broyden. The convergence of a class of double-rank mini-
mization algorithms. Journal of the Institute of Mathematics and
Its Applications, 6(1):76–90, 1970.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[Cla83] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley,
New York. Reprinted by SIAM, Philadelphia, 1983.

[CR08] E. J. Candès and B. Recht. Exact matrix completion via convex
optimization. Found. of Comput. Math., 9:717–772, 2008.

[DM02] E.D. Dolan and J.J. More. Benchmarking optimization software
with performance profiles. Mathematical Programming, 91(2):201–
213, 2002.

[Fle70] R. Fletcher. A new approach to variable metric algorithms. Com-
puter Journal, 13(3):317–322, 1970.

[Gol70] D. Goldfarb. A family of variable metric updates derived by varia-
tional means. Mathematics of Computation, 24(109):23–26, 1970.

[Gur09] M. Gurbuzbalaban, 2009. Private communication.

[GV06] C. Greif and J. Varah. Minimizing the condition number for small
rank modifications. SIAM J. Matrix Anal. Appl., 29(1):82–97,
2006.

[HMM04] M. Haarala, K. Miettinen, and M. M. Makela. New limited mem-
ory bundle method for large-scale nonsmooth optimization. Opti-
mization Methods and Software, 19(6):673–692, 2004.

REFERENCES 49

[HS09] W. Hare and C Sagastizabal. A redistributed proximal bundle
method for nonconvex optimization. submitted to SIAM J. Opt,
2009.

[HUL93] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Min-
imization Algorithms. Springer Verlag, 1993.

[Kiw85] K.C. Kiwiel. Methods of Descent for Nondifferentiable Optimiza-
tion. Lecture Notes in Mathematics 1133. Springer Verlag, 1985.

[Kiw07] K.C. Kiwiel. Convergence of the gradient sampling algorithm for
nonsmooth nonconvex optimization. SIAM Journal on Optimiza-
tion, 18(2):379–388, 2007.

[KK00] F. Kappel and A. Kuntsevich. An implementation of Shor’s R-
algorithm. Computational Optimization and Applications, 15:193–
205, 2000.

[Lem81] C. Lemaréchal. A view of line searches. Optimization and Optimal
Control, Auslender, Oettli, Stoer Eds, Lecture Notes in Control
and Information Sciences 30, pages 59–78, 1981.

[Lew02] A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM J.
on Optimization, 13(3):702–725, 2002.

[LO10] A.S. Lewis and M.L. Overton. Nonsmooth optimization via BFGS.
Submitted to SIAM J. Optimization, 2010.

[LOS00] C. Lemaréchal, F. Oustry, and C. Sagastizábal. The U-Lagrangian
of a convex function. Trans. Amer. Math. Soc., 352:711.729, 2000.

[LTS+02] L. Lukšan, M. Tuma, M. Siska, J. Vlček, and N. Ramesova. UFO
2002. Interactive system for universal functional optimization. Re-
search report, Academy of Sciences of the Czech Republic, 2002.

[LV97] L. Lukšan and J. Vlček. PBUN, PNEW - a bundle-type algorithms
for nonsmooth optimization. Research report, Academy of Sciences
of the Czech Republic, 1997.

[LV99] L. Lukšan and J. Vlček. Globally convergent variable metric meth-
ods for convex nonsmooth unconstrained minimization. Journal of
Optimization Theory and Applications, 102(3):593–613, 1999.

[MOS03] MOSEK. Mosek optimization software, 2003. http://www.
mosek.com/.

[MY09] Pierre Maréchal and Jane J. Ye. Optimizing condition numbers.
SIAM J. Optim., 20(2):935–947, 2009.

REFERENCES 50

[Noc80] J. Nocedal. Updating quasi-Newton matrices with limited storage.
Mathematics of Computation, 35(151):773–782, 1980.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

[RW98] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer,
New York, 1998.

[Sha70] D. F. Shanno. Conditioning of quasi-Newton methods for func-
tion minimization. Mathematics of Computation, 24(111):647–656,
1970.

[Sho85] N. Z. Shor. Minimization Methods for Non-Differentiable Func-
tions. Springer Verlag, 1985.

